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Abstract— This paper presents an ultralow power smart cam-
era with gesture detection. Low power is achieved by directly
extracting gesture features from the compressed measurements,
which are the block averages and the linear combinations
of the image sensor’s pixel values. We present two classifier
techniques to allow low computational and storage requirements.
The system has been implemented on an analog devices BlackFin
ULP vision processor. By enabling ultralow energy consumption,
we demonstrate that the system is powered by ambient light
harvested through photovoltaic cells whose output is regulated
by TDI’s dc-dc buck converter with maximum power point
tracking. Measured data reveals that with only 400 compressed
measurements (768x compression ratio) per frame, the system
is able to recognize key wake-up gestures with greater than
80% accuracy and only 95mJ of energy per frame. Owing
to its fully self-powered operation, the proposed system can
find wide applications in “always-on” vision systems, such as in
surveillance, robotics, and consumer electronics with touch-less
operation.

Index Terms— Activity recognition, sensor systems, pattern
recognition.

I. INTRODUCTION

UMAN machine interfaces continue to make remarkable

advances as we enable new modalities of interaction and
control. Beyond the traditional keyboard and mice, such smart
devices enable advanced user interfaces, like voice command
and control, camera and GPS based sensors and interfaces,
as well as touch screens and displays. One key requirement
of such interfaces is the “always on” capability, where the
sensor needs to be perpetually vigilant and look out for
user commands. Enabling such a capability, typically requires
prohibitively high power consumption. In particular, in camera
based systems, the problem is exacerbated by the high power
consumption of the pixel arrays and the interface circuits. The
power cost of continuously capturing and analyzing videos is
so high that most systems require physical input from the user
before accepting commands. To address this issue, a “wake up”
camera front-end allows a sensor node to continuously acquire
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Fig. 1. (a) Typical gesture recognition system (b) Computing power across
different components [5].

videos and monitor for a trigger that will wake up the back-
end when necessary, thus enabling exciting new usage models.
A promising “wake up” modality in “always on” cameras is
hand gestures, which is presented in this paper.

Traditional gesture recognition systems are power inefficient
and run on batteries or even AC power supplies [1]-[3]. A non-
appearance based low-power gesture recognition system [4]
has been proposed. Relying on wireless signal trigger by the
gestures, the performance of this system is limited by the short
sensing distance and is sensitive to environmental noise. We,
therefore, focus on reducing the energy consumption of the
more robust appearance-based approach. With rapid advances
in energy harvesting, it is enticing to think about a camera
front-end which is powered by photo-voltaic cells (PV), thus
paving the way for light-powered, smart, “always on” cameras.

Fig. 1 (a) shows the typical gesture recognition system.
It includes pixel array followed by an analog to digital
converter. Pixel array provides voltage corresponding to the
intensity of the image. Digitized intensity values are fed to
CPU/GPU to perform gesture recognition. If the gesture of
interest is found, it is quantized and transmitted to back end
server for further processing. Fig. 1 (b) shows typical power
numbers for different blocks involved in gesture recognition
and transmission . Digital processors like CPU/GPU dominates
the power of the entire system.

Fig. 2 illustrates the landscape of self-powered sensor
nodes and shows the power requirement of various electronic
devices and the amount of power that can be harvested by
various sources like solar energy, thermal, mechanical etc.
In particular, for image/video processing and classifications
we need high computational power. CPU, GPU and FPGA’s
are typically used to perform gesture recognition and object
classification on video data [1], [6]. However, for “always on”
front-ends where the objective is trigger identification and not
continuous gesture recognition, high performance (and hence
high power) are not optimal. Instead vision specific MCUs and
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Fig. 2. The landscape of self-powered electronic devices.

DSPs are more attractive for self-powered devices, since they
exhibit: (1) power dissipation in the order of hundreds of mWs
(a 10X reduction compared to CPUs), (2) compact size and
low thermal requirements, (3) sufficient computational ability
for “always on” applications, will be demonstrated here. Our
system features an Analog Devices’ Black Fin processor.

To enable “always on” and self-powered operation, we take
advantage of recent advances in compressed domain (CD)
data processing which allows trigger detection with signifi-
cantly lower power and computational requirements. This is
in contrast with existing algorithms which work directly in
the pixel domain. Given the objective of our camera front-
end, the computation complexity can be largely reduced (768 x
demonstrated here) from existing algorithms that are targeted
for continuous gesture recognition [7], [8]. As a command to
wake up the system, only a few gesture classes are needed.
When the gesture is structured and contains significant motion
(for example, writing a big “Z” in front of the camera),
it can be readily captured by images with high compression
ratios. Beyond using low-resolution images, we construct
each measurement as a random linear combination of pix-
els in a manner compatible with compressed domain signal
processing. Recent developments in compressed sensing and
target recognition in the compressed domain [9], [10] further
improve the accuracy and energy efficiency of the overall
process of data acquisition, feature extraction and recognition.
We demonstrate that we can characterize the gesture motion
directly from a few compressed measurements. On the other
hand, energy harvested from the environment has been used
in sensor networks [11], [12] with loads that demand very
low power. Here we demonstrate that an algorithm-hardware
co-design enables smart camera-front ends with “always on”
gesture detection.

In our system, the gesture motion is captured by a sequence
of difference images between consecutive frames. Each dif-
ference image passes two layers of compression to reduce its
resolution and to be transferred to the compressed domain.
The parameters of the motion are directly extracted from the
compressed domain. A memory/power-efficient classifier is
used to recognize gestures. Our work has major contributions
including:

o To the best of authors knowledge, our work is the

first autonomous gesture recognition system. Previously
reported works [13], [14] had always on image sensor
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to capture images. Our system is light-powered gesture
recognition system. We achieve low power by achiev-
ing computation in compressed domain and efficient
power delivery using DC-DC converter. Computation in
compressed domain enables DTW co-coefficients stored
in L1 cache. Light aware power management regulates
Vour during low, medium and high light conditions.

o To the authors’ knowledge, our work is the first in ges-
ture recognition using compressive sensing techniques.
The algorithms is designed specifically for the efficient
hardware implementation. Compared with the previous
DTW-based K-NN gesture classifiers [15], [16] , our
classification algorithm improves both the computational
and the memory efficiency.

The rest of the paper is organized as follows: in section II
we describe hardware system architecture. Algorithm details
are described in section III. Section IV & V presents hard-
ware implementation, comparison between hardware power
efficiencies of proposed algorithms & measurement results
respectively. Conclusions are drawn in section VI.

II. HARDWARE SYSTEM ARCHITECTURE

Before describing the proposed algorithm, we brief the
hardware system architecture. The proposed system consists
of four main components: a PV cell array, a DC-DC converter
with output voltage regulation, an MCU, and an image sensor.
The block diagram of our system is shown in Fig. 3. Camera
and MCU are powered by PV cell. If we find gesture of
interest then we transmit the captured image/video. The PV
cell converts solar energy to electrical energy. The Norton
equivalent output current (Fig. 4) of PV cell is given by:

)_1]_Tm 1)

where I and V are PV cell’s output current and voltage
respectively; Ry and Ry, are the series and shunt resistances;
lp, V1, a, Ns are dark saturation current, thermal voltage,
diode ideality factor, and number of cell connected in series

|4
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Fig. 5. Hardware system architecture demonstrating key components of
power management, the MCU and the mapping of the algorithm on the MCU.

respectively; Ip, is the generated current whose magnitude
depends on irradiation and temperature.

As the MCU and image sensors both demand regulated
voltage to operate properly, the DC voltage generated by PV
cells must be regulated by a DC-DC converter. For the current
design, we select TI’'s BQ25570EVM, a two-stage DC-DC
converter with Maximum Power Point Tracking (MPPT) for
solar energy harvesting and for providing a regulated output
supply. The block diagram of the energy harvesting system
and gesture recognition flow is shown in Fig. 5.

The input image is captured by Omnivision’s OV7672 sen-
sor with a native resolution of 480 x 640. We extract only
the gray-scale component of the image, which reduces the
computation power without any impact on performance. The
output of the pixel array is passed on to an on-board ADSP
BF707 MCU using I12C interface. Once the image is received
by the BF707 processor, we perform the following opera-
tions: block averaging, frame difference, random linear mea-
surements, motion centers extraction in compressed domain
followed by gesture recognition. For block compression we
extract every one out of 16 pixel values in each row and
column. Therefore the block compression factor is 256 (16 for
every row and column). The block average, frame difference
and dynamic time warping related matrices are stored in
L1 cache (requires less than 128KB). Motion center extraction
co-efficients are stored in external SDRAM (requires more
than 1.2MB). L1 access is performed using core clock at
500MHz and SDRAM access happens at system clock with
250MHz speed. The hardware is further optimized by (1) using
short integer maths and (2) optimizing memory usage that
reduces total power consumption without loss of performance.

Two classifiers are used for gesture recognition once motion
center is extracted. Classifier I is the traditional K near-
est neighbor (K-NN) classifier using dynamic time warping
(DTW) distance measurements. Classifier II is a modification
of classifier one, allowing it to cooperate with clustering and
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dimension reduction techniques [17]. Classifier II reduces the
memory requirement in the L1 cache as well as improves the
computational efficiency.

III. ALGORITHMS

Difference images are capable of capturing gestures con-
taining significant motions. We pass each difference image
through two layers of compression. In the first layer, the res-
olution is reduced by dividing the whole image into several
blocks and taking the average of each block. In the second
layer, we take coded combinations of these block-averaged
pixels. We estimate the center of the motion directly from these
compressed measurements. These motion centers are passed
to a classifier for gesture recognition. Fig. 6 shows the block
diagram of our system.

A. Two Layers of Compression

Denote F; as the ith full resolution image output from the
camera of size W x H. The difference image D; (Fig. 7 (a)
of two consecutive frames is calculated as D; = |Fj+1 — F;|.

In the first compression layer, the difference image is
divided evenly into blocks of size B by B. The average of
the pixel values in each block is taken, resulting in a block-
compressed difference image of size W/B by H/B (Fig. 7 (b).
We vectorize this low-resolution difference image and denote
it as y; € RV,

In the second layer of compression, we chose a random
matrix @ of size M by N as the coded measuring matrix.
Each entry of @ is uniformly chosen from {41, —1}. The
projection of the vectorized low-resolution difference image
in the compressed domain is calculated as:

yi = Dy, = OYY; 2)

Each entry in §; € RM is a random linear combination
of all the entries in y;. Y; is the vectorized original differ-
ence image D;. W is the block averaging matrix of size N
by W x H.

B. Motion Center Extraction in the Compressed Domain

In the uncompressed low-resolution domain, the hand region
in the difference image can be captured by a template shown
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Fig. 7. (a) Full-resolution difference image D;; (b) Block averaged difference
image; (c) Matching templates in the uncompressed domain. Rectangle sizes
differ among rows and centers of the rectangles differ among columns.

in Fig. 7 (c). The template (of size W/B by H/B) has
uniform non-zero values within the small rectangular region
and zeros elsewhere. To locate the hand region, we construct
a set of vectorized templates X (a,r), where a represents
the coordinates of the center of the small rectangle, and r
represents different rectangle sizes. The variation in sizes is to
adapt to the change of the hand size seen by the camera when
users at different locations. The center of the hand motion is
extracted by solving

(a*ar*)Zargmin aarHyi_X(aar)”Z (3)

The collection of templates forms a manifold in RY
with intrinsic parameters o and r. Using the result
from [9] and [18], we can directly extract the motion centers
in the compressed domain. That is, for

(@*,7*) = argmin o, r|[9; — @X (a, r)l]2 “)

(a*,7*) ~ (a*, r*) with high probability for some M < N.
The block averaging layer reduces the possible choices of r,
and techniques such as matched filtering can be applied to
efficiently solve equation (4).

C. Train the Gesture Classifier 11

DTW-based classifiers perform well for dataset contain-
ing limited amount of samples [19]. Traditional DTW-based
classifiers use DTW [20] as the distance measuring method
between two sequences of different lengths, and use K-NN
method for classification. The memory and computational
requirements thus grow linearly with the size of training set.

To reduce the number of DTW calculations in the recog-
nition stage, we perform K-means clustering in the training
dataset to form “super samples”. The distance between an
individual sample and a super sample is measured using DTW.
In each iteration, the super samples are updated as the average
of all the samples within their clusters. DTW barycenter
averaging (DBA) [21] is used as the averaging method.

The main difficulty of time series classification comes from
the different lengths of the samples. We notice that DBA can
find clustering centers of an arbitrary length set by the user.
The pairwise matching information in DTW also provides a
way to rescale the length of time sequences. Therefore, we pro-
pose a DTW length rescale algorithm, shown in Algorithm 1:

Using Algorithm 1, we rescale all the training sequences
to the same length 7. Since each motion center in the time
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Algorithm 1 DTW Length Rescaling
Require: K “super samples” S3,S3,...,Sk of length 7,
calculated using K-means with DTW and DBA.
Require: Sequence T to be rescaled to length 7
S* =argmin DTW (Sk, T)
M <« pairwise matching information between S* and T
Initialize T’ of length ¢
fori=1to r do
if S;" is matched to multiple points T}, Tj41, ...
according to M, then
) .
T; nél;gm%1+ [1Si — Til|

> Tj+m7

else
T! = T;, where T} is the only matching point to S
end if
end for
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Fig. 8. Block diagram of training the gesture classifier.

sequence contains both x and y coordinates, each gesture sam-
ple is now of size 2 x t. We vectorize the samples by cascading
all the y coordinates after the x coordinates, transferring the
time series classification problem to a traditional classification
problem in R2?. Various dimension reduction techniques and
multi-class classification algorithms can then be implemented.
Specifically, we apply PCA to the rescaled time series. In the
low-dimensional subspace, we model the distribution of each
gesture class as a mixture of Gaussian (GMM). The block
diagram of the complete training procedure is shown in Fig. 8.

D. Gesture Recognition Using Classifier I1

In a real-time system, the extracted motion centers are
stored in a FIFO buffer of length L. To recognize the gesture,
we first rescale the buffer data sequence based on the learned
super samples using Algorithm 1. Within this step, open-ended
DTW is used for pairwise matching in order to automatically
separate the gesture-like data from the noise at both ends of the
buffer. The new gesture-like sequence of length 7 then goes
through vectorization and dimension reduction before being
sent to the trained GMM-based classifier. The likelihood of
a given motion sequence belonging to each gesture class is
computed, and the gesture is assigned to the most likely class,
once this likelihood passes a pre-determined threshold.

Compared to the traditional DTW-based K-NN classifiers
(also implemented as classifier I), our classifier significantly
reduces the number of DTW calculation in the recognition
stage and still being able to exploit the structure of the entire
training set. In our experiments, most of the gestures can be
well separated in a very low dimension, making the dimension
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Fig. 9. (a) I-V characteristics and (b) Power-Voltage characteristics of PV
cells at three different irradiance levels (300W/m?, 600W/m? and 1000W/m?).
Discrete points are experimental results and continuous curves are from
simulations.

reduction and the low-dimensional classifier computationally
efficient as well.

IV. EXPERIMENTAL SETUP

A. Power Management Design

The overall platform is designed from COTS components
and here we explain the optimal design choice. We chose
omnivision OV7672 image sensor which has frame size of
480 x 640 pixels. The image sensor is connected to an ADSP
BF707 processor using 12C interface. Measurements reveal a
maximum current consumption of 170m A at fixed 3.3V power
supply.

The solar cell (AMS5907) produces an output voltage of 5V
at the point of maximum power transfer. The I-V and P-V
characteristics of each cell is shown in Fig. 9a and Fig. 9b
vis-a-vis simulation results. We see a close match between
experimental results and empirically fitted Eq 1. We note
that for an irradiance of 600W/m?, the maximum power
~ 100mW. In the current setup, We use 6 PV cells in parallel
to generate the required power that the load demands. Also,
from Fig. 9b, we observe that operating voltage at maximum
power point is approximately 80% of the open circuit voltage
(Voc). Hence, Maximum Power Point Tracking (MPPT) is
achieved by regulating the output at 80% of Vpc.

Figure 5 shows, the MPPT block samples open circuit volt-
age Voc every 16 seconds with S> on and Sy off. This sample
voltage Voc_sample 18 sent to the boost controller to modulate
the phase and frequency of the boost converter so that the PV
cell operates at maximum power point, 80% of Voc_sample-
The sampling process is shown in oscilloscope captures in Fig-
ure 10a. It is observed that open circuit voltage is sampled
and the PV cell’s operating voltage changes accordingly. The
energy is stored in a super-capacitor between the two converter
stages. Availability of super-capacitor benefits camera-based
applications whose power requirement fluctuates significantly.
The output voltage is sensed and sent back to buck controller
to regulate the output voltage. The output voltage is hardware
programmable through programmable external resistors on
the board. Fig. 10b shows how Vsrorpg varies with varying
irradiance and load current conditions. Measured oscilloscope
capture also reveals that Voyr is well regulated under such
dynamic conditions. The complete experimental setup along
with the PV cells and the MCU is shown in Figure 11.
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Fig. 10. Oscilloscope captures illustrating (a) MPPT where Vjy tracks the
open circuit voltage at 80% of V¢ as irradiance changes and (b) regulation of
VouT under dynamically varying super-capacitor voltage (VsTorg). In (b)
three regions are shown: (1) instantaneous load power consumption is higher
than input power which reduces Vs7orE; (2) load power and the harvested
power are balanced and (3) load consumption is less than harvested power.

Fig. 11. The overall system demonstrating the solar cells and the MCU with
the camera.

B. Mapping Proposed Gesture Recognition Algorithm
on Low-Power MCU

The image sensor output at full-resolution (480 x 640)
is captured by the MCU. The MCU performs compression
on each difference image. In the block compression layer,
we choose blocks of size 16 x 16; and hence the vectorized
low-resolution difference image y; € R'?%, The compression
rate of this layer is thus 256. For low power operation and to
enable a completely, self-powered system, the image sensor is
operated at a maximum of 10 frames/second.

In the random projection layer, the number of compressed
measurements M is a design variable. To gain better insights
on the choice of M, we explore its relationship with the accu-
racy of motion center extraction. For a typical gesture “Z” the
extraction algorithm is shown in Figure 12a. The motion cen-
ters are extracted from the block-averaged difference images
by solving equation (3). As we can see in Figure 12b, the three
segments of the gesture are clearly distinguished on the path
of the motion centers. With M = 250, the motion centers are
extracted in the compressed domain by solving equation (4),
and are plotted in Figure 12c. The similarity between this
plot and 12b demonstrates the effectiveness of the theory. For
each value of M we calculate the average motion center error
per frame in the compressed domain. The “L” shape of the
curve indicates that M = 250 is the threshold for nearly error-
free motion parameter estimation, granting us another factor
of 5 compression rate. This “threshold” behavior is consistent
with the classic results from compressed sensing presented
in [9], [10], and [18]. The accurate motion center extraction in
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Simulation results (from MATLAB) for different numbers of compressed measurements M. (a) Hand motion of gesture “Z” divided into three

segments, (b) Motion center extracted before random projection by solving equation (3), (c) Motion center extracted from 250 compressed measurements by
solving equation (4), (d) Average error of motion center extracted in the compressed domain compared with (b).

the compressed domain provides the foundation of preserving
high recognition accuracy.

To reduce memory usage and reduce power consumption,
we fix the size of the smashed filter templates (Figure 7.c)
to 10 x 10. In other words, we construct X (a,r) with r
fixed to 10 x 10 and a being every possible location in the
40 x 30 block-averaged difference image. Using the same
@, we transfer all the templates into the compressed domain
by calculating ®X (a, ). The buffer for storing the estimated
motion centers is set to have length 40.

As proof of concept, we test the system with a variety of
key gestures and in the rest of the paper, we will discuss an
implementation that recognizes 5 gesture classes: “X,” “+)”
“Z,) “0,” and “N.” For the usage model where the key gestures
are used for “wake up”, this small number of gesture classes
suffices. In each training example, the gesture is performed
at different locations with respect to the camera, and the
motion centers were extracted from the uncompressed domain
by solving equation (3). When using classifier I, we provide
20 training samples per class due to the memory constraint
in the hardware. Given this small number of training samples,
we set up classifier I as the one-nearest-neighbor classifier
with DTW distance measurement. When using classifier II,
since its training stage is separated from the testing stage
and neither the memory requirement nor the computational
complexity depends on the number of training samples in
each class, we provide 50 samples in each class. One super
sample is calculated in each class, and we choose only the
first 3 principle components after playing PCA. We modeled
each gesture class’ distribution as one multivariate Gaussian
in R3, whose mean and variation are directly calculated from
the training samples. Testing gestures are assigned to the
class with highest likelihood beyond a rejecting threshold
corresponding to the 85% confident region.

V. MEASUREMENT RESULTS

A. Number of Compressed Measurements vs. Recognition
Rate and Power Consumption

For different numbers of compressed measurements,
we measure the energy consumption per frame and the
recognition rate. We evaluate 20 gestures of each class, and
the recognition rate is calculated from the total number of
correctly recognized gestures. The total time per gesture is
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Fig. 13. a) Measured motion center extraction of hand gesture “Z” for

M = 400 (Close match with simulations in Fig. 12). b) Measured motion
center extraction of hand gesture “N” for M = 400.

kept at 0O.1secs. In a typical instance, the motion centers
for a gesture “Z” as extracted from the hardware is shown
in Fig. 13 (a). Comparison with Fig. 12 reveals a close match
between simulation and measurement. We have also plotted the
measured motion centers for N gesture in Fig. 13 (b). Fig. 14a
shows the measured design space exploration. We have mea-
sured the recognition accuracy as a function of M which
reveals an accuracy rate of > 80% for M > 300, which
closely matches simulation results described in the previous
section. Fig. 14b shows dependence of the power consumed
by the MCU and the corresponding recognition accuracy of
the proposed system as a function of the frame rate. We note
that a minimum frame rate of 5fps is required for maintaining
a desired recognition accuracy of [>84%]. As the frame
rate increases, the corresponding power consumption also
increases and shows a graceful trade-off between accuracy
and power consumed. Fig. 14c illustrates the efficiency of
the power management system where the irradiance of the
incident light is varied. The corresponding power consumed
and the maximum frame rate that can be supported is also
shown. It can be noted that for an irradiance of 1000W /m?
(typical for outdoor sensors) a frame rate of 10fps and recog-
nition accuracy of > 80% is achieved.

As the environmental conditions and irradiance levels
change, the proposed system can scale the frame/sec accord-
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TABLE I
RECOGNITION ACCURACY OF 5 GESTURE CLASSES (M = 400)

Gesture Type + Z X o N

Recognition Rate

(Classifier I) 90% | 70% | 85% | 85% | 75%
Recognition Rate
(Classifier II) 90% | 66% | 85% | 88% | 72%

ingly, which gracefully trades-off recognition accuracy. Fig. 15
illustrates the trade off between recognition accuracy for
different gestures as a function of Irradiance.

B. System’s Multi-Class Recognition Accuracy

At M = 400 the recognition accuracy of 5 different gesture
classes are shown in Table I. It can be seen that the recognition
accuracy depends on complexity of the gesture. For a simple
gesture, e.g., “+”, a peak accuracy of 90% in a fully solar
energy harvested system is measured. A comparison of the
proposed system with competing hardware [2], [6], [22] based
motion and gesture detection is shown in Table. II. The
proposed system demonstrates more than 3x improvement
compared to reported works in energy/frame for detecting
“wake up” gestures. This enables a fully self-powered ‘“always
on” camera front end.

C. Comparison Between Classifier I and Il

The performance of the two classifiers are first com-
pared purely in the software level. We apply them on the

TABLE II
RECOGNITION RATES OF SKIG GESTURE DATASET

Gesture Type Circle | Triangle | Wave Z Cross
Recognition Rate

(Classifier II) 93.3% 73.3% 933% | 80% | 93.3%
Recognition Rate

(Classifier I) 93.3% 93.3% 93.3% | 100% | 100%

3D PCA Embedding of SKIG Training Gestures

3D PCA Embedding of SKIG Testing Gestures

D
s D

5 ® =
\0 -

_—— 0

50 50

(2) (b)

Fig. 16. (a) PCA embedding of SKIG training samples in R3; (b) PCA
embedding of SKIG testing samples in R3.

public-available SKIG dataset [23] using OpenCV simulation.
We select 5 classes containing significant motion in the
x-y plane: Circle, Triangle, Wave, Z, and Cross. In each class,
we select 70 well-illuminated samples and randomly divided
them into training (55 samples) and testing (15 samples) sets.
We crop the training videos so that the gesture motion filled
the entire video. Since each frame is of size 240 x 320, in the
block compression layer, we use blocks of size 10 by 10, and
we set M = 200 in the random projection layer.

During the training stage of classifier II, we calculate
1 super sample in each gesture class. As the lengths of the
gesture videos vary from 48 to 236 frame, we choose 7 to be
the average length 116. After rescaling and vectorizing all the
training sample, we apply PCA and use the first 3 principle
components. The gesture samples are well separated in R3,
as shown in Fig. 16.a. For simplicity, we model each gesture
class’ distribution as one multivariate Gaussian in R3, whose
mean and variation are directly calculated from the training
samples. A testing gesture is assigned to the class with high-
est likelihood beyond a rejecting threshold corresponding to
the 85% confident region. The resulting classifier has decision
boundaries of ellipsoid shapes.

Following the proposed recognition procedure, we show
the testing samples’ PCA embedding in Figure 16.b. The
recognition rate is shown in Table II. The relatively low
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TABLE III

MEMORY REQUIRED BY DTW FOR CLASSIFIER I AND II

Classifier I | Classifier IT
14KB 1.12KB
28KB 1.82KB

Memory (K=5)
Memory (K=10)

recognition rate for triangle gestures is caused by the longer
sample videos that usually contain more than 200 frames.
Rescaling them resulted in significant down sampling, and
some of these down sampled data overlap with the “Z” gesture
samples in the R embedding. Classifier II had comparable
performance with Classifier I (a 5-NN classifier) for all other
classes.

In the hardware design, for both the classifiers the frame
rates are limited by the motion center extraction. It is mainly
because for a fixed buffer length that dynamic time warping is
performed at the end of each frame. Therefore, both classifiers
add latency in the capture of last frame. Fig. 17 shows the
latency in last frame for classifier I and II. The increases
latency for classifier I is due to increased number of distance
computation (proportional to number of gesture samples).

The memory required by DTW for the two classifiers
is given in Table. III. The memory for classifier I grows
linearly with the number of training samples. If K different
gestures classes are to be recognized from and the number
of training samples in each class is 20, the total number of
bytes required is: K x 20 x 70 x 2 (20 samples for each class,
each sample is a sequence of size 70 x 2). Memory required
by classifier II grows only linearly to the number of gesture
classes and is independent with the number of training samples
in each class. In the dimension reduction stage of classifier II,
storing the pca basis (with 3 principle components) requires
420 bytes. The total memory required by classifier II is,
therefore, (420 + 140 x K) bytes. As classifier II uses less
cache and provides less latency, we conclude classifier II is
suited for low power embedded applications. The test case
recognition accuracy of classifier II is about 4% less for
gestures N and Z compared to classifier I (From Table I. The
transmission energy/frame from Fig. 18 is less than 10mJ. The
energy/frame for sensing with computation is 95mJ. Therefore,
false negatives provided by classifier II for gestures N, Z
doesn’t affect the overall energy consumption . Low Memory
and energy/frame are the important factors for low power
embedded application. Therefore, we prefer classifier II over
classifier I for our application.
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Table. IV shows the comparison of the proposed system
with reported research in literature. We have included an
array of gesture recognition systems that have been discussed,
starting from FPGAs, PCs to an Xbox console [24] in our
comparison table. Our system operates with solar energy and
has the lowest energy/frame for gesture recognition.

D. Improvement in Energy Efficiency of Transmitter

Once a key gesture is used to wake up the system, the cap-
tured video is expected to be transmitted to a cloud or FOG
node. We realize such a system by connecting the output of
the camera system to a software-defined radio. The transmitter
used in the current design is Ettus USRP B200. Fig. 18
shows the energy/frame of the transmitter vs processing depth.
Processing depth indicates the level of compression on the
BlackFin processor. Depth 1 indicates no block averaging
and compressive sensing. Depth 2 indicates transmitted frame
with block averaging. Depth 3 indicates block averaging and
compressive sensing (by a factor of 3). We can observe that
for processing depth of 3, the energy/frame of transmitter
reduces by a factor of 8X. This shows that compressed
domain processing not only enables ultra-low power gesture
detection, but a compressed domain image acquisition can
allow significant savings in transmitted energy once the system
has woken up. Image reconstruction [18] and analytics on the
compressed domain image on the cloud node, is beyond the
scope of this paper and has been extensively studied [25].

VI. CONCLUSIONS

This paper presents a solar powered, “always on”, gesture
recognition system that provides a trigger for system ‘“wake
up”. The major savings of power in our system comes from
the two layers of compression that reduce the resolution of the
image sensor by a factor of more than 768x [256x by block
averaging and 3x by random compressive measurements]. The
block compression layer preserves the geometric information
of the gesture and the random projection layer preserves
the manifold where the motion parameters lie. These two
preservation are the keys for maintaining a high recognition
rate in the compressed domain. Classifier II embedding PCA
is suited to reduce the latency in last frame. Hence suited
for low power embedded applications. Further a hardware-
algorithm co-design allows energy-efficient mapping of the
recognition algorithm on a low power MCU and powered by
a solar powered DC-DC converter and regulator with MPPT.
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The system demonstrates an average recognition accuracy
of > 80% while consuming less than 95m J/frame. Once the
system wakes up, compressed domain image acquisition is
followed by transmission via a software defined radio.
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