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Abstract— Reinforcement learning (RL) is a bio-mimetic learn-
ing approach, where agents can learn about an environment by
performing specific tasks without any human supervision. RL is
inspired by behavioral psychology, where agents take actions to
maximize a cumulative reward. In this paper, we present an
RL neuromorphic accelerator capable of performing obstacle
avoidance in a mobile robot at the edge of the cloud. We propose
an energy-efficient time-domain mixed-signal (TD-MS) computa-
tional framework. In TD-MS computation, we demonstrate that
the energy to compute is proportional to the importance of the
computation. We leverage the unique properties of stochastic
networks and recent advances in Q-learning in the proposed
RL implementation. The 55-nm test chip implements RL using
a three-layered fully connected neural network and consumes a
peak power of 690 uW.

Index Terms— Accelerator, autonomous robot, edge comput-
ing, low power, reinforcement learning (RL), stochastic synapse.

I. INTRODUCTION

OST of the recent hardware demonstrations in deep

neural networks (DNNs) and convolutional neural net-
works (CNNs) have addressed image classification applica-
tions [1]-[5] and demonstrated breakthrough improvements
in energy efficiency. However, autonomous systems, such as
mobile robots, which continuously interact with the environ-
ment, need to make decisions in real time. Although this
problem shares some similarities with image classification,
we understand that truly autonomous systems need to be able
to make such decisions in real time and also learn from
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Fig. 1. Three types of ML paradigms: supervised learning, unsupervised
learning, and RL.

its experiences. Hence, the next generation of hardware sys-
tems that can enable autonomy in mobile robots must enable
decision-making, such as path planning, obstacle avoidance,
and so on. Fig. 1 provides a broad overview of the following
three principal classes of machine learning (ML) paradigms.

1) Supervised Learning: It involves learning from large
sets of labeled data. Typical examples include training
image classifiers using the Image-Net database [6] or the
MNIST database [7]. Supervised learning involves a
training phase and a classification or inference phase.

2) Unsupervised Learning: In unsupervised learning,
the neural network is not trained using labeled data.
Instead, the system is trained to create clusters from the
training set [8]. This learning approach can be more bio-
mimetic, and recently, it has been used to train spiking
neural networks.

3) Reinforcement Learning: In reinforcement learning
(RL), an autonomous agent trains itself in real time
by interacting with a dynamically changing environment
and learning from its many experiences.

In a pursuit of learning, the agent first senses the environment
using vision sensors, depth sensors, location/position sensors,
and so on. Next, it takes an action and calculates a reward
based on the action. The reward allows the agent to quantify
the so-called quality of its action in the given state space.
Eventually, it learns to maximize the notion of cumulative
reward in the long run. Thus, RL is a biologically inspired
algorithm, which can provide true autonomy in intelligent
systems. Recently, it has enjoyed considerable success both
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in control [9] and gameplay [10]. Notably, RL and other
ML techniques were used to beat the best human player in
Alpha-Go and play a suite of ATARI games [10].

From a hardware perspective, increased energy efficiency is
a key enabler for true autonomy in edge nodes. As researchers
are exploring hardware accelerators for ML applications, it has
been shown that in most networks, 5—6 bits of resolution is
sufficient to enable accurate and robust inference [11]-[13].
This has led to innovative circuit architectures that tar-
get low power and reduced area [2], [11], [12]. At lower
precision, analog- and mixed-signal computing blocks have
shown promise. In particular, most of the demonstrations have
used voltage-mode circuits [11], [13], enabled by the switched
capacitor designs to implement linear algebraic kernels. For
example, [14] demonstrates 4—8times improvement in energy
efficiency. However, it is worth noting that even with the
relatively lower precision of 5-6 bits, a suitable dynamic
range (DR) and acceptable linearity need to be maintained.
This has resulted in designs, where the supply voltage for
mixed-signal circuits is limited to 1-1.2 V [11], [13]. On the
other hand, algorithm-hardware co-design has resulted in effi-
cient digital implementations of dynamic-accuracy-voltage—
frequency-scaling (DAVES) [2], wide and variable precision
CNNs [15], [16], and even binary neural networks [15],
[17], [18]. However, the applicability of binary networks in
successfully solving the complex tasks needs to be further
ascertained. References [19] and [20] have further demon-
strated on-chip learning using neuromorphic sparse coding
techniques. Thus, the landscape of energy-efficient ML has
seen considerable advances, and in particular, voltage-based
analog-/mixed-signal computing has recently gained well-
deserved attention.

To address the problem of supply scalability in voltage-
mode analog circuits, we propose a different approach, namely,
encoding information and computing in the time domain.
An earlier demonstration of time-domain compressive data
conversion can be found in [21]. Time-domain mixed-signal
(TD-MS) designs inherit the advantages of analog computing,
including high energy efficiency at target bit resolutions. How-
ever, it also allows us to relax the supply voltage requirement
since the DR is expressed in time. Our proposed time-based
multiplication-and-accumulation (MAC) technique provides an
energy-efficient alternative to digital implementation, exhibits
seamless interfaces with digital memory circuits, and also
demonstrates voltage and process scalability like digital logic.
Fig. 2 shows the average compute energy for digital and time-
based MAC implementations. We note that the proposed time-
based implementation has better energy efficiency compared
to the digital MAC operation for a bit resolution of less
than 7 (30% lower at 6 b).

In spite of the success of RL in the algorithm front, the
hardware demonstrations of RL are limited to early demon-
strations in object recognition [22] and noise shaping [23].
However, for energy-constrained mobile robots that are used
for surveillance and exploration, advances in RL algorithms
need to be matched with efficient circuit and hardware designs.
In this paper, which is a follow-up of [24], we demonstrate
a neuromorphic accelerator for RL, which: 1) implements
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Fig. 3. (a) Basic steps in RL. (b) Q-learning as an implementation of RL
that has been implemented in this test chip.

Q-learning using a fully connected (FC) neural network;
2) demonstrates energy-proportional computation using
TD-MS circuits; and 3) uses a stochastic network of synapses
to reduce data over-fitting. The proposed accelerator con-
sumes 690 uW of peak power at 1.2 V. The accelera-
tor can operate down to a low supply voltage of 0.4 V,
making it a voltage-scalable mixed-signal neural network.
Sections VII and VIII discuss measurement results and con-
clusion, respectively.

II. BASICS OF REINFORCEMENT LEARNING

For a detailed overview of RL techniques, algorithms, and
applications, interested readers are referred to [9]. In this sec-
tion, we will provide a short overview of Q-learning that has
been implemented in the current design. The problem space in
RL consists of agents, states, actions, and cumulative rewards.
The agent transitions between states (S; and S;y1) via an
action A,;. From a neurobiology standpoint, RL finds similari-
ties when compared to the operation of the basal ganglia in the
human brain [25]. It has been observed that the cerebral cortex
performs state/action representations, the striatum performs
reward predictions, the palladium assists in action selection,
and the dopamine neurons perform complex operations akin
to the temporal difference method. Q-learning inherits these
neuromorphic properties and continues to be a well-studied
RL technique. This has been illustrated in Fig. 3(a) and (b),
where the different parameters have been shown. Q-learning
works on the principle of the action-value function [Q(S;, Af)]
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that can implement an optimal action policy for a finite set
of states. This is an off-policy learning technique [9] and
has been shown to exhibit faster convergence compared to
on-policy learning algorithms, such as SARSA [26]. The core
of the algorithm is based on the iterative update of the Q value,
as an agent navigates through a series of (state, action, reward)
tupules. This iterative scheme is derived from the Bellman
equation [27] for optimal control. The iterative algorithm can
be summarized as

0141081, A) = 0:(S;, Ap) + a(R;
+ 7 max Q;(Si+1, Ar) — Qi (Sr, Ar)) (1)

where y is the discount factor and a is the learning rate.
o is reduced from 1 to O in the steps of 0.001. y is used
to prioritize the rewards; immediate rewards are given higher
priority, whereas the distant rewards are discounted. It is
easy to understand that the size of the state-action space
grows as (S x A). To enable real-time Q-learning, one can
store the Q values corresponding to the state, action, reward,
and next state in a lookup table. However, with a growing
(S x A), a huge memory capacity is required. Therefore,
the Q value is typically approximated as a neural network
output [10]. The sensor provides the states (S;). States act as
inputs to the neural network. The neural network provides the
Q values corresponding to the set of possible actions. In our
demonstration system, we use three ultrasonic sensor inputs,
and the mobile robot can move in three possible directions
(left, center, or right). Once the maximum argument of the
Q value is determined, the robot moves in that particular
direction with a finite probability, €. The value of € is fixed
in the current design. By taking a series of actions in the state
space, the robot calculates the reward for each action and trains
the neural network via backpropagation, thus creating a robust
functional mapping from the state space to the action space.
The principal steps carried out by the neural network constitute
the following.

1) For the current state S;, we perform a forward pass of
the neural network to obtain the Q values for all actions.

2) We take an action, A; performs a forward pass for the
next state, S;+1, and calculate maximum overall network
outputs maxy,,; Q(Si+1, Ar+1).

3) We set the target Q value as a sum of the immediate
reward, R; and y maxa,,, Q(S;41, Ay+1), using the max-
imum value calculated in the previous step.

4) We define a loss function based on the target and update
the model weights using backpropagation.

We will describe mapping of the algorithm to the current
hardware design in Section V.

III. SYSTEM COMPONENTS AND ARCHITECTURE

In this section, we provide a brief overview of the system
components and the system architecture.

A. Ultra-Sonic Sensors as State Estimates

We use ultra-sonic sensors for measuring the distance of
obstacles. The ultra-sonic sensors receive periodic trigger
signals from an associated raspberry PI-based micro-controller.

The sensor emits a sonic signal in response to the trigger
signal. The echo pulse is raised to high at the end of the sonic
burst. Once the reflected wave is received, the echo pulse is
pulled down. The pulsewidth of the echo signal is proportional
to the distance from the obstacle. The distance from obstacle
is evaluated as

t*xc

4= @

where d is the distance from the obstacle, ¢ is the velocity
of sound in air, and ¢ is the pulsewidth of the echo pulse.
In traditional digital processing, the echo pulse needs to be
converted to a digital value. Hence, it requires a pulse-to-
digital converter. However, in the current TD-MS design,
the neural network can directly process the pulse-based echo
signal, thus reducing both the latency and energy of analog
(time)-to-digital conversion. Our current system uses three
ultra-sonic sensors, and the vector of the three distances
[dieft, deenter, dright] defines the state space. The left and right
sensors are placed at an angle of 30° with respect to the center.

B. System Architecture

Fig. 4 shows the system architecture and illustrates four
main components: 1) three ultra-sonic sensors; 2) the proposed
RL test chip; 3) a Raspberry PI-based micro-controller; and
4) motor drivers and motors for each of the four wheels. The
ultrasonic sensors are used to find the distances from three
directions, as described in Section II, and are periodically
clocked by the Raspberry PI. The echo signals from the
ultrasonic sensors are fed to the test chip and the Raspberry PI.
During RL training, the Raspberry PI stores (S, A;, Ry, St+1)
in a scratchpad memory and feeds the data to the test chip.
The test chip first performs inference (from sensed states to
actions). Next, it updates the reward-based neural-network
model via backpropagation and gradient descent. The test chip
sends a 2-bit control word indicating one of three possible
actions (move left, move forward, or move right) to the
Raspberry PI, which in turn sends the control command to
the motor controllers.

C. Neural Network Implementation

A FC, three-layered neural network provides a functional
mapping from the state space to the Q values of the action-
space. The first layer obtains pulse-domain data from the three
ultra-sonic sensors (D = [dieft, deenter» dright]) as well as a bias
value for the input layer (B AS). The inner products of (D)
and the weights from the input layer to hidden layer (w!H)
are computed in the time domain and accumulated in a 15-bit
counter. A digital word, consisting of the first seven MSBs of
the counter, is fed to a digital-to-pulse converter (DPC). The
DPC natively implements a rectified linear unit (ReL.U)-based
activation function and produces neuron outputs as pulses.
We choose ReLU, as opposed to other activation functions,
because of faster and more stable convergence. The outputs
to the DPC represent the outputs of the hidden layer of
neurons (H)

H = ReLU(D % w'™). 3)
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Fig. 4. System architecture illustrating the different circuit blocks and the interface to the external micro-controllers (Raspberry PI) and motor drivers.

The number of neurons in the hidden layer is 84. In our
demonstration platform, we simulated various grid-world
examples, and for a grid world of 10* nodes, we found that
84 neurons in the hidden layer performed satisfactorily both
in terms of convergence speed and accuracy. More complex
environments with more complex dynamics (such as moving
obstacles) will require a larger number of neurons and hidden
layers. Furthermore, it is worth mentioning that navigation via
ultra-sonic sensors has limited accuracy and is also computa-
tionally less intensive. At-scale systems that can navigate using
camera-based images require significantly larger neural net-
works models. However, the current prototype demonstrates an
RL system enabled by scalable hardware primitives, capable of
learning to navigate in a real environment, albeit with limited
complexity. The outputs of the hidden layer (H) are multiplied
by the synaptic weights of the hidden-to-output layer (w?)
to produce the final output (Q) of the neural network. We can
express this as

0 =Hx*wl9. 4)

The output (Q) consists of three Q values corresponding
to the three directions for the motor control (Qeft, Qcenters
and Qyight). The argument of the maximum Q value among
the three outputs determines the direction of motor control
(A;) via a winner-take-all (WTA) circuit. Thus, the agent can
move either left, forward, or to the right. The flow of input
pulses from the ultra-sonic sensors to the hidden layer outputs
and finally to the output of the network is sequential. A; is
encoded in a 2-bit word and sent off-chip to the Raspberry PI
for motor control. We use a scan chain to initialize the neural
network weights to random values. Alternatively, the neural
network can be initialized to pre-defined weights obtained
from simulations using transfer learning [9].

IV. TD-MS CIRCUIT ARCHITECTURE AND DESIGN

In this section, we introduce the design of TD-MS circuits
and corresponding circuit architectures.

VDD
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Fig. 5. (a) Proposed TD-MS MAC unit. (b) DCO unit cell. (c) Three-stage
DCO design.

A. Multiply-and-Accumulate in a TD-MS Architecture

Fig. 5(a) illustrates the proposed time-based MAC circuit.
It has a pulse input (7)) used as the “Enable” signal to
an up—down counter. This pulse is obtained from the ith
ultrasonic sensor (i = 1,2,3) in case of the hidden layer
neurons or from the ith hidden layer neuron i = 1,2, ..., 84)
in the case of the output layer. We store the synaptic weights
of all the fan-ins locally at each neuron. The weight is
a 6-bit value expressed in signed-magnitude format, where the
MSB is the sign bit. The five LSBs (W[0:4]) are connected
to a multiplexor. T, controls the select bit of the multiplexor.
If the digital pulse is high, the 5-bit word is passed through
the multiplexor, or else, a 0 is passed to a digitally controlled
oscillator (DCO), thus creating a gated-DCO. The three-stage
DCO converts the digital value to a frequency proportional
to W[0:4]. Each stage of the DCO consists of a bank of parallel
binary-sized inverters controlled by the digital value (W[0:4]),
as shown in Fig. 5(b) and (c). The frequency of the DCO for
the ith word (W;), ignoring the second-order effects, such as
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non-linearity, is given by
Fw, = Wi % Fp (5

where Fj is the unit frequency of the DCO corresponding
to a codel when W = 00001. The clock to the counter is
driven by the DCO, and the enable signal is controlled by the
pulsewidth (7),;). Hence, the counter output is given by

DTiZFW,'*Tp; =Wi*F0*Tpi' (6)

From (6), we can observe that the counter output is propor-
tional to the product of the weight (W;) and the pulsewidth
(Tp,;) of the gating signal. This is a true mixed-signal mul-
tiplier, where one input is a pulse (analog) and other input
is a digital value stored in the local memory. The counter
provides accumulation natively. In the current design, all the
pre-synaptic neurons (fan-ins) send pulses (7p,) one after
another. For each of these pulses, the TD-MS MAC loads the
corresponding synaptic weight (W;) and computes W;* T, * .
For N such pre-synaptic pulses, at the end of an update,
the counter output represents

N N
DT:ZD]}:ZWi*Tpi*FO. (7
i=0 i=0

Before the beginning of the update, the counter is reset
to all zeros expect for the MSB that is reset to 1. This
allows the counter to count up (for W; > 0) or count down
(for W; < 0). At the end of the update cycle, the sign of
the MSB indicates whether DT > 0 or DT < 0, a key
threshold that is subsequently used by the non-linear activation
function, which will be discussed in Section V. It should also
be mentioned that the enable signals for the counter and the
local DCO clock are asynchronous and can lead to a 1 LSB
of error due to a metastable capture. We did not find this to be
a significant issue either in simulations or in measurements.
However, if this is a concern, clock-crossing circuits can be
used to synchronize between the two signals and prevent any
metastable capture.

B. Digital-to-Pulse Converter-Based Non-Linear Activation

After the linear MAC operation, a DPC is used to implement
the non-linear activation function of the neuron. The schematic
of the DPC is shown in Fig. 6(a). It consists of a digital-to-
time converter (DTC) followed by a phase—frequency detector
(PFD). It receives a 7-bit input (DT), which is obtained from
the output of the TD-MS MAC. The DTC consists of cascaded
delay chains, as shown in Fig. 6(b). Fig. 6(c) shows the
schematic of the PFD. The PFD receives clock signal (CLK)
and a delayed version of CLK (CLKD) as inputs. Each delay
chain consists of two paths: one path directly feeds the input
to the output through NOR-based buffers, and another path
transmits the input through a bank of binary-sized inverters,
as shown in Fig. 6(d). The buffers are sized to produce binary-
weighted delays that scale as 2/ for i = 0—6. The control word
for the DPC is DT (output of the MAC), whose MSB is 1
when the accumulated value of the MAC is non-negative or
0 otherwise. We use the MSB to gate all the lower bits before
they are applied as a control word to the DTC, as shown

1 D1 Q
CLK "
DTI6,0] 6 BIT~Y T Toou ekl L
' lllhﬂ i—' "
DT[6] —CT Toou
(@

CLKD

DTC
CLK CLKD
Delay_> Delay i Delay |25
1x 2x 32x

DT[0]DT[6]DT[1]DT[6] DT[5] DT[6]
(b)

Fig. 6. (a) Circuit implementation of the DPC illustrating (b) cascade of
delay elements, (c) PFD, and (d) delay cell for DT[i] input [31].
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Fig. 7. Timing diagram for the time-domain MAC logic illustrating
accumulation over two cycles, one with positive synaptic weight and one
with a negative synaptic weight.

in Fig. 6(b). As a result, the DPC produces an output given
by

0 if DT <0
Tpou = . ®)
DT % Ty if DT > 0.

This shows that the final output (7)) of the TD-MS neuron
implements an ReLU activation function

T

Pout

= ReLU(DT). )

To generalize, in a cascaded design where the output of
one pre-synaptic neuron, i, drives the input of the postsynaptic
neuron, j, the time-domain pulses, 7);;, represent propagation
of information through the network. In ML literature, this is
typically denoted by X;;. Here, T),;; = X;; * Tp. The synaptic
weight between the two neurons is W;;. By combining (7)
and (8), we can write down the output of the jth neuron

(Tpoy;) simply as

Tpow; = To % ReLU | D" Wij % Xij * Fo = Ty (10)

J

Equation (10) illustrates that the TD-MS neuron can success-
fully implement an ReL.U-based neuron and encodes both the
inputs from pre-synaptic neurons and output in time domain.
It should be noted that the portion of the equation within
the parenthesis is dimensionless. An example of the timing
diagram is shown in Fig. 7, where the cascaded operation of
the DCO, the counter-based accumulator, and the output of the
ReLU are shown with specific values. The above-mentioned
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Fig. 8. Breakdown of the energy to compute for TD MAC across various
input and weight codes. The energy is normalized with respect to a centrally
placed code.

treatment captures the first-order effects only. Second-order
effects, such as non-linearity of DCOs, lead to error in calcu-
lating the MAC, which can lead to loss of accuracy. However,
RL algorithms like many other online ML techniques are
forgiving to such non-idealities, albeit within limits.

C. Energy and Power Analysis of the Proposed
TD-MS Design

For the application in hand, sensor data (state estimates) are
acquired at regular intervals. Hence, the amount of compute
needed per unit time is approximately constant, depending
on the speed of the mobile robot and the complexity of
the environment. Hence, we wish to compute at the lowest
possible energy while being cognizant of the range and
resolution of the data. TD-MS designs provide some unique
characteristics, as we describe here. From simulations on the
55-nm technology node at Vcc = 0.6 V, we explore the
energy consumed by the various blocks (after synthesis with
tight constraints on power and area) in the time-based neuron
and plot them in Fig. 8. Since the number of switching
events in the TD-MS design depends on the magnitude of
the operands (X;; and W;;), the energy consumed also shows
a strong dependence on X;; and W;;. The nine pie charts (for
W =5 X=5t W = 30, X = 63) illustrate the normal-
ized energy per MAC. For lower values of the DCO code
(W;j < 15), the energy consumption is dominated by the DPC.
Subsequently, the DCO power becomes dominant when the
DCO code increases beyond 15. Furthermore, with the increas-
ing magnitudes of the operands, the total energy to compute
a MAC also increases. This is an interesting design choice
because of the two observations specific to the algorithm.
First, larger operands correspond to more important parts of
computation in the network and typically represent the flow of
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Fig. 9.  2-D plot of the energy surface illustrating the energy/MAC for
(a) digital implementation and (b) TD-MS design with 6-b inputs (X and W)
at Vcc = 0.6 V. We have note that more energy is consumed for important
operations, where |X| and |W| are large. The average energy/MAC for the
TD-MS implementation is 0.7x that of the digital implementation.

critical information. Second, in trained neural networks,
the magnitudes of the weights tend to cluster around low
values. We take advantage of both of these observations
in TD-MS designs because of its energy scalability with
the importance of the computation, which is a bio-mimetic
approach. We capture this in Fig. 9 by plotting the energy to
compute as a function of the input (X;;) and the weight (W;;).
In binary-coded arithmetic, we do not see any such trend
since the number of switching events is not correlated with
the magnitudes of X;; or W;;. It is worth noting that a
digital design is expected to produce higher performance
than a TD-MS design, which inherently uses time for data
encoding. However, as long as the time required to com-
plete the data processing is acceptable, as is the case in
this application, TD-MS provides a bio-mimetic and energy-
efficient approach. We note that on an average, where
all the combinations of X;; and W;; are equally likely,
TD-MS-based-MACs spend 30% lower energy at iso-Vcc
compared to an array-based digital MAC. We also compare
the post-synthesis area of the TD-MS design vis-a-vis a
digital design and observe: 1) 45% lower system area and
2) 47% lower interconnect power. The lower interconnect
power comes from the fact that the outputs of the neurons
travel through single bit interconnects and undergo only one
1 < 0 and one 0 < 1 transition. This saves both leakage
and switching power compared to a bit-parallel digital design,
albeit at the cost of performance. This also consumes less
dynamic energy compared to a bit-serial digital interconnect,
where a 6-bit word will typically undergo multiple transitions.
The compact area of the TD-MS design is further reflected
in Fig. 11, where the total simulated leakage power of TD-MS
and digital designs across three temperatures 0 °C, 50 °C, and
100 °C corners are shown. On an average, the leakage power in
TD MAC is 35% less compared to the digital implementation.

D. Time-Domain Stochastic Synapses

It is well studied in the ML community [28] that the
introduction of stochasticity in synaptic connections avoid
over-fitting of data. Along with stochasticity, drop-connect
is also used to eliminate the random synaptic connections
during training. Both of these regularization techniques assist
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Fig. 10. Results from the synthesis and PnR of the complete design show
that the TD-MS consumes (a) 45% lower area and (b) 47% lower interconnect
power, compared to a digital design.
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Fig. 11. Simulated post-synthesis leakage power at three different tempera-
tures: (a) 0 °C, (b) 50 °C, and (c) 100 °C for the digital and TD-MS design.

in generalizing the learned neural network model to unknown
environments. Here, we introduce stochasticity in the synaptic
connections in the time domain, as shown in Fig. 12(a). High-
speed local linear-feedback-shift registers (LFSRs) drive multi-
plexers that tap various nodes of a synaptic buffer chain. A part
of the buffer chain provides a fixed delay, and a part of the
buffer chain has a stochastic delay. Stochasticity is introduced
by changing the delay between the 1 < 0 and the 0 — 1
transitions. Fig. 12(b) depicts the LFSR circuit and how the
multiple output bits enable stochasticity as signals propagate.
Since these synaptic connections propagate X;;, the variable
delay introduces controlled randomness in the operand X;;.
Furthermore, for a fixed LFSR code, the multiplexer selects
a 0, thereby preventing any signal propagation and enabling
drop-connect.

E. Information Flow in the Feed-Forward Direction

The timing diagram for information flow in the feed-forward
network is shown in Fig. 13. The input signals from the
ultrasonic sensors (E1, E2, and E3) are processed in a sequen-
tial manner; 84 TD- MS neurons perform MAC operations
with weights (W{,1 i 84) and the E pulse, all in parallel.
Next, for the Ey pulse ‘from the ultrasonic sensor, the next
set of 84 weights (le 284) is used. This is followed
by the pulse from E3. Next, the time-domain outputs of the
84 neurons in the hidden layer are generated sequentially.

ME | eeee--. >
DOMAIN
NEURON 1 D--»l>—> SELJ TIME
ouTPaT 021 synapse
DROP-CONNECT ®usl  OUTPUT
(@ .
LFSR "
I'_GD o |
Q ®, DQ DQ ®s
A D A
b 4 cxk §
(b)
Fig. 12.  Stochasticity and drop-connect are implemented by intention-

ally introducing randomly varying delays between the 1 < 0 and the
0 < 1 transitions. The randomness is introduced by (a) LFSR that drives
(b) MUX-select.

The pulse generated by the ﬁrst neuron of the hidden layer
is multiplied by WlHlo, W1 , and W11:130 in parallel at the
three output neurons, respectlvely. Next, the output pulse of
the second neuron of the hidden layer is generated, multiplied
by WQH , sz , and W0 in parallel, and accumulated.
This continues till all the 84 neurons of the hidden layer
have fired. Finally, the outputs of the three output neurons
are generated, and they encode the Q values corresponding
to the three actions. A WTA decides on the most favorable
action and sends a 2-bit command to the Respberry-PI, which
in turn enables the corresponding motor controls. The test
chip runs on a system clock, which maintains synchronicity
among sensor activation, data flow, memory read operations,
and output generation.

V. SYSTEM ARCHITECTURE FOR LEARNING
VIA BACKPROPAGATION

In Section IV, we have described data flow in the forward
direction. For online RL, we perform backpropagation using
gradient descent. Backpropagation involves the following dis-
crete steps: 1) evaluation of the output gradients (GDo);
2) evaluation of the gradients at the hidden layer (Ap);
3) evaluation of the gradients for the weights from the input
to the hidden layer (/) and from the hidden to the output
layer (wf?); and 4) updating all the weights.

The output gradient is computed using a support vector
machine (SVM) hinge-loss function. Fig. 14(a) illustrates the
steps implemented in the current system. (G Dp) takes two
cycles. Let us denote the Q value corresponding to the label
stored in the state-action table by Qy,. Here, Y is the action
corresponding to maximum Q value. Qy, can be expressed as

Oy, = R+ 7 - max(Q(Si41, Ar)). (1
Next, the SVM hinge-loss is evaluated as
Lj= > max(0,0; — Qv +1). (12)

J#EYT
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Fig. 14. (a) Flowchart showing the different components of backpropagation.
(b) Implementation of SVM hinge-loss estimation during backpropagation.
(c) Schematic of the circuit that implements the update of the hidden layer
gradients (AH:0),

The gradient of loss for (Y7) is calculated using [29]
GD(Y))= > ((Qj— Qv +1) > 0?71:0).

J#EY1

Finally, we calculate the gradient of loss for (j # Y7) as
GD(j)=((Qj — Qy, +1) > 021:0). (14)

It takes two cycles to calculate the gradient. Fig. 14(b)
depicts the schematic of the corresponding circuit. Q; is added
with 1 and subtracted from Qy;. The subtracted value is
compared with 0. The comparator output is used as the select
bit for selecting 0 or 1 in the accumulator. Hidden layer gra-
dients are computed using the dot product between the output
gradient (GDy) and w . This is illustrated in Fig. 14(c).
It can be mathematically written as

13)

A0 =GDg *wif. (15)

The 84 parallel units of DCOs and DPCs are used for
calculating the gradients of the hidden layer. Fig. 15 shows
how the gradient of the hidden to the output layer is calcu-
lated. The hidden layer output is generated from the feed-
forward iteration and multiplied with the output gradients to

Timing diagram for the feed-forward neural network illustrating the parallel and sequential components of the data flow.

e
H LAYER

NEURON OUTPUT ho
dw,

CIRCUIT SHARED WITH
FEEDFORWARD PATH

INPUT

COUNTER

BP sel

CIRCUIT SHARED WITH
FEEDFORWARD PATH

Fig. 15. Circuit components showing the process of weight update across
layers during backpropagation.

finally obtain the gradient of the hidden to the output layer
weights, d W0

dWH-0 = H s wi"P.

(16)

Next, the hidden layer gradients are passed through the
gradient of the ReLU and multiplied with the input signals
to compute dW/H. The circuit that implements dW/# is

schematically shown in Fig. 15. dW'H is obtained as

dWHH = X % ReLUG(A™9). (17)
Finally, the update rules for w/# and w#© can be expressed
as
dwl‘],O
w0 = 0 — (18)
dwhH
wlhH =t — —5 (19)

The design of hardware-based backpropagation uses linear
algebraic kernels that are similar to the feed-forward path.
This allows us to share hardware resources. As a matter of
fact, the 84 neurons at the hidden layer, consisting of DCOs
and DPCs, are fully programmable to compute both in the feed
forward (inference) as well as the feedback (backpropagation
and gradient-descent) directions.
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Fig. 16. Timing diagram for backpropagation during RL.
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Fig. 17. 2-D surface plot illustrating the process of learning (weight update)
for (a) input to the hidden layer weights w!H and (b) hidden to the output
layer weights w9 The model weights are shown in column vectors, and
their evolution in time (number of iterations) is shown by color coding.

A. Data Flow During Backpropagation

Fig. 16 illustrates the timing diagram for performing back-
propagation and gradient descent. The principal algorithmic
steps have been shown here. After each update, the corre-
sponding Q values and hidden layer weights are updated in
each registers. Fig. 17 shows an example of how the weights
are updated during RL. Here, the entire weight vector is shown
as a vertical column, and its evolution with time (or iteration
number) is plotted. We note that as the system learns from its
environment, the weights settle down to optimal value. It can
also be noted that the magnitude of the majority of the weights
is low, which has been discussed earlier in Section IV-C.

VI. DESIGN FLOWS FOR TD-MS CIRCUITS

One of the main advantages of TD-MS circuits is our ability
to map them to the traditional synthesis and place-and-route
(PnR) flows. As an example, we first design one stage of the
DCO, characterize it, and create the corresponding physical
design. Next, we design the entire multistage DCO for target
speed and DR. One of the takeaways from the exercise was
that the entire three-stage DCO is needed to be presented
as a single block to the PnR flow, to avoid mismatches
among the VCOs and timing closure. Similarly, the DPCs are
characterized as single macros and used in the back-end flows.
By doing so, we minimize the within-die variation, which
results in better tracking of Ty and Fp. Functional verification
during synthesis is completed using behavioral RTL for the
digital blocks, clock circuits, and structurally modeling the
DCO and DPCs. Once functional verification is complete,
we combine the structural RTL with the rest of the digital
blocks. This allows us to use back-end tools for the final
design closure. TD-MS circuits use digital gates, which allow
us to use both front-end and back-end tool chains as long as
the mixed-signal blocks synthesized and laid out as distinct
macros.

Chip Characteristics
Technology 55nm 1P8M CMOS
Die area 1.25mm *2.5mm
Testing QFN package

Interface
Pin Count 24

Fig. 18. Chip micro-graph and characteristics.

Motor control,
peripherals and
battery

Level-shifter
Board

1
Ultrasonic Sensors

Test chip

Fig. 19. Overall system of the mobile robot.

VII. MEASUREMENT RESULTS

The test chip is fabricated in a 55-nm CMOS process and
occupies an active area of 1.25 mm x 2.25 mm. The chip
characteristics are shown in Fig. 18. Before going into the
measurement results from the test chip, let us define the
application space. We use the test chip in a mobile robot that
can perform obstacle avoidance in a limited space. The design
is scalable and can be extended to more complex tasks and
more complex obstacle maps. The reward function [R(?)] is
defined as follows:

—100 if the robot collides
Ry = , (20)
30 — (dieft + deenter + dright) otherwise.

Initially, the robot explores the environment by taking
random steps and updates the weights of its neural network
(exploration phase). Progressively, the learning rate decreases,
and the robot harnesses its knowledge and experience to make
optimal decisions on the fly (exploitation phase). Fig. 19
depicts the system setup with the test chip along with the
Raspberry PI and the motor drivers. We use an external MEMS
oscillator for clock generation on the board. Level shifters are
used at the interface between the test chip (1-V supply) and
the Raspberry PI (3.3-V supply).
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Fig. 21. Measured linearity of the DCO.
TABLE 1
POWER CONSUMED BY DIFFERENT SYSTEM COMPONENTS
Component | Current (A) | Voltage (V) | Power (W)
Ultrasonic sensor 0.015 5 0.075
Motor Drivers 1.2 6 7.2
Raspberry-PI 2.5 5 12.5
Test-chip 0.575m 1 0.69m

To functionally characterize the test chip, we need to
understand how the design space is constrained by the two
fundamental design parameters, Fy and Tp. This is shown
in Fig. 20. If the DCO runs too fast (high Fp), the counters
overflow. If the DCO runs too slowly (low Fp), then we lose
resolution in the MAC units. For the current design, we choose
a 21-b counter, and the measured results show that the Fy and
Ty track each other over a wide range of supply voltages. This
provides correct operation as well as voltage scalability from
1.0 down to 0.4 V. We suspect that the test chip ceases to
function at 0.4 V when the local register and memory circuits
start to fail.

The measured frequency of the DCO, Fpco (of the hid-
den layer) shows peak performance of 780 MHz (at 1 V).
Fig. 21 shows the measured linearity of the DCO. We measure
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Fig. 23.  (a) Distribution of stochasticity on the synaptic connections as

measured through the jitter on a mean synaptic pulse at Vcc of 0.4, 0.6,
and 1.0 V. (b) Role of stochasticity on RL illustrating faster convergence
compared to a deterministic network.

a peak integral non-linearity (INL) of 1.2 LSB (1.6 LSB)
at 1 V (0.4 V) and a peak differential non-linearity (DNL)
of 1.5 LSB (2 LSB) at 1.0 V (0.4 V). Fig. 22 shows the
measured linearity of the DPC. The measured Tppc exhibits
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TABLE II

COMPARISON WITH THE OTHER HARDWARE IMPLEMENTATIONS OF NEURAL NETWORKS
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This work [22] [3] [2] [4] [1] [20] [19] [30]
ML System Reinforcement | Object CNN-RNN | CNN DNN DNN Spiking Spiking DNN
Learning Recognition LCA LCA
Database Sensor ImageNet ImageNet ImageNet MNIST/ | ImageNet MNIST MNIST MNIST
states speech CIFAR
Technology 55nm 65nm 65nm 180nm 65nm 65nm 65nm 65nm 28nm
Circuit style Time domain Digital Digital Digital Digital Digital Analog Digital Digital
Mixed-signal
Area 3.4mm? 4mm? 16mm? 3.3mm? 16mm? 16mm? 1.3mm? | 1.85mm? | 5.76mm?
Learning/ Online Offline Offline Offline Offline Offline Online Online Offline
Training in real time
Stochasticity Present Absent Absent Absent Absent Absent Absent Absent Absent
Resolution 6b 16b 16b 4b-16b 16b 16b NA 4b, 5b, 8b, 16b
and 16b
Power 690uW at peak | 121mW 63mW 7.5-300mW | 45mW 278mW 87mW 268mW 63.5mW
performance
Supply voltage | 0.4-1V 1.2V 0.77-1.2V | Unavailable | 1.2V 0.82-1.17V | 0.9V 0.45-1V 0.6-1.1V
No. 254K Not Not Not Not Not 1.7M 9.9M 30K
inferences/sec Reported Reported Reported Reported | Reported
No. 118K Not Not Not Not Not Not Not Not
training/sec Reported Reported Reported Reported | Reported Reported | Reported Reported
Performance 3.12 1.24 8.1 0.26-10 1.42 0.21 343 Not Not
(TOPS/W) Reported Reported
Application Autonomous Object General Visual CNN Vision Vision Vision Hand-written
mobile-robotics | Recognition recognition | processor recognition
Min. Energy/ 0.69n] Not Not 3000nJ) Not Not 50.1nJ Not 580nJ
inference Reported Reported Reported | Reported Reported
Min. Energy/ 1.5n] Not Not Not Not Not Not Not Not
training Reported Reported Reported Reported | Reported Reported | Reported Reported
;:,;1 oom | 800 1800
= 10M = -
3 600 = g 1600
g 2 o 1400
o — [+}]
« 100K 400 o (%)
£ 10k 3 c 1200
[ o ©
5 200 o -
x 1K » 1000
= 100 0 2 800
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Vee (V) 1]
(a) X 400
Training Inference = 200
Vcc=0.6V 0
Vo=0.8V @ 1.5 } 1|25 IMAC 0 5000 10000 15000 20000 25000
690pJ No. of Reference Clocks
Vcc=1.0V
Fig. 25. Distance covered by the robot via RL as a function of the number
Vce=1.2V of clock cycles or iterations.
0 2 4 6 8
Energy/operation (nJ) DCO and the DPC are both composed of programmable buffer
(b) chains and their delays track each other across Vc¢ and
2) the programmability of the DPC and the DCO depends
Fig. 24. (a) Measured performance and power as a function of the supply ~ On the number of stages of buffer delay, which results in

voltage. (b) Measured energy efficiency as measured by the energy to perform
a single inference and training on the network.

acceptable linearity with a peak INL of 1.3 LSB (1.6 LSB)
at 1 V (0.4 V) and DNL of 1.5 LSB (at 1 V) and 1.8 LSB
(at 0.4 V). The DR of the DPC is 4.9 s and 2.8 ms for supply
voltages of 1 and 0.4 V, respectively. We note that: 1) the

high linearity. Fig. 23(a) shows the intentionally introduced
LFSR jitter normalized to a mean pulsewidth. We can observe
that the jitter variance is within 40% and can be further
tuned by programing the fixed and stochastic parts of the
synaptic delay chains. To evaluate the effectiveness of the
stochasticity in the network, we train the robot for obstacle
avoidance with and without stochasticity. Fig. 23(b) illustrates

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 29,2021 at 22:23:07 UTC from IEEE Xplore. Restrictions apply.



86

the loss function over time, and we observe that compared to
a deterministic network, a stochastic network converges
faster. From inference measurements in different environ-
ments, we have further validated that the system generalizes
better with a stochastic network and prevents over-fitting on
the training environment.

Fig. 24(a) shows the measured clock frequency (Fmax) as
a function of Vece from 0.4 to 1 V. Fig. 24(b) illustrates
the corresponding energy measured separately for inference
and training. At a supply voltage of 0.8 V, the energy con-
sumptions for training and inferences are 1.5 nJ and 670 pJ,
respectively. This corresponds to a peak energy efficiency
of 1.25 pJ/MAC.

When the entire system is assembled, the supply voltages
and power consumed by the various components are summa-
rized in Table I.

Fig. 25 illustrates the distance moved by the robot
in the presence of obstacles in a particular experimental
setup.

In Table II, we compare the current test chip with the
state-of-the-art silicon implementations of neural networks.
We believe that this is the first implementation of RL par-
ticularly for edge robotics. Comparison with other reported
results reveals that the TD-MS topology is energy-competitive
and can work down to 0.4 V at a peak power efficiency
of 3.12 TOPS/W.

VIII. CONCLUSION

This paper presents a neuromorphic accelerator for RL at
the edge of the cloud suitable for mobile robotics. We intro-
duce TD-MS computation as a means of achieving high
energy efficiency as well as the scalability of digital logic.
TD-MS computation is energy-proportional, where most of
the energy is spent on computations that are more important
to the network. We measure a peak efficiency of 3.12 TOPS/W
and the average energy of 1.25 pJ/MAC.
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