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extend beyond 500 bil-
lion devices by 2030 [1].

Background and  
motivation

The dynamic nature 
of the IoT devices, cou-
pled with their stringent 

resource constraints (small-size and portability 

requirements, leading to smaller energy backup, less 
computing and memory resources in harsh environ-
ments, varying channel conditions, asymmetric data 
rates in uplink and downlink, etc.) and the availability 
of multiple communication modalities [wired, prox-
imity, low-energy Bluetooth (BTLE), ANT, LoRa, Zig-
Bee, Human  Body Communication (HBC), MedRa-
dio, and millimeter-wave (mm-wave), to name a few] 
necessitate proper selection of communication archi-
tecture based on the application and corresponding 
resource constraints. In addition, the power cost of 
communication (≈1 nJ/bit in standard wireless net-
works [2]) may warrant intelligent allocation between 
local and remote computing resources, which would 
require context-aware operation corresponding 
to different scenarios, leading to minimum energy 
consumption for a certain amount of information  

Editor’s note:
This article provides an academic perspective of the problem, starting with 
a survey of recent advances in intelligent sensing, computation, commu-
nication, and energy management for resource-constrained IoT sensor 
nodes and leading to a future outlook and needs.

—Shreyas Sen, Purdue University 

 The personal, healthcare, and consumer 
electronic industries have experienced rapid 
advancements in the past few decades due to ag-
gressive technology scaling and low-power, low-
cost implementation of sensor electronics built 
on mobile computing/communication platforms 
having small form factors. This has resulted in a 
pervasive growth of connected devices, leading 
to what is known today as the Internet of Things 
(IoT), as shown in Figure 1a. Increased fidelity 
and higher bandwidths are expected to result in 
50 billion connected devices, generating 30+ ex-
abytes of data per month by 2020, which would  
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transfer, thereby improving the lifespan of the  
network. Also, energy-resolution scalable sensing 
technology [preferably in the compressed domain 
(CD)] enables consumption of sensing energy when 
required and present-day context-agnostic IoT sys-
tems are typically overdesigned to take care of all 
possible contexts/scenarios, which trade off fidelity 
with power consumption and, hence, degrade 
the energy efficiency. Cloud computing is usually 
employed in a larger system that enables data ana-
lytics, remote device monitoring, visualization, and 
client delivery [3]. This requires the IoT nodes to 
upload the digitized data from the sensors to the 
gateway/cloud. The cloud then performs data ana-
lytics and notifies specific management systems 
(energy, memory, and real-time OS) to take suitable 
actions. However, implementing the entire compu-
tation framework in the cloud would mean a higher 
communication payload at the edge device, which in 
turn leads to higher communication power. Also, the 
closed loop (from the sensor to cloud and back to the 
sensor) latency might be prohibitively large for certain 

cases (e.g., tactile internet, autonomous driving, and 
medical emergencies). The situation demands truly 
intelligent devices that are aware of the operating 
conditions and contexts and can dynamically adapt 
itself for optimal energy efficiency and performance 
by switching among different modes (computation- 
heavy, communication-heavy, high-security, low-
power, etc.). This is shown in Figure 1b in the form 
of our vision for a secure, context-aware, adaptive, 
resource-constrained yet intelligent IoT device, repre-
sented as a combination of multiple sensing, compu-
tation, and communication modalities with different 
power and performance. Parts of the context infor-
mation can be generated in the cloud (for latency- 
relaxed applications), whereas the latency-limited 
context assessment needs to happen in the sensor 
node itself, using smart learning algorithms.

Challenges in asymmetric IoT networks
Before delving into the implementation details of 

contextual, adaptive machine intelligence, let us dis-
cuss the specific challenges for a generic scenario of an 
IoT ecosystem that contains a multitude of heterogene-
ous connected devices (Figure 2). These IoT devices 
include resource-constrained and resource-rich nodes, 
gateways, and cloud data centers. The focus of this arti-
cle is on the resource-constrained leaf nodes that are 
defined in [4] as the ones that do not have the hard-
ware and software capabilities to support the Transmis-
sion Control Protocol (TCP)/IP protocol suite.

1) Finite Resources:  In view of the IoT ecosystem, 
a resource can either be physical (such as memory, 
computation power, energy, and network band-
width) or virtual (software procedures to perform 
data compression, outlier detection, etc.). An IoT de-
vice may lack one or more of these aspects because 
of size limitation and specific applications.

2) Heterogeneity:  An IoT subsystem, such as a 
smart home, can have a significant amount of het-
erogeneity with respect to hardware and software 
[4]. Various degrees of resource constraints may co-
exist in the same ecosystem, which makes context-
awareness a challenging task since it now becomes 
a function of application, device location, available 
computation/memory resources, channel condi-
tions, and communication modalities. For exam-
ple, smartphones with relatively high computation 
power can support advanced learning and data 
compression algorithms, while a small temperature 
sensor must resort to elementary learning and data 
processing methods [5].

Figure 1. (a) IoT at the juncture of Moore’s 
law (more computation enabled by 
technology scaling) and Shannon’s law 
(more data rate enabled by modern wireless 
standards), consuming a prohibitively high 
amount of energy [2]. (b) Our vision for an 
RC-IoT device for optimum energy efficiency.
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3) Security:  IoT systems envision automatic dis-
covery and support for a new target device without 
human intervention [6], [7], which immediately 
raises concerns on the security and privacy aspects of 
the network. With the limited resources and latency 
constraints, proper authentication and/or authoriza-
tion mechanisms become all the more challenging, 
as the devices with fewer resources often tend to sac-
rifice security for lower energy consumption.

4) Context and context-based adaptability:  To 
optimize the performance of the individual nodes, 
specific contexts/modes need to be defined as dis-
cussed in the previous section, with a proper switch-
ing arrangement between modes for adaptability. 
The definition of context, as will be discussed later, 
is highly application dependent, and therefore the 
implementation of context-based adaptability would 
be different for every application and either needs to 
be decided beforehand by the designer or learned 
on the fly by the system.

5) Scalability and reconfigurability:  In addition, 
the IoT ecosystem should be capable of handling a 
variable number of nodes due to the mobility and 
dynamic properties of the devices, and the hardware 
and software implementations should be scalable 
to a large population of devices. It is important to 
note  that the previously described challenges also 
create asymmetry among the nodes in the network, 
as there could be a need for communication between 
two devices with unequal resources and capabili-
ties. Indeed, IoT has a communication bottleneck in 
the uplink, as typical IoT applications (smart sens-
ing, wearable devices, healthcare, etc.) involve up-
loading the collected data from multiple sensors to a  
single base station [5]. This asymmetry can be  
optimally leveraged with a high-level goal to reduce 
the energy consumption of the overall system, as will 
be explained in the following sections.

Common terminologies used throughout  
the article

1) IoT:  Small-scale developments of internet- 
connected devices were materialized as early as 
1982, when researchers at Carnegie Mellon Universi-
ty deployed a Coke vending machine with an online 
inventory [8]. Mark Weiser’s famous 1991 paper on 
ubiquitous computing [9] envisioned the concept of 
a large scale implementation, and the term Internet 
of Things was coined by Ashton in a presentation at 
Proctor and Gamble in 1999 [10]. According to the  

International Telecommunication Union, IoT is 
a vision that ensures “from anytime, anyplace 
connectivity for anyone—we will now have connec-
tivity for anything.”

2) Machine intelligence:  Machine intelligence 
is usually associated with Machine learning (ML), 
which is defined in [11] as “the adoption of com
putational methods for improving machine perfor-
mance by detecting and describing consistencies 
and patterns in training data.” In view of the resource-
constrained IoT (RC-IoT) nodes, however, intelligence 
or edge intelligence refers to the process of context 
discovery and assessment, which is imperative in the 
realization of context-aware, adaptive techniques and 
strategies (hardware/algorithmic/learning-based) for 
sensing, computing, and communication in the con-
strained environment.

3) Resource:  Adopting the generic, all-encom-
passing definition [12], a resource is defined as “any 
object which can be allocated within a system.” 
For IoT systems, the most important resources are 
memory (for storage), energy (for battery lifetime), 
compute capability (for computation), and network 
bandwidth (for communication). Depending on the 
available memory, RC-IoT devices are categorized 
into Class-0, Class-1, and Class-2 devices as shown 
in Table 1 [13], with Class-0 devices having the most 
stringent constraints.

4) Context and context awareness:  The notion of 
context-aware computing was first introduced by Schilit 
and Theimer [14]. Although many definitions exist for 
context and context awareness, the one provided by 
Abowd et al. [15] is widely accepted as a concrete 
definition of context based on the five Ws (who, 
what, where, when, and why). As has been argued 

Figure 2. IoT ecosystem and its specific  
challenges [4].
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in [16], all previous definitions [17]–[20] of context 
and context-awareness suffered from the specificity 
of the example applications that they were referred 
to and could not be used to define the new context.  
References [15] and [16] defined context as follows: 

Context is any information that can be used to 
characterize the situation of an entity. An entity 
is a person, place, or object that is considered 
relevant to the interaction between a user and 
an application, including the user and applica-
tions themselves. 

In light of the above definition of context, context- 
awareness is defined as follows: “A system is context- 
aware if it uses context to provide relevant information 
and/or services to the user, where relevancy depends on 
the user’s task” [15]. A context is usually represented by a 
model and its attributes, and it is often described based 
on the application scenario. Further details on this can 
be found in [6] and [21].

5) Quality of context:  Quality of context (QoC) is 
related to how well the context model and its attributes 
are extracted from raw sensor data. QoC is defined 
using a combination of parameters such as validity, 
precision, and update rate of the context information, 
which is processed out of the raw data from a sensor. 
Reference [6] presents a detailed survey on QoC.

Building toward the concept of a context-aware, 
adaptive RC-IoT system, we shall discuss intelligent 
hardware techniques for sensing (compressive sens-
ing, time-based sensing), computation (edge ana-
lytics/in-sensor analytics in the form of anomaly 
detection and data compression), communication 
[Intraphysical layer (Intra-PHY) and Inter-PHY adap-
tation, along with two recent sub-10pJ/b communica-
tion modalities, i.e., proximity communication and 
HBC], and energy management (dynamically recon-
figurable LDO, switched-mode LDO, and intermittent 
powering) in this article. We shall also present two 
examples of cross-layer adaptive systems that employ 
more than one approach discussed in this article for 
optimum power-efficiency. Finally, after describing 
various security considerations and learning tech-
niques for RC-IoT devices, we present our view of the 
current state-of-the-art and where it needs to be in 
the near future, based on the learnings and research 
in the domain of secure, context-aware, adaptive 
Rc-IoT nodes over the last two decades.

Intelligent sensing

Compressed-domain signal acquisition
Compressed-domain sensing/compressive sens-

ing (CS) [22], [23] is a mathematical tool in sig-
nal processing that defies the Shannon–Nyquist 
sampling theorem by sampling a sparse signal at 
a rate lower than the Nyquist paradigm and still 
being able to reconstruct the signal with negligi-
ble errorrate (Figure 3). Since its inception, CS 
has found multiple applications including image 
processing [24], medical imaging [25], RADAR 
technology [26], in-sensor analytics [27], gesture 
recognition [28], [29], and healthcare [30]. CS 
algorithms assume that the signal to be sampled 
has a sparse representation, and it was shown that 
sparse signals with randomly [from independent 
and identically distributed (i.i.d) Gaussian dis-
tribution] undersampled data can be recovered 
with a low error by formulating it as an optimi-
zation problem. Hence, the advantage of CS is 
twofold: 1) CS allows a lower sampling rate that 

 
Table 1. Available resources for RC-IoT Devices [13].

Figure 3. Nyquist rate sampling/sensing versus 
compressive sensing.
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reduces the power consumption in the analog-to- 
digital converter (ADC) and clock generation 
circuitry, and 2) compression creates a smaller 
amount of data with rich information-content that 
reduces the burden on the subsequent processing 
and communication modules. Since many of the 
naturally occurring signals such as sound, visual 
image, or seismic data can be represented in the 
sparse form [31], it is possible to leverage the supe-
rior energy efficiency of CS in an IoT scenario. Two 
comprehensive reviews on CS can be found in [31] 
and [32].

To mathematically represent CS more clearly, 
let us assume that the orthogonal basis ​​​{​ψ​ i​​}​​ i=1

​ n ​​  span 
the  n-dimensional real space ℝn. Then, any signal ​
x  ∈ ​ R​​ n​​ can be represented by matrix multiplication 
of the matrix ψ with the elements of a sparse vector 
S = [S1, S2, S3, ..., Sn]T ∈ Rn such that ​x  = ​ ∑ 

i=1
​ n  ​ ​ψ​ i​​​ ​S​ i​​​. If 

the vector S has only k ≪ n nonzero entries, then the 
signal x is said to be k-sparse, and ψ is called the spar-
sifying/representation matrix for x. For CS, the n × 1 
input signal x is pre-multiplied by an m × n sensing 
matrix Φ to get an m × 1 compressed signal y, where 
m < n and the ratio (n /m) is termed as the com-
pression factor. This is represented by the following 
equation and is shown in Figure 4

	​ y  =  Φx  =  Φ ψ S.​� (1)

If the coherence (correlation) ​μ​(Φ, ψ)​  = ​ √
__

 n ​ max 
​|​Φ​ j​​ , ​ψ​ i​​|​​ (where 1 ≤ i ≤ n and 1 ≤ j ≤ m with ​​Φ​ j​​​ being 
the jth row of Φ) is low, it can be proved that fewer 
samples are required to reconstruct the signal [23].

Compressed domain processing and  
computational data converters

Multiple CS algorithms for IoT applications 
have been developed in the last decade. Reference 
[34] showed a matrix-multiplying ADC (MM-ADC) 
in 130-nm CMOS technology and demonstrated two 
applications: 1) electrocardiogram (ECG)-based car-
diac arrhythmia detection (9.7× energy savings as 
compared to traditional ADC followed by arrhyth-
mia detection) and 2) image-pixel-based gender 
detection (23× energy savings as compared to tradi-
tional ADC followed by gender detection). Feature 
extraction and classification were combined in a 
single measurement matrix (Φ in CS theory) for light-
weight applications as shown in the work. Our ear-
lier work [33] demonstrated a light-powered smart 
camera with CD gesture detection. To enable always 
on and self-powered operation on IoT devices,  

Amaravati et al. [33] exploit CD data processing, 
which allows trigger detection with significantly 
lower power and computational requirements. This 

Figure 4. CS: creation of an m × 1 meas-
urement vector from an n × 1 signal of 
interest (m < n).

Figure 5. Block diagram of the CS algorithm 
for gesture detection [33].
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is in contrast to existing algorithms that work directly 
in the pixel domain. Given the objective of the cam-
era front end (FE), the computation complexity can 
be largely reduced (768×, as demonstrated in [33]) 
from existing algorithms that are targeted for continu-
ous gesture recognition [35], [36].

In this system, the gesture motion is captured by 
a sequence of difference images between consecu-
tive frames. Each difference image passes through 
two layers of compression to reduce its resolution 
and to be transferred to the CD. In the first layer, the 
resolution is reduced by dividing the whole image 
into several blocks and taking the average of each 
block. In the second layer, coded combinations of 
these block-averaged pixels are extracted. It then 
estimates the center of the motion directly from 
these compressed measurements. These motion 
centers are passed to a classifier for gesture recog-
nition. Figure 5 shows the block diagram of the pro-
posed system, while Figure 6 presents the accuracy 
of detecting different hand gestures as a function of 
the irradiance levels in the environment where the 
camera operates. In the work presented in [33], the 
sparse compression algorithm was performed in 
the microcontroller unit instead of the ADC. In [27], 
the authors have shown an ASIC implementation in 
130-nm technology that utilizes CS DAC and MM-ADC 
together to achieve only 165-nJ/frame classification.

Figure 7 shows the results from an arrhythia detec-
tion ASIC [30] with a time-based CS ADC. A total of 
160 parallel processing units were employed on-chip, 
and an accuracy of 84% was achieved with only  
10.5-nJ energy per classification for a compression 
ratio of 8×. One key idea here is the introduction of 
computational ADCs, where analog input signals are 
not only digitized but also computed upon during 
acquisition. In particular, computational ADCs pro-
vide linear transformations of the signal in a single 
stage, thus improving the system energy-efficiency.

In a more recent work [37], a submicrowatt CS 
hardware is presented in 65-nm CMOS technology 
with online self-adaptivity for incoming signals with 
varying sparsity. Initial efforts of self-adaptivity were 
earlier demonstrated in [38] using an asynchronous 
ADC with an adjustable sampling rate and in [39] 
using temporal decimation and wavelet shrinkage. 
Both of these techniques were utilized with specific 
incoming signals. On the other hand, Roose et al. [37] 
offer a more general technique that exploits the online 
sensory data statistics for dynamic reconfiguration 
(in terms of the compression algorithm, compression 
harshness, and sampling frequency).

Sensing using time/frequency
Many of the naturally occurring signals in IoT 

are slowly varying, such as temperature, humidity, 

Figure 6. Accuracy of the detection of 
hand gestures “Z,” “X,” “O,” “N,” and “+” 
as a function of the irradiance level of the 
light-powered smart camera with CS [33].

Figure 7. (a) Arrhythmia detection using time-
based CS ADC with embedded classification and 
INL-aware training [30]. (b) Classification accuracy 
versus compression ratio. (c) Energy efficiency 
(nJ/classification) versus compression ratio, show-
ing that a compression ratio of 8× achieves ≈90% 
lower energy with an accuracy hit of <5%.
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and vibration. Most of the energy content in these 
signals is contained within extremely low frequen-
cies. The resolution and dynamic range (DR) 
requirements for these applications, however, can 
be small (e.g, temperature and humidity), large (e.g, 
vibration), or variable based on environment (e.g, 
radiation). Voltage-mode and current-mode ADC 
designs in these scenarios become limited by the 
ambient noise, supply rails, and power consump-
tion. Time-based ADCs, on the other hand, can uti-
lize the availability of time (since signals are of very 
low frequency) in an energy-resolution scalable 
manner as shown in [40]. For high-resolution require-
ments, the signal to be sensed is converted into an 
equivalent frequency (using a resistive sensor and 
a ring oscillator-based resistance to frequency con-
verter) and is simply observed (using a counter) for 
a longer amount of time for a change in the aver-
age frequency. For low-resolution requirements, the 
frequency is observed for a shorter amount of and 
then can be turned off (through duty cycling) for 
saving energy. Figure 8 shows the working principle 
for the time-based ADC for detecting the difference 
between a frequency f and its slightly modified ver-
sion f2. The minimum amount of time for which we 
need to observe/count the frequencies to detect the 
difference is ​​1 ⁄ ​|​f​ 1​​ − ​f​ 2​​|​​ ​. Hence, for a smaller ​​|​f​ 1​​ − ​f​ 2​​|​​  
(high-resolution requirement), the time to enable 
the counter needs to be higher.

Even though this method ensures energy-
resolution scalability within a range, the resolution 
cannot be made infinitely high by waiting for a 
longer time. The ambient noise statistics, process, 
voltage, and temperature (PVT) variation, and jitter 
accumulation in the ring oscillator would limit the 
achievable resolution, out of which jitter accumu-
lation is shown to be the dominant factor in [40] 
in a controlled environment for radiation measure-
ment. This is demonstrated in Figure 9, where it is 
shown that the scaled quantization error in measur-
ing a fixed frequency within a predefined amount 
of time goes down with the time of measurement. 
However, the accumulated jitter from the ring oscil-
lator goes up with the total time of measurement. 
If the slope of the linear plot of accumulated jitter 
versus measurement time is k, then the achievable 
resolution is shown to be limited to log2 (1/k) bits.

The system in [40] achieves 18-bit resolution 
with 861-nW power consumption (one reading per 
second) and 12-bit resolution with 9.04-nW power  

Figure 8. Working principle of time-based ADC: 
higher resolution with more integration time and 
frequency/energy-resolution scalability as  
compared to traditional ADCs [40].

Figure 9. Application of time-based ADC in radiation 
sensing [40] using a resistive floating gate sensor, a 
three-stage differential ring oscillator, and counters. 
18-bit resolution is achieved with 861-nW power, 
utilizing the tradeoffs among measurement time, bit 
resolution, and accumulated jitter.
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consumption (one reading per second). The resolution 
can be improved by phase noise reduction techniques 
for the ring oscillator at the cost of a higher power.

Collaborative sensing
Collaborative wireless sensor networks [41]–[43] 

can sense an analog signal over a large-area test bed 
(e.g., soil nitrate sensing for smart agricultural appli-
cation) utilizing collaborative efforts among the sen-
sor nodes and their communication with each other/
with the cloud, which brings us to the next part of 
the article—the tradeoffs and power optimization 
among in-sensor computation, short-range commu-
nication, and long-range communication.

Intelligent computing platforms
As the number of distributed sensors and IoT 

end-nodes are increasing, the total amount of data 
transfer to the backend cloud servers are becoming 
prohibitively large, resulting in network congestion 
and high energy consumption during data trans-
mission at the sensor node [44]. This motivates the 
need for in-sensor data analytics that would perform 
context-aware data acquisition with compression, 
followed by transmit if necessary.

Need for intelligent computing
The computation and communication energies 

(Ecomp and Ecomm, respectively) in a system can be 
written as

​​ E​ comp​​  = ​ (​E​ comp​​ / bit)​ × Number of bits switched�

​E​ comm​​  = ​ (​E​ comm​​ / bit)​ × Number of bits sent.​�

(Ecomp/bit) will be dominated by the dynamic 
power for frequencies above the leakage-dom-
inant region, as shown in [45] and [46], and, 
hence, can be approximated by (Ecomp/bit) = CV 2, 
which scales with technology. If an ideal technol-
ogy had allowed zero device capacitances, then 
(Ecomp/bit) would be very close to the theoreti-
cal limit posed by the Landauer principle [47] as 
given in the following: 

	​​​ (​E​ comp​​ / bit)​​ 
th_min

​​  = ​ k​ B​​ T × ln 2,​� (3)

where kB is Boltzmann’s constant and T is the 
ambient temperature. For room temperatures, 
(Ecomp/bit)th _ min is calculated to be about 2.9 × 10−21 J. 
For a standard 45-nm CMOS technology node, the bit 
switching energy was simulated to be ≈1fJ for this 

(2)

analysis. However, even if a fictitious technology 
could potentially offer zero capacitances, a zero-
power receiver (Rx), and 100% efficiency for the trans-
mitter (Tx), (Ecomm/bit) would still be limited by the 
free-space path loss (PLFS) of the physical channel, 
which is given by Frii’s equation [48], [49] and shown 
in the following: 

	​ P ​L​ FS​​  = ​ G​ Tx​​ ⋅​G​ Rx​​  ​(​  λ ___ 
4πd

 ​)​m​,� (4)

where GTx and GRx represent the gains of the trans-
mitting and receiving antennas, respectively, λ is the 
wavelength, d is the distance between the Tx and Rx, 
and m is a parameter (typically between two and 
three) that represents the fading margin. For d = 10 m 
and a typical ANT protocol operating at 915 MHz, the 
most optimistic PLFs (m = 2, GTx = 2 dB, GRx = 2 dB) 
turns out to be about 48 dB, which means, with a state-
of-the-art Rx sensitivity of −100 dBm [50], the Tx needs 
to transmit a minimum of −52 dBm. This translates to 
a power consumption of 6.3 nW (theoretical limit—
assuming no capacitance and 100% efficiency) and 
an energy/bit of 105 fJ/b (for a maximum data rate of 
60 kbps for ANT), which is 107 times higher than the 
theoretical minimum energy/bit for computation, as 
given by the Landauer principle.

From the foregoing analysis, the theoretical min-
imum energy/bit for communication is given by the 
physical limits of the channel, and can be written as 

	​​​ (​E​ comm​​ /bit)​​ th_min​​  = ​ 
R ​x​ sen​​  _____________________  

​(​G​ Tx​​ ⋅ ​G​ Rx​​ ​​(​  λ ___ 
4πd

 ​)​​​ 
n
​)​ × η . DR

 ​​,� (5)

where Rxsen = kBT50Ω × NF × SNR × k × DR is the Rx 
sensitivity as a function of DR [51], η is Tx efficiency, 
and DR is the data rate supported.

Figure 10 shows the comparison of Ecomm and 
Ecomp for the same number of bits transmitted, or 
switched. The state-of-the-art wireless transceivers 
[52] consume ≈104 times more energy as compared 
to computational bit switching in 45- and 65-nm 
nodes. This bottleneck analysis directly signifies that 
some amount of intelligent computation at the sen-
sor node (in-sensor analytics) would help in bring-
ing down the total energy by enabling selective data 
transmission, which will reduce Ecomm at the cost of 
additional Ecomp.

In-sensor analytics as a form of edge  
intelligence

Based on the communication and computa-
tion energy tradeoffs and the amount of resources  

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:50:08 UTC from IEEE Xplore.  Restrictions apply. 



15March/April 2019

available at the RC-IoT device, partial or complete 
processing of the sensor data (e.g., anomaly detection 
and data compression for sensor readout, and object 
localization and segmentation for video surveillance) 
can take place in the leaf node itself. In this section, 
we discuss the two most common ISA techniques for 
RC-IoT devices, namely, anomaly/outlier detection 
and data compression. The anomaly detection meth-
ods can enable selective (and immediate) data trans-
mission when an anomaly occurs in an otherwise nor-
mal sensor readout. As a healthcare example, selective 
ECG data transmission with arrhythmia (anomaly) 
detection would ensure immediate notification with 
minimum communication cost. Data compression, 
on the other hand, would ensure that the maximum 
amount of information between transmissions can be 
stored in a small amount of on-sensor memory.

1) Anomaly/Outlier Detection:  According to 
Barnett and Lewis [69], “an outlier is an observation 
(or subset of observations) which appears to be in-
consistent with the remainder of that set of data.” 
Figure 11 shows an example of anomaly in a sensor 
readout and explains the three classes of anomaly 
that are common in IoT devices and wireless sen-
sor networks [70]. It is to be noted that the primary 
difference between outlier detection and event 
detection is the fact that an outlier is detected by 
comparing the readings from the sensor with each 
other and without any prior semantics that define the 
trigger conditions of an anomaly. On the other hand, 
trigger conditions for event detection are usually 
defined a priori, and the sensor readouts are com-
pared with that trigger condition to detect an event.

 Outlier detection algorithms utilize spatio- 
temporal correlations among the data points from the 
same node and/or neighboring nodes to distinguish 
between normal operation and anomalies [70]. 
Table 2 shows some of the most common anomaly 
detection techniques for wireless sensor networks 
and IoT. These methods include both learning 
(supervised and unsupervised)-based techniques 
and algorithmic (statistics-based) techniques and 
offer various orders of resource requirements and 
accuracy. Some of the most recent works include a 
hybrid statistical method from Twitter [71], which 
has low latency and high accuracy but needs more 
computational resources. Simplistic techniques such 
as mean- and average-based statistical analysis [53], 
on the other hand, can be implemented easily on 

the RC-IoT device itself for optimum computation- 
communication tradeoff.

2) Data Compression:  As shown in the “Intelligent 
Computing Platforms” section, compressive-sensing 
techniques can result in significant energy savings 
in the ADC, on-sensor processor, and communica-
tion modules. It must be noted that CS-ADC is still 
an emerging technology and has not yet become an 
integral part of commercially available embedded 
frameworks. In-sensor data compression techniques 
on the IoT processor, however, have also shown 
energy benefits by bringing down the communica-
tion power. Some of the earliest reported works on the 
tradeoff between the raw data communication and 
the compressed data communication are from MIT’s 
Computer Science and Artificial Intelligence Labora-
tory [72] and from CMU’s Odyssey Project [73]. Ref-
erence [73] used application-aware adaptation that 
trades off data quality with resource consumption 

Figure 10. Comparison of communication and 
computation energies (both theoretical and from 
standard implementations [52]) that show that 
communication energy is ≈104 times more than 
computation energy (with same number of bits). 
Leakage power is ignored in the analysis.

Figure 11. Example of anomaly in sensor 
readout.
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with the help of an embedded OS. Reference [72]  
experimentally showed that the ratio of energy re-
quired to transmit 1 bit is ≈480–1270 times higher than 
that of a 32-bit addition under varying channel condi-
tions. This means that a compression algorithm that 
is able to remove more than 1 bit from a string of data 
would have energy benefits if the algorithm is equiv-
alent to (or less than) 480 addition instructions. The 
standard compression algorithms explored in [72] 
[such as bzip2/Burrows–Wheeler transform (BWT), 
Lempel–Ziv–Welch (LZW), Lempel–Ziv–Oberhumer 
(LZO), and prediction by partial matching (PPMd)] 
are much smaller than 480 additions, which means 
that any of these algorithms would be beneficial. 
However, the key limitation in an IoT implementa-
tion comes from the runtime memory requirement 
for these algorithms, which is in tens of kilobytes for 
LZO to hundreds of kilobytes for BWT. This readily 
makes these algorithms infeasible for C0, C1, and 
C2 RC-IoT devices (referring to Table 1). More light-
weight compression techniques, such as miniLZO 
and sensor LZW with mini cache (S-LZW-MC) [74], 
require only 8.192 and 3.250 Kbytes memory, respec-
tively, and can be used in C2 and some C1 devices. 
Other important techniques for data compression in 

IoT devices include 1) principal component analy-
sis (PCA) ([75]–[77], which use lightweight PCA for 
dimensionality reduction and data compression),  
2) coding by ordering ([78], where the data from one 
node is shown to be encoded by the order at which 
other nodes in the same hierarchy communicate 
with the parent node), 3) burst mode/pipelined tech-
niques ([79], where data are stored, packetized, and 
transmitted in burst mode to remove redundancies 
and number of transmitter switch on/off), 4) frame 
difference-based compression ([33] and [80] that 
store differences in consecutive frames for video 
compression), and 5) distributed data compression 
[81] using conditional entropy encoding with corre-
lated data between two nodes that perform spatial 
data compression through short-range communi-
cation between the sensor nodes. For optimum re-
source utilization, this short-range communication 
can be a low-power communication scheme, such 
as MedRadio or HBC (for body area networks within 
a few meters), which consumes hundreds of micro-
watts, or ANT/BTLE, which consumes a few milliwatts 
to ≈10 mW when on, as will be shown in the next sec-
tion. After spatial compression is done, we envision 
that the node with the highest amount of battery life 

 
Table 2. Outlier detection techniques for wireless sensor networks/IoT.

Technique Example Salient features Drawbacks

Statistics-based 1) Gaussian Parametric  
Estimation [53], 2) Non-Gaussian 
Parametric Estimation [54], 3) Kernel 
Density Estimation (non-parametric) 
[55], [56], and 4) histogram-based 
method (nonparametric) [57]

1) Spatiotemporal correlation for Gaussian 
nonanomalous data, fixed thresholds 
for anomaly detection, 2) anomalies 
are treated as SaS-distributed impulsive 
events, 3) no a priori PDF is assumed. 
Kernel density functions approximate 
the PDF, and 4) works on histograms and 
not on raw data (inherent compression—
reduced communication cost)

Simplistic and can suffer 
from low accuracy

Nearest-Neighbor-based Euclidean distance [58] and dynam-
ic time warping methods [59]

Simple implementations for both 
univariate and multivariate data

Resource-extensive for 
multivariate data

Clustering-based Creates clusters based on raw data 
and detects outliers that do not fall 
into any cluster [60]

Can be employed to take care of incre-
mental processing

Resource-extensive for 
multivariate data, suffer 
from the choice of an 
appropriate cluster width

Classification-based 1) SVM approach [61], [62],  
2) Bayesian Network approach [63], 
[64], 3) long short term memory 
(LSTM) [65]/hierarchical temporal 
memory (HTM) [66] approach

1) Maximally separated classes (one/two 
class approach to reduce complexity, 2) 
uses Bayesian Intuitions to predict anom-
alies, and 3) uses LSTM/HTM for time-
series data pattern of unknown length

Computationally 
intensive

Spectral-decomposition-
based

PCA-based approach  
[67], [68]

Added advantage of dimensionality 
reduction/data compression

Selecting suitable 
principal components is 
computation-heavy
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(or the node that is closest to the Rx) would take the 
responsibility of sending the compressed data to larg-
er distances, possibly through a high-power commu-
nication protocol such as LoRa WAN.

Intelligent communication
Continuous device scaling over the last few dec-

ades have resulted in cheap computation through 
Moore’s law, and the ability to support higher data 
bandwidths has created cheap wireless commu-
nication paradigms through Shannon’s law. How-
ever, the progress in battery technology has been 
relatively slower, making the available energy one 
of the most sought after resources in modern IoT sys-
tems, thereby motivating the research needs toward 
low-energy sensing, computation, and communica-
tion. As supported by the analysis presented in [86] 
and in the “Intelligent Computing Platforms” section, 
the energy cost per bit for communication is 103–104 

times higher than the energy cost of computation 
for raw data bits. In the vision of the truly intelligent 
IoT nodes presented in this article, most optimum 
energy efficiencies are expected from the commu-
nication subsystems based on the specific operating 
conditions/context (such as communication dis-
tance, channel conditions, latency, quality of ser-
vice requirements, data rate, battery conditions, and 
process variation) when turned on. Table 3 shows 
the state-of-the-art communication modalities avail-
able for IoT devices, which range from 4-pJ/b prox-
imity communication for ≈1-mm distance to 1-µJ/b 
long-range (LoRaWAN) communication to ≈1 km. 
We readily notice the possibility of optimizing the 
communication framework within a modality and 
among different modalities, hereinafter called Intra-
PHY and Inter-PHY communication as explained in  

[2]. The concept of Intra-PHY and Inter-PHY communi-
cation is presented in Figure 12a, where the switching 
of PHY is shown to occur based on communication 
distance (as an example of context), while the adap-
tation within a PHY is performed for optimum energy 
efficiency based on the operating conditions.

Intra-PHY channel-adaptive radios
For Intra-PHY adaptation, the energy-performance 

tunability knobs are dynamically optimized without 
changing the PHY. Traditional techniques of scal-
ing the energy consumption over varying channels 
involve adaptive modulation and coding [87], which 
increases the order of modulation (from QPSK to 
16-QAM to 64-QAM) as the channel quality becomes 
better and corresponding error vectors become 
more and more manageable. Although this increases 
the spectral efficiency of overall transmission, the 
power consumption of the radio frequency (RF) FE 
effectively remains constant. As shown in [88], 70%–
90% of the overall power in a low-power transceiver 
(Tx+Rx) system is consumed in the Rx FE/Tx power 
amplifier (PA) and LO generation subsystems, and, 
hence, significantly more energy efficiencies can be 
obtained by dynamically scaling the FE power and 
performance according to the application. Most of 
the research efforts in building channel-adaptive 
designs are concentrated toward the Tx PA and 
employ techniques such as digital predistortion, Tx 
power control, envelope tracking, polar implemen-
tation, and dynamic companding with PA bias con-
trol [89], [90]. Rx circuit-level adaptation techniques 
include automatic gain control and field-program-
mable low-noise amplifiers (LNA) with power-linear-
ity tradeoff [91]. Some of the recent advancements 
include an adaptive DR and BW Rx [92] that use a 

 
Table 3. Comparison of state-of-the-art wireless techniques for IoT nodes [82].

Proximity 
comm. [83]

HBC [84], 
[85]

NFC ZigBee BT/BTLE ANT WiFi LoRa WAN

Distance 1 mm 2–5 m 
through 
human 
body

10 cm 10–100 m 10–100 m 10–20 m 30–50 m ≈1 km

Data rate 
(bps)

8–32 G 10’s of M 20–400 k 20–200 k 0.8–2.1 M 60 k 300 M (802.11 g),  
7 G (802.11ac/11d)

200 k

Energy effi-
ciency (J/b)

4 p 6.3 p 1 n 5 n 15 n 10 n 5 n 1 µ

Security High High Medium Low Low Medium Medium/High Low/Medium
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programmable gain amplifier (PGA) and an adaptive 
intermediate-frequency filter. Discrete-time spectrum 
sensing was utilized in [93] to modify the modes of an 
Rx filter to achieve adaptive interference rejection. 
An interference-aware adaptive ADC was shown to 
adapt itself to a low-power mode in absence of any 
blocker using a simple built-in spectrum analyzer 
[94]. A channel adaptive ADC and a successive-
approximation-register-based time-to-digital con-
verter (TDC) was shown for a 28-Gbps wireline sys-
tem in [95]. These implementations have shown 
benefits in the standalone adaptive subsystems 
(such as the LNA, PGA, or TDC). However, it must 
be noted that, unlike a Tx where most of the power 
is consumed in the PA, the Rx power consumption is 
more distributed among different blocks; hence, the 
entire Rx should be considered as a unit for power- 
performance tradeoff analysis. It was shown in [96] 
and [97] that the best-case energy-savings in an Rx 
FE can be obtained by distributing the instantane-
ous performance-slack optimally across different 
building blocks in the Rx. A precharacterized con-
trol law (defined during design) was employed to 
achieve multidimensional adaptation of multiple Rx 
components with virtually zero-margin (ViZOR) Rx 
operation. Figure 12c shows the operation of ViZOR 
using design-time tuning knobs and sensors in the Rx 

FE to dynamically optimize power and performance. 
If the tuning knobs are designed in an orthogonal 
manner (i.e., operation of one knob will modify only 
one specification out of linearity, gain, and NF of the 
FE), the controller was shown to achieve ≈3× better 
energy savings for best-case channel conditions [98], 
[99] and can be optimized for either maximum data-
rate (data-priority) or minimum energy (energy-pri-
ority) for any channel [100], [101]. However, it was 
also reported that the adaptation control law, which 
was fixed during design time, cannot work optimally 
under manufacturing process variations. References 
[90] and [102] solve this problem by detecting the 
process corner of the device under consideration 
using built-in process sensors and updating the 
control law accordingly during postmanufacturing 
tuning. This technique (i.e., Pro-ViZOR) is shown in  
Figure 12d and requires high design-time effort 
to cover the entire process-corner space for the 
power-performance adaptation [103].

Intra-PHY adaptation: Self-learning radios
The high design-time complexity of Pro-ViZOR  

was significantly reduced by employing self-learning  
wireless systems (Figure 12e) that gradually learn 
the adaptation control law when the device is in idle 
condition [104]. Figure 13 shows how the learning 

Figure 12. Vision for adaptive communication in IoT [2]. (a) Context-aware communication PHY, 
which can adapt to its surroundings to perform more efficiently with experience by self-learning 
the optimum operating points. Adaptation can be intra-PHY or inter-PHY based on context, indi-
cating the need for incorporating incorporating multiple adaptive PHYs per device. (b) Today’s 
worst case design philosophy. Circuits/systems are generally designed to handle the worst case 
conditions plus a guard band. This leads to significant loss in energy efficiency. (c) Dynamically 
channel-adaptive radio (ViZOR). (d) Process-variation tolerant ViZOR (Pro-ViZOR). (e) Self-learning 
energy-scalable wireless systems.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:50:08 UTC from IEEE Xplore.  Restrictions apply. 



19March/April 2019

algorithm populates the power-performance channel 
space during an intermediate time instant and at 
the final time instant when learning is complete. 
Figure 14 presents the average power consumption 
of such a self-learning channel-adaptive wireless sys-
tem over multiple days to include various channel 
conditions. The initial overhead is due to the need 
for controlled on-line experiments during real-time 
operation that gathers useful data points for learn-
ing the control law. It is shown that this system 
becomes  increasingly energy-efficient with experi-
ence [105]–[107]. When the power consumption 
saturates with the learning, the overhead of con-
trolled experiments is removed (day 29 in Figure 14).

Communicating with ultralow-energy  
(<10 pJ/b) PHYs

Today’s wireless technology is limited by the high 
channel losses (≈ 60–80 dB in standard operating 
conditions) that increase the power consumption in 
the Tx to compensate for this channel loss. In addi-
tion, narrowband wireless techniques employed in 
standard implementations involve frequency upcon-
version (Tx) and downconversion (Rx), which 
increase the power overhead to enable smaller 
antennas and multiplexing.

Due to these reasons, traditional wireless tech-
niques such as near-field communication (NFC), 
Zigbee, BTLE, ANT, and Wi-Fi can only achieve a best-
case energy efficiency of ≈1 nJ/b, while low-power 
wireless body-area networks (WBANs) and MedRadio 
implementations usually operate at hundreds of 
pJ/b for short-distance (1–5 m) communication [2]. 
However, recent progress in wireline-like broadband 
techniques can enable sub-10-pJ/b communication 
over low-loss channels (mm-scale device proximity 
communication, or meter-scale data transfer through 
the human body), as shown with two examples in this 
section. Wireline-like techniques eliminate the need 
for antennas as well as modulation, thus lowering the 
power consumption dramatically. However, commu-
nicating with multiple devices would now require 
time division multiplexing instead of frequency divi-
sion multiplexing, thereby increasing the latency if 
proper scheduling techniques are not employed. 

1) mm-scale proximity communication:  Figure 15 
demonstrates the modality for mm-scale multi-Gbps 
proximity communication [83], [108] at ≈ 4 pJ/b. Prox-
imity communication is implemented by employing 
metal plates (couplers) in both communicating 

devices, which are brought in close proximity 
(≈1 mm) to establish connectivity through capaci-
tive coupling. Because of the antennaless capaci-
tive terminations in both the devices, the channel 
behaves like a simple capacitive divider with low 
loss and maximally flat frequency response, thus 
enabling broadband signaling. One key challenge in 
this mode of communication arises from the self-res-
onance frequency (SRF) of the inductive vias with 
the distributed parasitic capacitance of the coupler 
plates. The SRF creates a peak in the channel fre-
quency response, thus disturbing its otherwise flat 

Figure 13. Self-learning the adaptation control 
law: learning of channel space and power profile at 
intermediate and final time instances [2].

Figure 14. System behavior and power savings for 
self-learning radio.
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Figure 15. Emerging PHY example 1. (a) mm-scale proximity communication [83].  
(b)–(c) Specific challenges (SRF of the interface and crosstalk). (d)–(e) Their solutions 
[integrating dual data-rate (DDR) Rx that creates a notch at the SRF to mitigate ringing 
and alternating rectangular differential couplers to mitigate crosstalk]. (f) Measurement 
results showing BER of <10−12.

Figure 16. Emerging PHY example 2. (a) Broadband HBC is affected by interference from the envi-
ronment. (b) IR-HBC using time-domain signal-interference separation [84], enabled by 1) capacitive 
termination (offers larger frequency range for broadband application) and 2) integrating DDR Rx for 
interference rejection using signal-interference separation and duty-cycle adaptation. In comparison 
with state-of-the-art HBC transceivers, broadband IR-HBC achieved 18× better energy efficiency  
(6.3 pJ/b), which is ≈100× better than traditional WBAN.
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nature. An integrating receiver (Rx) with a tunable 
notch placed at the SRF can solve this problem as 
illustrated in [83]. The other key challenge in this 
technique is the crosstalk between parallel chan-
nels, which is solved using alternating rectangular 
differential couplers that employ inherent passive 
crosstalk cancelation. As shown in Figure  15e, the 
crosstalk from 1+ and 1− to 2− is equal and opposite, 
and hence, cancels each other, while the crosstalk 
from 1− to 3+ and 3− are equal and therefore can-
cel each other differentially. Using these two tech-
niques, Thakkar et al. [83] successfully demonstrate 
32-Gbps data transfer with bit error rate (BER) <10−12 
using four parallel channels up to 0.8-mm distance 
and 4-pJ/b energy efficiency (which is ≈100× lower 
than contemporary mm-wave gigabits-per-second 
implementations [109], [110]).

2) Interference-Robust Human Body Communica-
tion (IR HBC):  Many future healthcare [111], human–
computer interaction [112], [113], and neuroscience 
applications rely on the Internet of Body (IoB), to 
connect wearable and implantable devices on, in, 
and around the human body, which are typically in-
terconnected though WBAN, consuming upward of 1 
nJ/b. Using the human body itself as a low-loss broad-
band communication medium [114]–[116], energy 
efficiencies [84], [117] similar to the proximity com-
munication, or wireline input–output (IO) [118]–[120] 
achieve high physical security [85]. Capacitive ter-
mination along with voltage-mode signaling allows 
broadband communication in which low loss and ab-
sence of upconversion and downconversion give rise 
to the extreme energy efficiencies. The key challenge 
in broadband HBC comes from the antenna effect in 
the human body that picks up unwanted interferenc-
es that corrupt the signal. An interference detection 
and rejection loop using an adaptive notch [121], 
[122] at the integrating Rx has enabled the lowest en-
ergy (6.3 pJ/b for 30-Mbps data transfer through the 
body, which is ≈100× lower than traditional WBAN), 
as well as the most interference robust (can tolerate 
−30-dB signal-to-interference ratio) HBC transceiver 
built to date [84], as shown in Figure 16. 

Inter-PHY adaptation: Communication with 
context switching

Like humans, a truly intelligent RC-IoT node 
needs knowledge (context-awareness) and adapta-
tion according to the situation (reconfigurability). 
Inter-PHY context-aware adaptation is most effective 
when multiple PHYs with different orders of energy 

efficiencies, channel loss, data rates, and distance 
support are incorporated in the same transceiver. 
Figure 17 presents the vision for a context-aware 
adaptive PHY that involves the following: 

•	 assessment of the need for communication 
based on event/anomaly detection (in-sensor 
analytics), memory (storage) buffer information, 
and channel quality information,

•	 context discovery and assessment based on 
battery life of current and nearby devices (helps 
to  understand which device has the most 
resources for long-range high-power communica-
tion, if required),

•	 last transmit time and modality of current and 
nearby devices (helps to understand the spatial 
statistics of the data and the sensors), Rx distance 
and location (e.g., whether both the Tx and Rx 
devices are on the human body),

•	 the possiblity of spatial data compression based 
on the information from nearby devices (if suc-
cessful, this will require long-range data commu-
nication for only one node among a cluster of 
sensors), along with any other information from 
the cloud. 

Equipped with all the knowledge, the RC-IoT device 
can now adapt itself to the context and transmit 

Figure 17. Vision for context-aware adaptive PHY. The 
IoT node needs to store minimal information on near-
by devices (last transmit time, mode information, and 
battery life) along with its own remaining battery life. 
In case of an event/anomaly detection, if the sensor 
storage is full (even with data compression) or there 
is a transmit timeout, the node would then asses the 
context and turn the corresponding transmit subsys-
tem on. If a change in context requires change in Tx 
modality, it will be taken care of by the context dis-
covery/assessment block, which can employ a struc-
tured algorithm/learning framework.
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using the available modes (proximity communi-
cation for mm-scale, IR-HBC for body-connected 
devices, low-power wireless/MedRadio for short 
distances within 5 m, ANT/BTLE for distances up 
to tens of meters, and high-power LoRa WAN for 
distances >100 m).

Intelligent energy management
By exploiting aggressive technology scaling 

and low-power design techniques, IoT nodes are 
continuously trying to reduce the overall energy 
consumption. Context-aware and adaptive future 
IoT devices would require different power supplies 
for different modes of operation, thereby necessitat-
ing an adaptive energy management unit to handle 
different scenarios. For example, in-sensor analytics 
(which are performed in a digital on-chip/on-board 
processor) can utilize minimal supply voltages for 
low-power, near-threshold (≈0.35 V for 14-nm or lower 
nodes) operation, while the high-power RF Tx for long-
distance communication may need a higher supply 
voltage (≈1 V) for high-power delivery. Short-range 
communication, on the other hand, may require a dif-
ferent supply voltage that falls between the minimum 
and maximum values. Some of these modules may 
be connected to the same power delivery network 
(PDN) (e.g., the entire communication module with 
multiple modalities can be supported by only one 
on-chip voltage regulator), thereby offering a variable 
load to the power management unit (PMU). The PMU 
may even be supported by a dynamic source if oppor-
tunistic energy harvesting is used to supplement the 
onboard battery [123]. Hence, the PDN in the con-
text-aware, adaptive RC-IoT scenario should be able 
to support 1) a wide DR, 2) high-power conversion 
efficiency throughout the range, and 3) a platform 
and interfacing circuitry for optimum power transfer 
to the load with minimum losses. LDOs have been tra-
ditionally used in CMOS ASICs to provide ripple-free 

constant voltages, the analog and digital implementa-
tions of which are shown in Figure 18.

The power conversion efficiency (η) of an LDO 
is given by

	​ η  = ​ 
​ V​ OUT,LDO​​

 ______ 
​V​ IN,LDO​​

 ​   × ​ 
​I​ Load​​ ________ 

​I​ Load​​ + ​I​ Control​​
 ​​ ,� (6)

where VOUT,LDO and VIN,LDO are the output and input 
voltages from the LDO, ILoad is the load current drawn 
from the LDO, and IControl is the controller current con-
sumption. It has been shown in [124] that a digital 
LDO can offer fast switching at low controller currents, 
apart from being synthesizable and process/voltage 
scalable as compared to its analog counterpart.

Dynamically reconfigurable power 
conversion LDO

To meet the requirements of large DR and high effi-
ciency, which effectively remains constant over the DR 
of operation, a reconfigurable digital LDO with sam-
pling rate adaptation was demonstrated in [124] and 
[125], using an IBM 130-nm CMOS technology. The 
design comprises of a 128-bit barrel shifter, controlling 
128 identical P-MOSFETs that provide line and load 
regulation at the output side (Figure 19a). A clocked, 
sense-amplifier-based comparator compares the reg-
ulated voltage with a reference voltage and, depend-
ing on the result of the comparison, increases or 
decreases the number of P-MOSFETs supplying cur-
rent to the load. It has been explained in [125] that 
a linearized control loop model for the LDO has two 
open loop poles—one at DC (from the integrator) and 
the other at a frequency determined by the ratio of 
the load’s pole frequency to the sampling frequency 
of the controller. As the load current dynamically 
changes in different IoT scenarios, the pole from the 
load and, hence, the second pole for the LDO would 
also change in a baseline design without adaptation, 
leading to overdamped behavior in heavy-load condi-
tion, and oscillatory behavior in light-load condition, 
which reduces the current efficiency drastically. How-
ever, if the sampling frequency of the controller is also 
modified according to the load current (this informa-
tion is obtained from how many P-MOSFETs are on in 
the LDO), it has been shown that an effectively con-
stant current efficiency can be maintained. This tech-
nique for adaptation has two significant system-level  
advantages: 1) the closed-loop system poles are 
bounded within a certain range, leading to stable 
and consistent system behavior over a large DR, and 
2) as the sampling frequency is lowered for light-load  

Figure 18. (a) Analog and (b) digital LDO [123].
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condition, the digital controller’s power also scales, 
leading to an improved current efficiency (Figure 19c). 
The overall design achieves >80% peak-current 
efficiency over 0.45–1.14  V, with 0.1–4.60-mA load 
current range.

Switched mode control (SMC) for LDOs
To achieve 1) fast transient response across a wide 

current and voltage range, 2) rapid droop mitigation, 
and 3) dynamic switching by exploiting decoupling 
between small signal (SS) gain and large-signal (LS) 
transient behavior, Nasir et al. [126] demonstrated an 
SMC-based hybrid LDO (analog LDO with SS control 
and digital LDO with large signal control) as shown 
in Figure 20. SMC combines the advantages of both 
analog LDO (high gain, low droop, high-power sup-
ply rejection) with digital LDO (fast LS operation and 
adaptivity as shown in Figure 19c) and achieves >80% 
peak current efficiency over 0.5–1.1 V, with 1–12-mA 
load current and only 6-ns droop recovery time.

Energy management for intermittently  
powered devices

Since an IoT device can employ intermittent 
sensing, computation, and communication, which 
is supported from small-energy sources (or from 
harvested energy in extremely resource-constrained 
scenarios), energy management considerations for 
intermittent operation become extremely important, 
and lightweight software procedures for control flow, 
optimal checkpointing, concurrence, and data con-
sistency [127], [128] need to be developed. This along 
with improved techniques of high-dynamic-range, 
adaptive PDNs is believed to be one of the major 
research directions for context-aware RC-IoT devices.

Intelligent cross-layer  
adaptive systems

System-level IoT designs can incorporate more 
than one approach discussed previously to optimally 
enhance machine intelligence and achieve perfor-
mance improvement/energy reduction, as shown in 
[129] and [130].

Cao et al. [129] proposed a camera-based wireless 
sensor node with a self-optimizing end-to-end com-
putation and communication design, targeted for 
surveillance applications. The demonstrated system 
supports multiple feature-extraction and classifi-
cation algorithms, tunable processing depth (PD), 
and PA gain. Minimum-energy operating point is 

dynamically and intelligently chosen depending 
on information content, accuracy targets, and wire-
less channel conditions. The computing platform, 

Figure 19. (a) Digital LDO with autonomous  
adaptation of sampling CLK that offers a wide DR 
[124]. (b) Chip micrograph. (c) Current efficiencies 
with and without adaptation.

Figure 20. (a) Hybrid LDO with SMC for wide DR 
[126]. (b) Chip micrograph. (c) Current efficiencies 
with and without adaptation of sampling frequency 
(Fs). SMC(R) is an SMC mode with reset for faster 
droop recovery.
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the consecutive frame differences are computed 
as a preprocessing step. Low-power preprocessing 
not only locates and segments the potential human 
objects but also enables adaptive in situ processing 
depending on the information content defined as a 
number of active pixels of frame difference. The plat-
form demonstrates three different algorithms to pro-
vide accuracy/energy scalability and each algorithm 
is further divided into three PDs—i.e., compression, 
feature extraction, and classification—to support 
computation and communication tradeoff. On the 
transmission side, the platform applies adaptive 
radio whose PA gain is dynamically adjusted, guar-
anteeing minimum required BER with respect to 
time-varying wireless channel condition (pathloss 
in this case). It is intuitive to understand that as the 
PD increases, the energy cost to compute increases, 
but the data volume required to transmit decreases, 
thus reducing the energy cost to communicate. As 
the channel condition changes (from clean to noisy 
channel), the minimum energy point also changes. 
For a clean channel, a lower PD is preferred (as the 
energy to communicate is low), whereas with increas-
ing pathloss a higher PD is preferred. The end-to-end 
self-optimization, which dynamically adapts the PD 
depending on the channel condition to always track 
the point of minimum total energy, is measured and 
demonstrated in Figure 22.

Platform proposed in [130] is a collaborative 
intelligent heating, ventilation, and air-conditioning 
system (HVAC) occupancy detection solution via 
data fusion between optical (OP) and infrared (IR) 
camera-based sensor nodes together in a smart wire-
less sensor network. Figure 23 demonstrates that data 
fusion has enabled accurate human detection com-
pared with baseline designs, especially in severe light-
ing/heating conditions, and the consequent low miss 
rate (5×) in turn reduces sampling rate, resulting in 
expanded sensor lifetime (3×) while maintaining the 
required detection latency.

Collaborative intelligence is achieved at the sensor 
node as well as among the sensor nodes at the back-
end server, which is located at the HVAC and controls 
the HVAC. When detection accuracy is fixed after the 
employment of the sensor network, minimizing the 
latency of occupancy detection depends on reduc-
ing the sample interval (i.e., the number of OP and IR 
images captured per second). However, a high sam-
pling rate will lead to severe sensor energy expend-
iture and limited sensor lifetime. It is also noted that 

sensor module, and transmission blocks are ADI 
ADSP-BF707 image processor, OV7670 camera sen-
sor, and USRP B200 SDR software-defined radio, 
respectively, and achieve a 4.3× reduction in energy 
consumption compared to a baseline design.

The sensing+computation process is demon-
strated in Figure 21. After image data acquisition, 

Figure 21. Algorithm demonstration with a real 
video frame [129].

Figure 22. Measured total energy (computation+ 
communication) per frame for different PD with 
increasing pathloss [129]. Experimental results are 
demonstrated for the three algorithms described 
here and two BER targets. When pathloss is high, 
the general trend is that optimal mode moves to 
more FE-embedded processing.
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the occupancy of a particular region in a building 
is dependent on its neighboring regions. For exam-
ple, consider a typical floor-plan of a building with 
three rooms, A, B, and C. The occupancy of room A is 
dependent on room B if a door between A and B is 
available and people can walk from B to A, as shown 
in Figure 24a and vice versa. This motivates the pro-
posed dynamic HVAC control strategy, targeting mini-
mized latency of occupancy detection based on a col-
laborative scheme among neighboring HVAC sections.

Consider a network of sensors deployed as shown 
in Figure 24a. The sensor node at B estimates the 
presence of an occupant. If an occupant is detected, 
then it further tracks the occupant via difference of 
frames and estimation of the direction of motion. 
The direction of motion is sent to the backend, 
which resolves the potential adjoining HVAC areas 
that can be subsequently occupied. In this example, 
an occupant moving from B toward A will allow the 
backend to send an alert to the sensor node at A. 
Now, this sensor node increases its sampling rate to 
reduce the latency of detection. The effective sam-
pling interval, Teff, is reduced as shown in Figure 24b.

References [129] and [130] aim at adaptively 
minimizing energy expenditure of IoT devices in 
a time-varying environment (wireless condition, 
object moving direction, etc.) while maintaining 
decent performance (accuracy, BER, detection 
latency, etc.) through distributed control on the fly 
or centralized control at the backend.

Security considerations for  
RC-IoT devices

From an implementation point of view, the IoT 
architecture is usually divided into 3, 4, 5 or 7 layers 
as shown in [131]–[135]. References [132]–[134] 
demonstrated the three-layer architecture as shown 
in Figure 25. The details of the three layers and 
their security concerns are presented in Table 4. 
These security concerns involve data confidential-
ity, integrity, and availability (commonly known as 
the CIA triad [136]), which are related to privacy, 
correctness, and authentication, respectively. Con-
strained IoT devices (most notably, CO devices such 
as small biosensors) have limited resources and can, 
hence, support only a subset of the intended secu-
rity features. This makes these devices extremely 
prone to privacy attacks [136]–[138].

In addition to these three layers, today’s IoT 
devices employ a fourth layer called support layer, 

in between the network layer and application layer, 
which is dedicated toward security features and  
performs authentication using preshared secrets, 
keys, and passwords. However, this layer can also suf-
fer from DoS attacks and malicious insider attack, as 
illustrated in [137], [155], and [156]. Moreover, the big-
data problem in IoT (network exhaustion due to inun-
dation of data) has resulted in modem IoT architects 
to move to a five-layer architecture with added secu-
rity and data-processing capabilities [3], [157]–[163].

CISCO currently defines a seven-layer IoT structure 
as shown in [135]. In this discussion, we shall limit 
ourselves to only the perception layer, and hence, a 
detailed description of the advanced layer models 
(4, 5, and 7 layers) is out of the scope of this article.

Traditional techniques against  
perception layer attacks

A large number of security breaches in RC-IoT 
occur in the perception layer which is most vul-
nerable to privacy attacks due to its resource 
constraints. The most common security measures 
against attacks on the perception layer are listed in 

Figure 23. Demonstration of the algorithm 
presented in [130].

Figure 24. Illustrative representation of (a) simple 
sensor network with interdependence and  
(b) demonstration of event-driven sampling [130].
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Table 5. A complete description of each of these 
techniques is out of the scope of this article. Further 
details on each can be found in [137] and the cor-
responding references.

Hardware security
Encryption engines are at center stage for 

achieving IoT security. The computationally secure  
256-bit Advanced Encryption Standard (AES) is tra-
ditionally believed to provide data confidentiality 
through encryption as the mathematical complex-
ity of the recovery algorithm becomes 2256. AES-256 
with 14 rounds is used today in banking, military, and 
government applications, and hence, there has been 
significant research efforts to break (as well as to 
enhance) the standard. Related subkey-based recov-
ery attacks have shown to significantly decrease the 
complexity of key recovery for reduced-round AES 
(222 for five rounds [164], 239 for nine rounds, and 245 
for ten rounds [165]). However, recovery complexity 

for practical applications with 14 rounds is still signif-
icantly high with traditional mathematical attacks. 
However, nontraditional techniques such as electro-
magnetic side channel attacks (EM-SCA) or power 
SCA have proven to reduce the recovery complexity 
to a mere 213, breakable within 50 s as shown in [166]. 
These emerging SCA techniques exploit information 
leaks from the physical cryptohardware in the form of 
EM emanation (for EM-SCA) and supply-line fluctua-
tions (for power SCA), and pose a much bigger threat 
to the current standards than computational attacks, 
motivating the need for hardware techniques to sup-
press the side-channel leaks in the physical system.

1) Power SCA and its countermeasures:  Corre-
lation power analysis (CPA) [167] has shown to be 
an efficient technique for power SCA as it reduces 
the search space of AES-128/192/256 to just 28 = 256 
for each key byte (hence, the overall complexity 
becomes 213 for 256-bit, i.e., 25 byte keys). Traditional 
power SCA countermeasures try to reduce the SNR of 
the leaked information through power balancing or 
gate-level masking but incur significant area, power, 
and performance overhead [168]. Attenuated Signa-
ture Noise Injection (ASNI) was utilized in [168] and 
[169] (Figure 26), which obfuscates the AES power 
traces through parallel noise injection and performs 
signature attenuation through a signature-attenuating 
hardware implemented using an on-chip shunt LDO. 
This method attenuates the critical AES signature 
in the supply current by >200× with 60% additional 
overhead in area and 68% overhead in power. More 
recently, Kar et al. [170] and Singh et al. [171] demon-
strated the signature attenuation technique using 
an integrated voltage regulator (IVR) and loop ran-
domizing/random fast voltage dithering techniques 
with only ≈5% overhead in power and area.

2) EM SCA and its countermeasures:  Except for 
hardware masking [172], the amount of protective 
approaches against correlation EM analysis (CEMA 
[173])-based EM-SCA has remained relatively scarce. 
In [174], a ground-up approach was presented to find 
the specific source of EM emanation within the met-
al stack of an ASIC built using Intel’s 32-nm technolo-
gy, and was generalized using other popular technol-
ogies such as Taiwan Semiconductor Manufacturing 
Company (TSMC) 65-nm. It was shown that EM ema-
nations from metals lower than layer eight are barely 
distinguishable using a commercially available EM 
probe, and hence, it was proposed (STELLAR) that 
a cryptographic core, with power supply routed 

Figure 25. Basic three-layer architecture of IoT 
ecosystem. The perception layer devices are 
usually resource constrained and is more prone to 
attacks due to elementary security features [131].

Figure 26. Noise injection and ASNI as  
countermeasures for power SCA.
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Table 4. Details and security considerations of the three-layer IoT architecture [137].

Layer Purpose Security threats Remarks

Perception/sensor Collecting information from sensors/
devices

Eavesdropping [137], Node  
Capture [139], Add Malicious Node [137], 
Replay Attack [140], Timing Attack [141]

Most attacks are on 
data confidentiality and 
integrity [137], [138]

Network/transmission Connects devices to each  
other and to higher layer through 
wired/wireless media

Denial of Service (DoS) [137],  
Man-in-the-Middle Attack [142], Storage 
Attack [137], Exploit Attack [137]

Most attacks are on data 
integrity [137]

Application Has the responsibility to  
extend sensor-specific services to 
applications/clients

Cross-site Scripting [137], Malicious Code 
Attack [137]

Most attacks are on data 
availability [137]

 
Table 5. Security measures against perception layer attacks.

Security measure Details Advantages Drawbacks

HMAC [143], [144] Hash Functions along with Encryp-
tion Algorithms (SHA, MD5, CBC etc) 
are used

Employed to maintain data 
integrity

Key-hacking is possible through invasive/ 
semi-invasive/software/side-channel 
attacks

Public Key 
Infrastructure (PKI) 
protocols [145], [146]

Base station communicates with the 
devices to get the public key while 
the private keys are stored separately

More secure than passwords —Ma-
licious user needs both the secret 
private key and a passphrase to 
pose any threat

1) Key hacking: The private key needs to 
be protected and 2) not very scalable

Open Authentication 
(OAuth/OAuth 2.0)  
[147]–[149]

Client-server-based system where 
server has the list of authorized 
clients. Everyone can request for ac-
cess, but server grants access tokens 
only to authorized clients

Access is granted in a secure way 1) Vulnerable to cross-cite-recovery-
forgery (CSRF) and  
2) implementation becomes cumbersome 
as the network grows since the user needs 
to authenticate each device

Mutual authentication 
[150], [151]

Client-server-based system where 
Client creates a request and an 
HMAC-SHA signature, and sends 
both the request and signature 
to server. The server retrieves the 
HMAC-SHA signature using a secret 
access key and verifies the signature 
with client’s signature

Both client and server certificates 
are verified

Requires a PKI with high cost of initial 
deployment

Lightweight cryptogra-
phy [131], [152]

Cryptographic Keys are used to 
convert messages

Plain text to cipher text by using 
symmetric, asymmetric keys and 
hash functions

Hard to implement for Class-0 devices with 
stringent resource constraints

Embedded security 
framework [153], [154]

Provides secure secondary storage, 
runtime environment and secure 
memory management

Provides a complete security 
package

Extremely resource-intensive

entirely in lower level metals locally, and equipped 
with signature suppression techniques like ASNI, be-
fore reaching higher-level metal routing, would be 
resistant against both EM and Power SCA.

3) Machine learning SCA—X-DeepSCA and pos-
sible countermeasures:  Recently, ML SCA attacks 
have been shown as a big threat as it can uncover 
the secret key within a few traces using previously 
learned models. Das et al. [175] demonstrate cross- 
device deep-learning-based SCA (X-DeepSCA)  

using training data that contains augmented power 
traces from multiple devices with AES-128. With 
≈200k traces and proper choice of hyperparam-
eters, it was shown that X-DeepSCA attacks can 
recover keys with 99.9% accuracy from different 
target devices with ≈10× lower minimum number 
of traces as compared to traditional CPA. This in-
creases the threat surface of SCAs significantly and 
puts further emphasis on SCA countermeasures 
such as IVR, ASNI, and STELLAR.
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PUF-based techniques
Physical unclonable functions (PUFs) have 

emerged as a promising augmentation (sometimes 
even as an alternative to key/token-based cryp-
tography), which leverage manufacturing process 
variations to generate a unique and device-specific 
identity for a physical system [176][178]. PUF imple-
mentations are simpler in terms of hardware and 
do not need to store the secret key that is used to 
employ complex cryptographic algorithms.

1) Digital PUFs:  Traditional digital PUFs em-
ploy simple circuitry such as ring oscillators [179],  

Arbiters [180], SRAMs [181]–[183], and dynamic 
RAMs [184] for PUF implementation, which consume 
much less power and area than key-based cryptograph-
ic implementations wherein the secret key is stored 
in a battery-backed SRAM or in a nonvolatile mem-
ory/electrically erasable programmable read-only 
memories (EEPROMs), which are all expensive 
resources for a constrained devices such as C0 or C1.  
Moreover, any invasive tampering mechanism 
usually changes the PUF’s output, thereby letting the 
user know about the attack. These advantages, cou-
pled with low resource requirements, makes PUFs a 
suitable choice for IoT environments. As an exam-
ple, an Arbiter PUF is shown in Figure 27, wherein a 
128-bit challenge (input) produces a 1-bit response 
(output) according to the respective path delays in 
the data and clock paths due to the random man-
ufacturing variations [176], [180], and hence, can 
be utilized for device authentication. Even though it 
was shown later in [185] that the randomness of the 
output can be modeled with reasonably low com-
plexity, an improved design with xored outputs from 
multiple Arbiter PUFs demonstrated high tolerance 
against modeling attacks [185], [186].

2) RF-PUF:  Traditional PUF designs discussed 
above still require a minimal amount of additional 
hardware at the transmitter side of the RC-IoT de-
vice. Chatterjee et al. [187] proposed a new kind of 
PUF for RC-IoT scenario, which exploits the effects 
of inherent analog and RF process variations at the 
transmitter (Tx) side by detecting them with an in-situ 
ML hardware at the resource-rich receiver (Rx). This 
method embraces the already existing nonidealities 
at the Tx, which are usually discarded in a traditional 
communication scenario and, hence, do not require 
any additional hardware for PUF generation. The 
method is inspired by the inherent authentication in 
human voice communication as shown in Figure 28, 
with unique human voice being replaced by unique 
Tx signatures, and human brain replaced by a neu-
ral network at the Rx. The holistic system-level view 
for RF-PUF implementation is shown in Figure 29, 
while the number of unique transmitters that can be 
identified with varying channel conditions and Rx 
signatures is shown in Figure 30. It has been shown 
with the simulation results that up to 8000 RC-IoT de-
vices can be uniquely identified with 99% accuracy. 
Proof-of-concept hardware evaluations were also 
demonstrated. Since this method does not require any 
additional hardware at the Tx, the framework can be 

Figure 27. 128-bit Arbiter PUF [176]. Assuming 
same layout length, the circuit creates two delay 
paths for each input X, and produces the 1-bit out-
put Y based on which path is faster.

Figure 28. Principle of RF-PUF [187]. 
(a) Authentication in human voice communication: 
Bob (the receiver) can identify Alice (the transmit-
ter) based on the unique voice signatures, and not 
based on the contents of what Alice speaks.  
Mallory (the impersonator) can also be identified (as 
not Alice), since his unique voice signatures would 
be different from Alice. (b) Analogous system that 
utilizes an RF-PUF framework for secure radio  
communication.
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utilized as an extremely useful security feature for RC-
IoT devices for a small-to-medium-scale smart system.

Learning frameworks for  
RC-IoT devices

With the above background in energy-constrained 
sensing, computing, communication, energy manage-
ment, and security, let us look into the ML models that 
have been developed and can effectively combine 
different modalities based on context. Since this is a 
developing field, there is no single learning framework 
that overcomes all the challenges in IoT, and hence, it 
is important to characterize the most promising learn-
ing frameworks based on the applications [5]. The 
current literature on learning in an IoT framework can 
broadly be classified into three categories: ML, sequen-
tial learning (SL), and reinforcement learning (RL).

Machine learning (ML)
ML techniques usually build regression-based 

models on labeled or unlabeled data (for supervised 
and unsupervised learning, respectively). ML tech-
niques are computationally complex and require 
an extensive training data set for acceptable perfor-
mance, both of which require expensive resources 
[188]. Hence, instead of executing the ML algorithms 
in the RC-IoT device, many of the implementations 
resort to a centralized cloud-based processing unit 
for ML [3], [188], [189]. However, this means that the 
sensor data have to be communicated to the cloud 
for further processing and, hence, pose a burden of 
communication payload on the RC-IoT device. Com-
pressive sensing and PCA has been shown to be use-
ful [189] in reducing the payload.

Sequential learning (SL)
SL [190]–[192] uses intelligent distributed agents 

(RC-IoT devices) that sequentially learn about 
an underlying binary state of the system (such as 
a medical status, fire alarm, triggering event, or 
anomaly- and event-based transmission), and subse-
quently propagate it through the network, as shown 
in Figure 31. Depending on the number of previous 
agents from which information is gathered, SL is cat-
egorized into finite memory and infinite memory [5]. 
In infinite memory SL, agents collect information on 
the estimate from all other agents in the sequence 
and, hence, require more memory resources. Finite 
memory SL, on the other hand, collects information 
from a user-defined fixed number of previous agents 

and is more suited to RC-IoT devices. It was shown 
in [190] and [192] that it is possible to converge to 
an accurate underlying state using only two previ-
ous states (the tradeoff being higher convergence 
time and, hence, more latency, the allowable limit 
for which depends on the application). Also, unlike 
the traditional centralized ML architecture, SL can 
have a distributed implementation and does not 
require an extensive data set for learning. However, 
SL requires machine-to-machine (M2M) communi-
cation, which may increase energy consumption if 
it is not taken care of at the network implementa-
tion level. SL is particularly useful for event/anomaly 
detection applications, whereas ML is more suitable 
for data analytics applications with higher complex-
ity and higher resource requirement.

Figure 29. Visualization of RF-PUF in an asymmet-
ric IoT network with multiple RC-IoT devices as 
transmitters and one resource-rich receiver [187].

Figure 30. Probability of false detection 
as a function of the total number of trans-
mitters in the system, with and without 
receiver signature compensation [187].
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Reinforcement learning (RL)
RL implementations [188], [193]–[197] utilize 

the interaction between the agent and the environ-
ment in a method based on rewards and penalties. 
In RL, the agents can perform a predefined set of 
actions in an environment with a set of states and 
a state-transition function. The action of the agents 
changes the states, and based on the state transi-
tions and the final goal, the environment rewards 
(or penalizes) the agent. The agent tries to maximize 
its immediate as well as future rewards and learns 
to converge to a steady state as explained in [193]. 
The action-reward combination works as a closed 
loop feedback system with a high chance of conver-
gence, and can be implemented using computation-
ally simple algebraic Q-learning algorithm [188]. As 
shown in Figure 32a, the agent receives the reward 

based on the state transition due to the action taken 
at a given state. The total cumulative reward (called 
Q value) of performing an action at at a given state 
st is given by the linear combination of the old Q 
value, the immediate reward and the total estimate 
of the future rewards as indicated by the Q-learning-
equation in Figure 32a.

Amravati et al. [197] demonstrated a time- 
domain mixed-signal neuromorphic accelerator with 
embedded RL implemented using a three-layer neu-
ral network with 84 neurons. The test chip was built 
in 55-nm CMOS technology and was mounted on 
a mobile microrobot for autonomous exploration 
of the environment (Figure 32b). The peak power 
was only 690 µW at 1.2-V supply while operating at 
3.12 TOPS/W. The peak energy efficiency was 690 pJ/
Inference and 1.5 nJ/training (1.25 pJ/MAC), making 
it one of the highest performance and lowest power 
implementation till date. The low energy is attributed 
to: 1) time-domain mixed-signal MAC operations with 
time-domain inputs which do not need voltage to time 
or time to voltage conversions and consumes scaled 
energies based on the importance of the computa-
tion and 2) a relatively low 6-bit precision, which was 
shown to be enough for low-to-medium complexity 
applications [45] involving pattern/object recognition.

The convergence process for RL is slower than 
SL and the requirement to preemptively know the 
states and state-transition-matrix makes RL chal-
lenging for medium- and high-complexity applica-
tions. However, for low-complexity, high-latency-
tolerant tasks such as resource management or 
power management [195], [196], RL can be an 
extremely relevant choice. Parallel Q-learning (PQL) 
algorithms (PCSP-8 [198], PQL-C [199], CS-RL, and 
CS-RL-EXT [200]) have also been developed for dis-
tributed, resource-constrained applications and for 
speeding up the RL convergence. Figure 33 shows a 
comparison of speed-up using these techniques.

In essence, SL- and RL-based learning techniques 
have shown enough promise through lightweight 
algorithms that can be implemented on the small 
IoT nodes. However, a network-wide full realization 
of these techniques for context discovery and assess-
ment is still a wide open area of research. New devices 
and technologies such as mixed-signal neurons, 
memristors, spin-transfer-torque-based devices, opto-
electronic and ferroelectric devices with in-memory 
and near-memory computation to reduce memory 
fetch, computation, and communication power in a 
neural network are areas of active research and hold 

Figure 31. Sequential learning in IoT [5].

Figure 32. (a) Q-learning (RL framework) for RC-IoT 
devices. (b) Implementation showing an RL-ena-
bled microrobot [197] with time-domain inputs and 
processing through a three-layer neural network 
and SVM loss function.
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tremendous potential for future. Online/incremental 
learning is of paramount importance because of the 
variations in the manufacturing process and oper-
ating conditions. By fully utilizing the capabilities of 
devices, hardware, and algorithms together, the path 
toward more efficient context-aware systems needs to 
be paved.

The way ahead: Future of IoT systems
Where we stand: Systems with efficient  
components and promising applications

The preceding analysis puts us in perspective of 
the current state-of-the-art in adaptive, context-aware 
IoT hardware and machine intelligence. The number 
of applications is numerous, ranging from small-scale 
smart biosensing and smart cars to medium-scale 
smart homes and offices, and to large-scale smart 
cities. Significant research efforts have been put into 
optimizing the available resources for correspond-
ing applications as pointed out in previous sections.

Where the future lies: Secure, context-aware, 
intelligent, and adaptive devices and systems

However, bigger IoT networks still remain subop-
timal in terms of effective utilization of the distrib-
uted resources. The vision of secure, context-aware, 
intelligent, and adaptive devices and systems, as pre-
sented throughout this article, involves a holistic opti-
mization of all the resource-constrained leaf devices 
within a network, in each of the following subareas.

•	 Sensing: As the sensing leaf nodes in an IoT 
network have the most stringent resource con-
straints, the sensing process itself should be made 
extremely low power through sub-Nyquist-rate CS 
[22], [30], [33] for sparse signals (such as audio 
and image), or made adaptive/energy-resolution 
scalable through time-/frequency-based sens-
ing [40] for slowly varying signals with high DR 
(such as radiation and vibration). The adaptivity 
information/resolution requirement (context) 
should come from the cloud for latency-relaxed 
applications, and from in-senor/on-gateway 
learning hardware for latency-limited scenarios. 
Reconfigurability among Nyquist-rate sensing, 
CS and time-/frequency-based sensing can be an 
optional feature, depending on the applications 
and amount of resources available.

•	 Computation: The intelligent RC-IoT nodes 
should have the capability of locally extracting 
important information from the sensed data to 

reduce subsequent power consumption in com-
municating otherwise raw data bits to the cloud. 
Anomaly/Outlier/Event detection and data 
compression are the two most important forms 
of in-sensor/edge analytics that are required in 
today’s systems and is an extremely promising 
research direction for bringing down the power 
consumption due to nonoptimal data handling 
and communication.

•	 Communication: As shown in the analysis pre-
sented in the “Intelligent Computing Platforms” 
and the Intelligent Communication” sections, this 
is the subsystem toward which a lot of research 
focus should be directed for practical feasibil-
ity of the context-aware vision. The numerous 
modalities available (proximity communication 
[83], HBC [84], NFC, ZigBee, ANT, BTLE, Wi-Fi 
and LoRA, among others) makes this a multidi-
mensional and multilevel optimization problem 
with possibilities of intra-PHY and inter-PHY 
adaptability and tradeoffs. Techniques such as 
anomaly detection and channel quality estima-
tion would determine when to communicate, 
and how much data are to be sent (e.g., burst-
mode communication will bring in further energy 
efficiency and context awareness on top of data 
compression, through duty cycled intermittent 
communication, even with good channel qual-
ity [129]). Furthermore, short-range low-energy 
communication using HBC/ANT/BTLE should be 
explored to assess the possibility of spatial data 
compression for sensors within close proximity 
of each other. If the spatial data compression 

Figure 33. Convergence speed-up using parallel 
Q-learning algorithms (PQL with coallocation of 
storage and processing: PCSP-8 [198], PQL with  
local cache: PQL-C [199], constant share RL: CS-
RL, and extended CS-RL: CS-RL-EXT [200]).
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is possible, only one node in an RC-IoT cluster 
would take the responsibility to communicate 
the compressed data to the upper level gateway/
cloud (possibly using a higher power modal-
ity like LoRa for long-range communication). 
Again, processing all the above information 
would require sophisticated learning algorithms 
to be implemented in different hierarchical lev-
els of the IoT architecture which, by itself, is an 
involved optimization problem.

•	 Energy management: As shown in the “Intelligent 
Energy Management” section, high-dynamic-
range and high-power conversion LDOs with low 
voltage droop/droop recovery time are one of the 
major requirements in a dynamic IoT scenario. 
High DR adaptation techniques such as sampling 
frequency based reconfigurable LDOs [124] and 
SMC LDOs [126] have been explored. However, 
challenges due to checkpointing and data con-
sistency need to be looked into. Recent check-
pointing schemes such as the one shown in [128] 
have demonstrated improved latencies in a medi-
um-to-high-resource device—though similar and 
more lightweight techniques need to be devel-
oped for highly resource-constrained devices.

•	 Adaptive security: The RF-PUF [187] framework 
shown in the “Learning Frameworks for RC-IoT 
Devices” section, along with low-level metal rout-
ing for the encryption core [174] for EM-SCA 
resistance can be utilized as a baseline security 
feature at no additional power/area overhead in 
extremely resource-constrained C0 devices. Light-
weight implementation of ASNI/IVR [168], [170] 
with minimal overhead should be placed as well 
in C0 devices, while nodes with more relaxed con-
straints can benefit from implementations with 
better signature attenuation (consum-
ing higher power). These techniques 
should also be augmented with one or 
multiple traditional security features 
such as hash-based message authen-
tication (HMAC) and mutual authen-
tication/OAuth based on the context 
(application, importance of collected 
data) and resources available, and can 
be adaptive in nature.

Cognitive hierarchy theory (CHT)
To capture and exploit the multitude 

of reconfigurable modalities effectively 

in the IoT environment, it is necessary to model the 
heterogeneity, resource constraints, and distribution 
of the IoT devices within the architecture in a struc-
tured manner. CHT is an emerging tool to provide 
such a modeling framework using behavioral game 
theory, and is based on bounded rationalities [5], 
[201], [202]. The theory of bounded rationalities 
ensures that each node in the network tries to find its 
best strategy, bounded by information from the lower 
level nodes in the hierarchy, its own computational 
capacity, and time/resource available. CHT model 
(Figure  34) inherently takes care of the device het-
erogeneity in IoT as it considers the resources availa-
ble for each device separately. References [201] and 
[202] present further details of the CHT techniques, 
while [5] demonstrates an example of the CHT theory 
in determining the type of learning algorithm (ML, SL, 
and RL) to be implemented on a particular IoT device 
based on its resource constraints. It must be noted 
that though CHT would define a structure in the het-
erogeneous IoT hierarchy, such an algorithm cannot 
be implemented in C0 and possibly C1 devices. How-
ever, the output of the algorithm can be passed on 
to the RC-IoT devices from higher level nodes which 
have higher computational power.

IoT networks are different from traditional net-
works in view of their specific challenges in device 
heterogeneity, resource constraints, context-variability, 
and security, thereby necessitating adaptive solutions 
for resource-aware operation. In this article, we have 
presented a broad review of the different areas that 
need to be looked into for holistic, system-level 
resource optimization for RC-IoT devices in a network. 
Various techniques in sensing (compressed-domain 
sensing/energy-resolution scalable frequency-domain 

Figure 34. Distribution of IoT devices according to 
the levels of cognitive hierarchy theory [5].
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sensing), computation (in-sensor/edge analytics in the 
form of outlier detection and data compression), com-
munication (intra-PHY and inter-PHY adaptation with 
low and high-power modalities), power management 
and security were analyzed, and the vision for a secure, 
context-aware, adaptive, resource-constrained but 
intelligent IoT device was presented. However, numer-
ous challenges (in the form of system-level controller 
design for adaptive architectures, reliability, security, 
latency limitations, intermittent powering/checkpoint-
ing and real-time/online learning) still exist in realizing 
a full implementation of the concepts demonstrated, 
indicating future research directions toward building 
smarter and more adaptive systems. In that context, 
the goal in this article has been to identify the current 
trends, foundations and components of the envisioned 
RC-IoT devices to enable the design of more efficient 
connected intelligent systems in the future.� 
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