
NAVREN-RL: Learning to fly in real environment via end-to-end
deep reinforcement learning using monocular images

Malik Aqeel Anwar1, Arijit Raychowdhury2

Department of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, GA, USA

aqeel.anwar@gatech.edu1, arijit.raychowdhury@ece.gatech.edu2

Abstract—We present NAVREN-RL, an approach to NAVigate
an unmanned aerial vehicle in an indoor Real ENvironment
via end-to-end reinforcement learning (RL). A suitable reward
function is designed keeping in mind the cost and weight
constraints for micro drone with minimum number of sensing
modalities. Collection of small number of expert data and
knowledge based data aggregation is integrated into the RL
process to aid convergence. Experimentation is carried out on
a Parrot AR drone in different indoor arenas and the results are
compared with other baseline technologies. We demonstrate how
the drone successfully avoids obstacles and navigates across dif-
ferent arenas. Video of the drone navigating using the proposed
approach can be seen at https://youtu.be/yOTkTHUPNVY

I. INTRODUCTION

Over the past decade, there has been considerable success
in using Unmanned Aerial Vehicles (UAVs) or drones in
varied applications such as reconnaissance, surveying, res-
cuing and mapping. Irrespective of the application, navi-
gating autonomously is one of the key desirable features
of UAVs both indoors and outdoors. Several solutions have
been proposed to make drones autonomous in an indoor
environment. There has been significant work towards using
additional dedicated sensing modalities such as RADAR [1]
and LIDAR [2], which provide high accuracy in navigation
and obstacle avoidance thus enabling autonomous flights
possible. But when the payload and the cost is taken into
account, such systems are heavy and expensive, making
them almost impossible to be used in low cost Micro Aerial
Vehicles (MAV). Ultrasonic SONAR is a cheap alternative
but suffers from lack of accuracy and reduced field of view
(FOV). Hence for MAVs, using the on-board and relatively
cheap sensors, in particular cameras, is an attractive option
for autonomous indoor navigation.

In recent years, RL has been extensively explored for
different type of robotic tasks. The model-free nature of RL
makes it suitable in the problems where little or nothing
is known about the environment. RL has been successfully
implemented in games and has shown beyond human level
performance [3], [4]. However, RL is a data-hungry method
and often requires more data compared to other supervised
techniques to generate comparable results. The requirement
of a large training data-size is often addressed by training
in a simulated environment. However, if the environment is
unknown, off-line training presents low accuracy and higher
crash rates. So far, limited success has been achieved training
in real environments. Further, ensuring safety of the agent
during training is also challenging.

In this paper we explore a single-camera-based au-
tonomous navigation and obstacle avoidance for MAVs in
real environments. Traditional systems employ handcrafted
sensing and control algorithms to allow navigation and has
led to significant progress in this field [5], [6]. Recently, the
success of deep neural networks have enticed researchers
to study neuromorphic models of autonomous navigation
[7]–[9]. In spite of the success of such machine learning
models, we also recognize that true autonomy in intelligent
agents will only emerge when bio-mimetic systems can
perform continuous learning through interactions with the
environment.

The main contributions of the paper are as follows:
• Demonstration of end-to-end Deep RL for collision

avoidance using monocular images only and without the
use of any other sensing modality.

• Overcoming the issues associated with the implementa-
tion of RL in real environments by designing a suitable
reward function that takes into account both the safety
and sensor constraints.

• Using expert data and knowledge based data aggregation
to improve the RL convergence in real time.

II. RELATED WORK

Our principal goal is to enable the UAV to fly by itself in a
real environment, without incurring any additional hardware
or sensor cost. Most of the low-cost MAVs come equipped
with an on-board camera and Inertial Measuring Unit (IMU).
So the use of image frames for navigation is an area of
active research. We have studied supervised learning for
drone navigation. [10] collects a data-set of 11,500 videos
of crashing and learns a neural network that classifies an
image as “crash” or “no crash”. Based on that knowledge,
the authors use a handcrafted algorithm to steer and navigate
the drone away from obstacles. [11] uses an indoor data-set
and classifies the images according to the action taken by the
drone. They define a set of five actions in the action space
of the drone, hence posing the problem as a classification
problem with five classes. A supervised image classifier
with three classes is used in [12] to train a deep neural
network for forest navigation. The data-set is collected by
mounting three cameras on a hiker’s head facing forward,
left and right. [13] uses RL as the online learning mechanism
to navigate a drone in a forest. A camera frame is taken
and is pre-processed before it is fed to the RL system.
This pre-processing uses handcrafted algorithms to extract

��������	�
���
��������������
�����������	��
�������������	���������������
�����������
��

��������� ���!!��"��"#��$���%�����
&&&

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 14:03:30 UTC from IEEE Xplore. Restrictions apply.

��������	�

�������
���
��

	�	��
���

�
 �
��

�

���	�������	�

����
������������

�������
������
�	������	
����

�������
�����
	

�
���

�
�
�
 ��
��
!

"#��	
����

�

$	�
%��	
����

"	����
�������
���

"	�����&	�	��
	�

�������
�$�
�

Fig. 1. Block diagram of the key algorithmic components that enable end-
to-end RL for obstacle avoidance and autonomous flight in a drone.

lower dimensional features from the camera image. [14] uses
simulated environments with a larger set of action space
(1681 actions). The agent is trained for a deep neural network
in 9 simulated environments and the performance is reported.
The neural network trained in the simulations is then also
tested in the real environment without any fine-tuning and
has shown to perform well. Unfortunately, the performance
of this approach greatly depends upon the correlation of the
simulated and real environment. For the cases of unknown
environments which has limited similarity with the simulated
training environments, the agent is expected to behave poorly.

All of these previous demonstrations and approaches, in
spite of their many successes, either require considerable
human/expert intervention, handcrafted algorithms or are
implemented offline in simulations, where the simulated and
the real endowments need to be nearly identical.

III. DEEP REINFORCEMENT LEARNING (DRL)

A. Background on Reinforcement Learning (RL)

The idea of RL is to learn a control policy by interacting
with the environment. In this paper, the goal achieved through
RL is to take actions that lead to a collision free flight of the
drone in a real environment. There is no goal position and
the objective is to navigate through the arena safely. Consider
the task of obstacle avoidance where the drone interacts with
the environment in a sequence of actions, observations and
reward calculations. At each time instant, the drone observes
the current camera frame s. It takes an action a from an action
space A and implements it. Implementing the action moves
the drone to a new position where it observes a new camera
frame s′. This new camera frame along with the action taken
will quantify a reward r. The goal of the system is to take
actions maximizing the long term reward, i.e. at each time
step t, we need to take an action that eventually leads us
to a sequence of states si with rewards ri for i ∈ {t + 1, t +
2, ...} such that the future discounted return Rt = ∑T

i=t γ i−t ri
is maximized, where γ ∈ [0,1] is the discount factor. Each
of the state-action pair is assigned a Q value Q(s,a). During
the learning phase these Q values are updated according to
the Bellman optimality equation as follows

Q(s,a) = r+ γmaxa′Q(s′,a′) (1)

Bellman equation update ensures that in a given state st se-
lecting an action at =maxa′Q(st ,a′) will result in maximizing
the future discounted reward Rt . These Q values are stored as
an approximation of a function with states as input. In Deep
Reinforcement Learning (DRL) the function to estimate these
Q values is a deep neural network.

B. Challenges of implementing DRL in real environments

RL in real environments for collision avoidance is chal-
lenging, as listed below. The methodologies adopted in this
paper to address them are described in the next section.

1) Reward generation: In real environments, the position
of the agent and its distance from obstacles is not known.
Hence extra sensing capabilities need to be added to the
agent giving it a notion of depth which not only adds to
the computation cost but also to the weight of the agent. In
this paper, we demonstrate DRL using a single monocular
camera.

2) Safety issues: RL works via a trial and error method. It
is designed to learn from mistakes. For the task of collision
avoidance, it means that the agent has to collide into the
obstacles to learn. This collision can not only harm the agent,
but also the environment. We propose a method of virtual
crash and a crash reward to address this issue.

3) Resetting the agent to a suitable initial position:
RL requires that the agent must be placed at proper initial
position (usually the same) every time it crashes with an
obstacle. In simulations, it is trivially achieved while in real
environments it poses a challenge. We demonstrate a method
of un-doing the drone’s actions to achieve the same effect as
resetting the drone’s position.

4) Large online data-set requirement: The amount of data
required for implementing RL is large. Such training data
requirement stems from the fact that the agent starts with
little knowledge of the environment and takes random actions
to explore it. As opposed to simulations where you can easily
collect a large number of data-points, the data-set that can
be collected in a real environment is limited. We use several
techniques to address this issue, as described in the next
section.

IV. NAVIGATION IN REAL ENVIRONMENTS VIA RL
(NAVREN-RL)

We propose an end-to-end drone navigation methodology
using expert data aided deep reinforcement learning on
images acquired by a single camera. The end-to-end approach
has been summarized in the block diagram shown in Figure 1.
We limit the action space to three actions A = {aF ,aL,aR}
where under the action aF the drone moves forward (by
0.25m), aL the drone turns left (45o) and aR the drone turns
right (45o). To address the issues of real-time DRL, we
explore the following solutions keeping in mind the agent’s
weight, cost, limited sensing capabilities, and environmental
constraints.

A. Reward generation

Since we are not using any external sensing modalities, the
reward needs to be generated from the image frame itself.

��������	�
���
��������������
�����������	��
�������������	���������������
�����������
��

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 14:03:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Depth-based dynamic windowing

We use the depth map of the state towards the generation
of the reward. A depth map of a frame is an image of the
same dimension with pixels intensities corresponding to the
depth of the pixel in the input image. In the last few years
various off-line learning algorithms have been explored to
generate depth maps using a single image [15]–[17]. Due
to its superior test accuracy, we use the approach proposed
in [16].

In order for the reward to be simple and meaningful, we
use parts of the depth map towards reward generation. The
depth map generated is divided into three windows. The
depth in the windows is used to generate a notion of the
distance to the closest obstacle in each of the three (left,
center and right) directions. This distance is calculated by
averaging the smallest n% pixel depth values. The value of n
depends on the nature of the environment. If the environment
is expected to have narrow (wide) obstacles, the value of
n is relatively smaller (larger). We note that changing the
window size dynamically with the global depth in the scene
aids reward generation and improves accuracy. If the global
depth of the image is greater, then the objects being seen
in the frame are farther apart. We choose the relationship
between the global depth and window size empirically to
be [H, W]/(0.75×global depth+0.5) where [H,W] are the
dimensions of the input frame from camera. This global depth
based dynamic windowing can be seen in Figure 2. The
three local distances to the closest obstacle in corresponding
directions are then put to use towards reward generation
according to Algorithm 1 where α ∈ [0,1] is a parametric
weight and is taken to be 1/3; dthresh is used to mark the
completion of an episode as explained in the next section.

B. Addressing safety issues

If at any point, the center window shows the distance to
the nearest obstacle dc to be below some threshold value
dthresh, the agent stops and considers to have “virtually
crashed”. This virtual crashing marks the end of an episode.
Thus the agent does not physically collide with obstacles
and significantly reduces the risk of damaging itself or the
environment. Once the agent virtually crashes, a penalizing
reward rcrash is provided to the state-action pair leading to
the crash.

Algorithm 1 Reward generation using the depth map
function fr(st ,at ,s′t)

d(st)← depth map of st
d(s′t)← depth map of s′t
dl(st),dc(st),dr(st) = DepthValues(d(st))
dl(s′t), dc(s′t), dr(s′t) = DepthValues(d(s′t))
if at = aF then rt = dc(s′t)
else if at = aL then rt = dc(s′t)+α(dl(st)−dr(st))
else rt = dc(s′t)+α(dr(st)−dl(st))

if dc(s′t)< dthresh then rt = rcrash
return rt

C. Resetting the agent to a suitable initial position

In our approach, the agent does not reset to its initial
position, rather a new initial position is selected after the
end of every episode. The new initial position is chosen in
an autonomous way making use of the knowledge of the
“virtual crash” state-action pair. The action that led to the
collision is un-done. The agent accomplishes this by taking
the opposite actions (for e.g. if the forward action led to
virtual crash, the agent after marking it the end of an episode,
moves backward) until dc is at least drecover; a threshold set
for recovering from the crash. A new episode starts from
the recovered state and the policy prevents the agent from
selecting the “virtual crash” action for that initial state.

D. Large online data

a) Expert Data DE: We address the requirement of a
large training data set by making the use of Learning from
Demonstration (LfD) [18]. At the onset, a human expert
navigates the agent across the arena and collects a limited
set of expert data-points. The idea of collecting expert data-
points is to help the agent through guided exploration. This
expert data set is used towards learning in the following two
ways.

• Pre-training phase: The neural network is trained for this
small set of expert data DE and the weights learned θE
are used as initial weights for the online learning phase.
This preserves some knowledge about the environment
and gives the agent a good starting point for exploration.

• Expert data as a part of experience replay: The expert
data is also used as a part of the replay memory Dreplay
from which the batches of data-points are sampled for
training. Making expert data a persistent part of the
experience replay helps avoid the neural network from
forgetting what it had learned in the pre-training phase.
b) Knowledge based Data aggregation: The data ag-

gregation is carried out in the following two ways:
• When the agent virtually crashes, going forward from

that state will lead to a crash too. If the agent which
is in state st moves to the next state s′t by taking
an action at and virtually crashes, then the data-point
(s′t ,aF ,s′t ,rcrash) will be aggregated to the current data
points.

• Since opposite actions are selected to recover from
crashes, the intermediate states will lead to a crash

��������	�
���
��������������
�����������	��
�������������	���������������
�����������
��

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 14:03:30 UTC from IEEE Xplore. Restrictions apply.

as well. For example, the agent in state st moves
to next state st+1 by taking an action at and virtu-
ally crashes. Let a′t be the opposite action to at . If
at ∈ {aR,aL} then the data-points (st+i,a′t ,st+i−1,rcrash)
and (st+i,aF ,st+i,rcrash) for i = {1,2,3, ...,nrecover} is
aggregated to current data-points where nrecover is the
number of steps required to recover from the crash.
Since going backward does not belong to our defined
action space A, the data-points are not aggregated if
at = aF

E. Convergence of Deep RL algorithm

The basic RL algorithm often suffers from limited conver-
gence, which mainly emerges because the Bellman equation
tends to over-estimate the Q-values due to its non-linear
nature. Also, the aggregating nature of the Bellman equation
might lead to diverging Q-values. So, in order to avoid these
issues the following solutions are implemented.

1) Restricting the range of rewards: The distances to the
nearest obstacle {dl ,dc,dr} ∈ R

+ is the estimated distances
in meters. These distances are scaled down to have values
between [0, 1

α+1] where α is the weight constant used in
the reward function. When scaled down, the reward function
generates the reward within the limited range of [−1,1]

2) Clipping Q values in Bellman equation: This ensures
that the Q-value updates do not diverge. Let Qtarget

θ (s,a) =
r+ γ maxa Q(s′,a;θ) be the normal Q-value update where θ
is the weights of the neural network, then the clipped Bellman
equation is

Q̂target
θ (s,a) = clip(Qtarget

θ (s,a),−1,1) (2)

where the function clip(a,n1,n2) clips the value to n1 or
n2 if a is less than n1 or greater than n2 respectively. The
updated equation ensures that Qtarget

θ (s,a) ∈ [−1,1] and does
not diverge.

3) Use of Double DQN: We address the overestimation
of the Q value by using a Double Deep Q Network (DDQN)
[19]. In DDQN two different copies of neural network are
used. One of the neural networks (the behaviour network,
θ) is used for training, while the other network (the target
network,θ ′) is used towards the Bellman equation update.
The target network is updated with the weights of the
behaviour network after every ntarget intervals. The updated
Bellman equation looks like

Qtarget
θ ′ (s,a) = r+ γ max

a′
Q(s′,a′;θ ′) (3)

Combining both clipping and DDQN, the updated Bellman
equation is:

Q̂target
θ ′ (s,a) = clip(r+ γmaxaQ(s′,a;θ ′),−1,1) (4)

F. Network Architecture

We use a modified AlexNet [20] network to estimate the Q
values for the states. The input to the network is the re-sized
camera frame st . The network consists of 5 convolutional
layers and 3 fully-connected layers.

Algorithm 2 NAVREN-RL Algorithm
Input: Expert data-points: DE

Initialization: Behaviour network: Qθ (s) =N(s;θ), Target
network: Qθ ′(s) = N(s;θ ′), m: Number of pre-training
updates, ntarget : Target network update interval, bε :ε an-
nealing coefficient, nbatch: mini-batch size for training
for i ∈ {1,2,3, ...,m} do

Sample a mini-batch of size nbatch from DE

Evaluate the loss Jθ ′(θ)
Perform gradient descent to minimize Jθ ′(θ) w.r.t θ

Initialize the replay memory Dreplay ← DE

for t ∈ {1,2,3, ...} do
st ← Camera image, Q(st)←N(st ;θ)
Sample an action from behaviour policy at ∼ πbε Q(ε)
Implement the action at on the agent
s′t ← Camera image, Q(s′t)←N(s′t ;θ)
Generate the reward rt ← fr(st ,at ,s′t)
Store the tuple (st ,at ,s′t ,rt) in Dreplay
if virtual crash then

while not recover from crash do
Aggregate data-points to Dreplay

Sample a mini-batch of size nbatch from Dreplay
Evaluate the loss Jθ ′(θ)
Perform gradient descent to minimize Jθ ′(θ) w.r.t. θ
if t mod ntarget = 0 then θ ← θ ′

G. Online Learning

Before the learning process begins, an expert user nav-
igates the agent in the selected environment for a certain
number of steps nexpert . The data tuple (si,ai,s′i,ri) for each
of the steps i ∈ {1,2,3, ...,nexpert} is generated and saved in
DE. Next comes the pre-training phase where random mini-
batches of size nbatch are selected from the expert data DE

and a neural network Qθ (s) =N(s;θ) is trained minimizing

Jθ ′(θ) =
nbatch

∑
i=1

J(si,ai,θ ,θ ′)+βJreg(θ) (5)

where J(si,ai,θ ,θ ′) is the TD loss for ith data-point dictated
by the Bellman equation and Jreg(θ) is regularization loss to
help prevent over-fitting the network for the smaller amount
of expert data, and β is a regularization weight. These losses
are given by:

J(si,ai,θ ,θ ′) = ||Q̂target
θ ′ (si,ai)−Q(si,ai;θ)||2 (6)

Jreg(θ) = ||θ ||2 (7)

where Q̂target
θ ′ (st ,at) is given by equation 4

After the pre-training phase, the online training phase
begins. The agent is placed in the environment, and follows
a ε-greedy policy for actions. with bε as the annealing
coefficient. ε is varied linearly from 0.1 to 0.9 as the number
of data-points varies from 1 to bε . At every time step t, the
drone saves the data points (st ,at ,s′t ,rt) in Dreplay. A mini-
batch of size nbatch is randomly sampled from the replay

��������	�
���
��������������
�����������	��
�������������	���������������
�����������
��

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 14:03:30 UTC from IEEE Xplore. Restrictions apply.

TABLE I
LIST OF HYPER PARAMETERS USED FOR TRAINING

Learning rate 1e-6 ntarget 200 nbatch 32
β 0.001 dthresh 0.02 rcrash -1

����

��
��

Fig. 3. Snapshots and the layouts of the arenas used. Top row: A1 Hallway,
Bottom row: A2 SC-room

memory Dreplay and used to minimize the loss defined in
equation 5 through gradient descent. Algorithm 2 shows the
complete algorithm, while table I lists the hyper parameters
used.

V. EXPERIMENTAL RESULTS

Real-time experimentation are carried out to validate the
proposed approach for drone navigation.

A. Hardware specifications

We use a low cost Parrot AR drone 2.0 which does not have
the computational power to carry out the required processing
on-board. Hence, the drone sends the camera frames to a
workstation/cloud equipped with a core i7 processor and
GTX1080 GPUs. Control actions are communicated back to
the drone. We use Tensorflow to carry out the neural network
computation on the workstation.

B. Testing environments

We use the following two arenas to carry out the experi-
mentation for successful navigation.

1) Arena A1: Open Hallway: This is a hallway in an
engineering building with glass walls. The drone has to
navigate through the narrow hallways (minimum width of
≈ 1.5m). There are no extra obstacles between the hallway
path except for water dispenser, benches and trashcans.

2) Arena A2: SC Room: This arena is a cluttered break-out
room with couches, chairs, tables and bar-stools with narrow
passages in between (≈ 1m).

The layout and floor plans of these arenas can be seen in
the Figure 3

C. Baseline Algorithms for Comparison

We compare our method with the following baseline
algorithms.

�

��

��

��

� ���� ����

����	
���
����
��

�

�

��

��

��

��

� ���� ����

�����	
���
����
��

�

�

���

���

���

� ��� ����

�����	
�����
��

�

�
��

��
��

����� ��!�
�� "�
�
�

Fig. 4. Convergence of RL with and without DDQN and clipping

vi
si

vi
si

A 1
 :

H
al

lw
ay

A 2
 :

SC
-R

oo
m

SL LRS SS NavREn-RL

Fig. 5. Trajectories followed by the baselines and NAVREN-RL for 5
different initial locations

1) Straight-line controller: This controller always predicts
the forward action hence moving the agent in a straight line
in a manner described in [14]. This controller provides a good
comparison of the complexity of the arena.

2) Left-Right-Straight (LRS) controller: This baseline is
based on the work in [13] where a supervised approach is
used to classify images with respect to the actions required to
be taken. A human expert roams around the arena and collects
the images using left, right and forward facing cameras.
Images collected from left (right) facing camera are labeled
with the target action of right (left) while the ones collected
from forward facing camera are labeled with the target action
of forward. These labeled images are then used to train a
neural network offline in a supervised manner.

3) Self-supervised (SS) controller: This controller uses the
work proposed in [10] where a large data-set of crash and
safe images are collected over various indoor environments.
These labeled images are then used to train a neural network
to classify each image as either safe or crash. In the inference
phase, the input camera frame is then divided into three
windows and the probability of crash in each of the sub-
frames is calculated. Based on these probabilities, a hand-
crafted controller is designed, following [10] to take suitable
actions.

D. Performance

Figure 4 shows the comparison of RL convergence with
and without DDQN and clipping of the Bellman equation.
It can be seen that the DDQN with clipping of Bellman
equation shows good convergence.

We assess the performance of NAVREN-RL by compar-
ing it against the baselines mentioned above. 3000 (700
expert+2300 online) data-points are collected in the Hallway

��������	�
���
��������������
�����������	��
�������������	���������������
�����������
��

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 14:03:30 UTC from IEEE Xplore. Restrictions apply.

����

����

����
	��

�

��

��

��

��

���

���
���

���
���

�
�
�
�
�
�
�
	

� ��

 ���������
� ��

 ���������

�
��

��
���
�#

���
�

�
��

��
���
�#

���
� ���$�%
! �&&�

Fig. 6. Safe flight (in meters) comparison across baselines

TABLE II
ARENA STATS

Arena Method Total Di-
stance(m)

Safe
Flight(m)

Impro-
vement

Hallway

SL 80.7 16.1 4.45x
LRS [13] 162.9 32.6 2.21x
SS [10] 324.9 65.0 1.11x

NAVREN-RL (ours) 359.5 71.9 −

SC-room

SL 6.3 1.3 4.55x
LRS [13] 10.9 2.2 2.65x
SS [10] 24.9 5.0 1.16 x

NAVREN-RL (ours) 28.8 5.8 −

arena, while 2000 (600 expert+1400 online) data-points are
collected in the SC-room arena. In each of the arenas, all the
4 techniques are separately used to learn a neural network.
The agent is initialized by the learned neural network and the
performance is evaluated by placing the drone at 5 different
initial locations. To keep the comparison fair, the agent is
placed precisely the same way across all the techniques. In
each of the cases, the trajectory followed by the agent is
recorded until the agent is no longer able to navigate. This
loss of navigation is considered if

• The agent collides into an obstacle
• The agent keeps hovering, being stuck in a repetitive

pattern of left/right actions, and does not move forward
for 10 iterations

The trajectories can be seen in Figure 5. The distance cov-
ered by the agent before crash is taken to be the performance
metric and can be seen in the table II. The total distance
covered is the sum of the individual distances covered by the
drone from each of the initial locations. The safe flight for
any technique is the average distance covered by the drone
from the different initial locations. In most of the cases the
proposed NAVREN-RL method outperforms the baselines, i.e
the safe flight (m) for the proposed RL method is the highest
among the baselines. This can be seen in Figure 6.

VI. CONCLUSIONS

This paper provides an end-to-end reinforcement learning
algorithm for autonomous navigation of drones in indoor real
environments by addressing the problems associated with
the RL implementation. Experimentation is carried out in
different arenas and the performance is compared to other
base-lines. The results show that the agent is able to navigate
in the indoor arena with limited sensing capabilities and data-
points with comparable performance.

ACKNOWLEDGMENTS

This work was supported in part by C-BRIC, one of six
centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.

REFERENCES

[1] Y. K. Kwag and J. W. Kang, “Obstacle awareness and collision
avoidance radar sensor system for low-altitude flying smart uav,” in
Digital Avionics Systems Conference, 2004. DASC 04. The 23rd, vol. 2.
IEEE, 2004, pp. 12–D.

[2] A. S. L. Raimundo et al., “Autonomous obstacle collision avoidance
system for uavs in rescue operations,” Ph.D. dissertation, 2016.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[5] D. O. Sales, P. Shinzato, G. Pessin, D. F. Wolf, and F. S. Osorio,
“Vision-based autonomous navigation system using ann and fsm con-
trol,” in Robotics Symposium and Intelligent Robotic Meeting (LARS),
2010 Latin American. IEEE, 2010, pp. 85–90.

[6] R. Huang, P. Tan, and B. M. Chen, “Monocular vision-based au-
tonomous navigation system on a toy quadcopter in unknown environ-
ments,” in Unmanned Aircraft Systems (ICUAS), 2015 International
Conference on. IEEE, 2015, pp. 1260–1269.

[7] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv preprint arXiv:1705.06963, 2017.

[8] C. Richter and N. Roy, “Safe visual navigation via deep learning
and novelty detection,” in Proc. of the Robotics: Science and Systems
Conference, 2017.

[9] L. Tai, S. Li, and M. Liu, “Autonomous exploration of mobile robots
through deep neural networks,” International Journal of Advanced
Robotic Systems, vol. 14, no. 4, p. 1729881417703571, 2017.

[10] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,”
arXiv preprint arXiv:1704.05588, 2017.

[11] D. K. Kim and T. Chen, “Deep neural network for real-time au-
tonomous indoor navigation,” arXiv preprint arXiv:1511.04668, 2015.

[12] A. Giusti, J. Guzzi, D. C. Cireşan, F.-L. He, J. P. Rodrı́guez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. Di Caro et al., “A machine
learning approach to visual perception of forest trails for mobile
robots,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 661–
667, 2016.

[13] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, and M. Hebert, “Learning monocular reactive uav control
in cluttered natural environments,” in Robotics and Automation (ICRA),
2013 IEEE International Conference on. IEEE, 2013, pp. 1765–1772.

[14] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a
single real image,” arXiv preprint arXiv:1611.04201, 2016.

[15] A. Saxena, S. H. Chung, and A. Y. Ng, “3-d depth reconstruction from
a single still image,” International journal of computer vision, vol. 76,
no. 1, pp. 53–69, 2008.

[16] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in 3D Vision (3DV), 2016 Fourth International Conference on. IEEE,
2016, pp. 239–248.

[17] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monoc-
ular depth estimation with left-right consistency,” in CVPR, vol. 2,
no. 6, 2017, p. 7.

[18] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, G. Dulac-Arnold et al., “Deep
q-learning from demonstrations,” arXiv preprint arXiv:1704.03732,
2017.

[19] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning.” in AAAI, vol. 2. Phoenix, AZ, 2016, p. 5.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

��������	�
���
��������������
�����������	��
�������������	���������������
�����������
��

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 14:03:30 UTC from IEEE Xplore. Restrictions apply.

