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Artificial swarm intelligence, inspired by biological studies of insects, ants and
other organisms, present an emerging computing paradigm, where seemingly
simple elements interact with each other to collectively solve challenging
problems. In particular, swarm robotics, where multiple robots co-ordinate in
real-time to solve diverse problems such as pattern-formation, cooperative
reinforcement learning (RL), path-planning etc. [1], find extensive uses in
exploration, reconnaissance and disaster relief. This is partly motivated by the
robustness of swarm dynamics to failures and malfunctions of individual robots.
Successful hardware demonstrations of neuro-inspired algorithms on edge-
devices [2-6] is now leading to the emergence of intelligence and control in
swarms as the next frontier. Although certain swarm algorithms rely on real-time
learning (e.g., cooperative RL) representing a model-free approach, many
powerful algorithms that have been developed over the past two decades (e.g.,
pattern formation) rely on a mathematical structure and represent a more
traditional model-based approach. The next generation of swarm hardware needs
to support both of these approaches. In this paper, we identify the commonalities
and shared compute primitives across a variety of model-based and model-free
swarm algorithms and present a unified, fully-programmable, energy-efficient and
scalable platform capable of real-time swarm intelligence.

While model-based applications (pattern formation and coordinated obstacle
avoidance) require calculation of vector fields, model-free applications (multi-
robot predator-prey, patrolling and exploration) rely on RL-based training of
neural-network (NN) models (Fig. 14.1.1). The fact that both of these approaches
require linear algebraic kernels, as well as non-linear processing units (e.g.,
trigonometric units in vector fields and non-linear activation in NNs), motivates
us to develop a common computing platform to support both. The principal
algorithmic approaches and computing primitives are summarized in Fig. 14.1.1.

Figure 14.1.2 illustrates the architecture of the test-chip fabricated in 65nm CMOS.
It features a 16KB data-cache, 27B instruction cache, a processing unit and
peripheral circuits for control, data-load and write-back. The test-chip interfaces
with a raspberry-Pi platform consisting of integrated sensors (inertial sensors
and ultrasonic distance sensors) and LoRa (Long Range) radios for decentralized,
peer-to-peer communication among mobile robotic vehicles in a swarm. The
processing unit consists of two principal modules (1) a non-linear function
evaluator (NFE) and (2) a linear processing unit (LPU). We realize a variety of
relevant non-linear functions of input (x) using a piecewise linear approximation,
where each piece is characterized by a slope (g,.) and an offset (y,.). The number
of linear segments of each function depends on the number of inflection points
and the (g V) for each segment is stored in the data cache as look-up table
(LUT). Data-volume is reduced by aliasing periodic functions to their fundamental
ranges and comparing x with the period boundaries, as illustrated in Fig. 14.1.2.
The test-chip provides support for 7 non-linear functions determined by the
control signal, PU[2:0]. Architecturally, the chip supports high-level functions,
which are scanned in as 8b instructions to the instruction cache. Each instruction
is decoded and the relevant control signals and data read from the data cache are
transmitted to the processing unit. Once an output is generated, it is written back
to the data cache, enabling a sequential execution of tasks. The large data cache
allows model-free algorithms and a 3-layered neural network for RL for up to 20
agents.

Swarm algorithms are characterized by dynamically varying environments and
need to support various swarm sizes. A detailed study of model-based and model-
free algorithms reveals that as the swarm sizes increase, vector dimensions, as
well as the range of operand values required for correct execution also increase.
This is shown in Fig. 14.1.3 for path-planning and predator-prey problems with 2
and 20 agents. The required bit-precision as a function of swarm size and
algorithm is summarized. This motivates the design of an energy-scalable LPU
capable of easy reconfiguration and high energy efficiency across the range. Time-
domain mixed-signal (TD-MS) MACs [2] have been shown to offer
voltage-scalability and energy-benefits compared to digital counterparts for lower

data-width. However, with increasing operand size, the energy/MAC increases
non-linearly and surpasses digital logic, as shown in the energy-map and
corresponding table. To address this issue, we propose a hybrid-digital-mixed-
signal (HDMS) circuit, where a 5b TD-MS multiplier (4 data bits and 1 sign bit
represented in the signed magnitude format [2]) is nested within a digital shift-
add loop, such that execution is purely TD-MS for bit-width<=5b and hybrid of
TD-MS and digital (5b TD-MS followed by a sequence of digital shift and adds)
for 6 < bit-width < 8. This creates an energy map with high efficiency across the
range and results in 81% (for 3b operations) to 31% (for 8b operations) average
energy/MAG reduction compared to digital implementations. The LPU consists of
a 3-stage pipeline and supports 6 linear operations of one or multiple operands
with varying latencies.

The TD-MS 5b multiplier kernel consists of a digital-to-pulse converter (DPC)
which converts operand (A) to a delay (A.T,) via two matched digital-to-time-
converters (DTC) followed by an XOR, as shown in Fig. 14.1.4. The DPC output
gates a digitally-controller-oscillator (DCO) with a control word (B), which
produces a frequency (B.F,). The DCO clocks an 8b counter to produce (A.B.T,.Fy).
We match F, and T, by using the same logic gates and the output captures A.B.
Even if there is a mismatch between Fy and T, the output gets scaled and the
algorithms are robust against such scaling. The DCO inverter can be further
calibrated via analog control signals (DCO_BL and DCO_BH). The TD-MS kernels
allow 3-to-5b reconfiguration without any overhead and easy interface to digital
memory. Further, the digital shift-and-add circuits allow seamless transition from
6-t0-8b. Measured responses of the DCO and DPC show acceptable linearity of
less than 1.2 Isb (worst-case) at V¢c=1.0V and V=0.6V.

Figure 14.1.5 illustrates the measured Fy,a, and logic-power dissipation showing
functionality down to 0.36V and a peak logic power of 3.2uW (1.9uW) for 8b (5b)
operation. Measured energy/op shows excellent energy-resolution scalability
reaching a peak of 0.22pJ/MAC (at 3b) and 1.76pJ/MAC (at 8b). We measure the
average arithmetic energy efficiency as a function of V; and record 9.1TOPS/W
(3b) to 1.1TOPS/W (8b). We plot the energy break-down of the computation unit
where the LPU (NFE) consumes 88% (12%) of the logic power. The power
distribution across the various blocks of the LPU are shown.

We benchmark the test-chip and note competitive figures-of-merit for an
emerging application. The test-chip is mounted on a robotic car (Fig. 14.1.6) and
interfaces with a Raspberry-Pi, motor-controllers, sensors and LoRA radios. We
implement 4 template swarm algorithms (model-based: path planning and pattern
formation, and model-free: predator prey and joint exploration). In Fig. 14.1.6 we
demonstrate (1) two robots (R1 and R2) capture two targets (T1 and T2)
collaboratively, (2) three robots starting from three random locations converge
to a triangular pattern, and (3) cooperative RL where the number of iterations
required to perform obstacle avoidance reduces with the number of training
examples. We further benchmark the energy/task and the number of actions taken
per second for the template problems, illustrating a wide diversity and complexity
of applications. The die-shot and the chip-characteristics are shown in Fig. 14.1.7.
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Chip Characteristics
Technology 65nm 1P9M CMOS
Die area 1mm*2mm
Testing interface QFN package
Pin Count 28

Figure 14.1.7: Die shot and chip characteristics.
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