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ABSTRACT In recent years, several designs that use in-memory processing to accelerate machine-
learning inference problems have been proposed. Such designs are also a perfect fit for discrete, dynamic,
and distributed systems that can solve large-dimensional optimization problems using iterative algorithms.
For in-memory computations, ferroelectric field-effect transistors (FerroFETs) owing to their compact area
and distinguishable multiple states offer promising possibilities. We present a distributed architecture that
uses FerroFET memory and implements in-memory processing to solve a template problem of least squares
minimization. Through this architecture, we demonstrate an improvement of 21× in energy efficiency
and 3× in compute time compared to a static random access memory (SRAM)-based processing-in-
memory (PIM) architecture.

INDEX TERMS Distributed computing, emerging, ferroelectric field-effect transistors (FerroFETs), hard-
ware, in-memory processing, least square, optimization, post-CMOS.

I. INTRODUCTION

MODERN computing systems based on the Von-
Neumann architecture rely on a clear distinction

between logic and memory and process information by exe-
cuting a sequence of precise atomic instructions with periodic
uploads to the memory. Such systems are the foundation of
the digital revolution that began with the demonstration of the
self-aligned planar-gate silicon MOSFET in the 1960s and
was accelerated by rapid advances in transistor technology.
However, in the last decade, the volume of data collected
by distributed sensors and networks has grown exponentially.
Ingesting, processing, and extracting actionable intelligence
out of this abundant data require a large amount of data
traffic between logic and memory blocks, leading to the
problem of memory bottleneck. This requires novel ways of
architecting the compute platform. For example, by embed-
ding processing elements in the memory subarray itself in

so-called processing-in-memory (PIM) architectures [1]–[5],
the traditional Von-Neumann bottleneck can be addressed
and significant acceleration and improved power efficiency
can be achieved. In order to solve the memory bottleneck
problem, current research focuses on architectures and mem-
ory arrays that can accelerate memory-based processing for
machine learning applications. Designs explore the use of
static random access memory (SRAM) arrays [6], cross-
bar arrays with ReRAMs [7]–[9], memristors [10]–[12], and
spintronic MRAMs [13].

Apart from inference, one ubiquitous algorithm in signal
processing and autonomous systems is optimization—in
particular, convex optimization. Least squares minimiza-
tion is such a template problem and is the focus of this
paper. We demonstrate that distributed convex optimiza-
tion via least squares method can be efficiently imple-
mented in an iterative dynamical system using a systolic
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FIGURE 1. (a) 2-D continuous function f(u, v) with nonuniform
samples. (b) Spatial location of the nonuniform samples.

PIM architecture, with breakthrough energy efficiency and
performance. In particular, the iterative and parallel nature of
memory-readmakes the systolic PIM a good candidate for the
proposed algorithm. This is further made possible by a paral-
lel development in device technologies, namely, the advent of
multiple embedded nonvolatile memories (eNVM). Among
all competing eNVM technologies, ferroelectric field-effect
transistors (FerroFETs) have emerged as promising candi-
dates due to their compact size, multi-level storage, nanosec-
ond read–write, and high energy efficiency. We demonstrate
that a systolic PIM architecture, using FerroFET pseudo-
crosspoint array can solve least squares minimization with
21× improvement in energy efficiency compared with an
SRAM PIM architecture.

II. CONVEX LEAST SQUARE MINIMIZATION
Before discussing the systolic PIM architecture, we present
a brief overview of distributed least squares minimization as
a template problem, with widespread applications in discrete
signal processing. In particular, it is a common tool for signal
reconstruction where the process of sampling is nonuniform
[14], [15] such as in computerized tomography (CT), mag-
netic resonance imaging (MRI) [16], radar signal processing,
light detection and ranging (LIDAR) systems, and so on. Con-
sider (1) u and v are the horizontal and the vertical arguments
of a continuous signal; (2) x and y are the discrete coordinate
indexes; and (3) ωx and ωy are horizontal and vertical spatial
frequencies. Let f (u, v) be a band-limited signal in R2. The
signal is nonuniformly sampled and are stored in vector b,
which are referred to as f (x, y). The objective is to use the
nonuniform samples to obtain complete reconstruction of
f (u, v) in Nx · Ny dimensional subspace. Fig. 1 shows an
example of f (u, v) and the results of nonuniform sampling.
In this algorithm, we assume that f (u, v) lies in an Nx · Ny
dimensional subspace. To reconstruct the signal accurately
we have used 2-D lapped orthogonal transform (LOT) cosine-
IV harmonics as the basis functions. A smoothing function
g(u, v) is applied to all the basis functions to avoid distortions.
Equation (1) shows a general LOT cosine-IV basis function.
Here, f (u, v) is split intoKx byKy frames, [kx , ky] represents a
specific frame, ωx and ωy indicate the harmonic in horizontal
and vertical directions

ψkx ,ωx ,ky,ωy (u, v)

=
√
2 · g(u− kx , v− ky)

· cos
((
ωx+

1
2

)
π (u−kx)

)
cos

((
ωy+

1
2

)
π (v−ky)

)
. (1)

Since f (u, v) lies in a Nx · Ny dimensional subspace, it can
be expressed as

f (u, v)=
Nx∑
ωx=1

Ny∑
ωy=1

Kx∑
kx=1

Ky∑
ky=1

α(kx , ωx , ky, ωy)ψkx ,ωx ,ky,ωy (u, v).

(2)

The key point to note here would be that LOT cosine-IV
has compact support and the different frames are loosely
coupled to each other. In fact, for samples in each frame,
the nontrivial dependence would extend only to the adjacent
frames apart from itself. According to (2), we can write an
equation for each sample and collect them into matrix–vector
product form and the coefficients can be found by solving the
inverse-linear problem of

Az = b. (3)

Here b is the sample vector, z is the coefficient vector
obtained by stacking the coefficients α(kx , ωx , ky, ωy), and A
is referred to as the Grammian (Gram) matrix of the basis.

When the size ofAmatrix is large (as in most applications),
a direct solution is not possible. Therefore, alternatively we
follow an iterative approach, the Jacobi method. A general
update of z in jth component at the kth iteration is given as
(4), where B = ATA and c = AT b

zkj = B−1jj

cj −∑
i 6=j

Bjizk−1i

 . (4)

Some observations are worth emphasizing: 1) to update zkj ,
only values from previous iterations are needed and
2) columns of A are coupled only with neighboring frames,
which leads to simpler computation of Bji. Such a system
maps naturally to a systolic PIM architecture with: 1) near
neighbor connections and 2) embedded linear algebraic oper-
ators on the periphery of the subarray—as will be described
in Sections III and IV.

III. OVERVIEW OF FerroFETs-BASED PIM: MODELING
AND EXPERIMENTAL VERIFICATION
In this paper, we explore FerroFETs as the technology of
choice for implementing resistive cross-bar architectures
that can accelerate linear algebraic operations. In particular,
HfO2-based FerroFETs have recently received great interest
for its application in nonvolatile memory (NVM) [17]. It is
CMOS-compatible and retains ferroelectricity for thin films
with thickness around 10 nm. By tuning the portion of the
switched ferroelectric domain, a FerroFET can exhibit multi-
ple intermediate states, which has been used in neuromorphic
computing [18], [19].

The operation of FerroFET as a multi-valued eNVM stor-
age is different from a traditional binary memory [17] in that
a series of weak pulses are applied to set the device in the
desired state [18], [19]. Various pulse schemes are proposed
to tune the state, including identical pulse schemes [21],
pulsewidth modulation schemes [22], and pulse-amplitude
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FIGURE 2. (a)–(d) Different FerroFET states, corresponding to
different portions of ferroelectric domain switching. Yellow
arrow: polarization direction. Blue and red circles: electrons
and holes, respectively. (e) Applied pulse amplitude modulation
scheme. The states after each pulse are also illustrated. The
initial state is assumed to be all polarizations are pointing
toward the gate. (f) IDS–VGS characteristics after each pulse.
(g) Measured drain to source conductance as a function of
applied pulse number. Here the ideal case is presented, which
shows linear and symmetrical potentiation and depression [20].

modulation schemes [19], [23]. For illustration, Fig. 2
illustrates the operation with a pulse-amplitude modulation
scheme, which is used in this paper. Fig. 2(e) shows the
applied pulse waveform. After each pulse, the percentage
of switched ferroelectric domains is modified. The device
states are shown in Fig. 2(a)–(d). The device IDS–VGS values
corresponding to different states are shown in Fig. 2(f), which
shows the intermediate states. The different states could
be sensed by applying a read pulse, VR, the corresponding
drain-to-source conductance, GDS, can be sensed. Fig. 2(g)
shows the ideal GDS as a function of applied pulse numbers.
GDS increases/decreases linearly with pulse number during
potentiation/depression, respectively. A symmetrical poten-
tiation/depression is necessary for high accuracy computa-
tion. The experimental procedure is outside the scope of this
paper and is described in [24]. The FerroFET model includes
the atomistic simulation of domain dynamics with a drift-
diffusion-based FET model. The simulation results closely
match the experimental data and are shown in Fig. 3, where
the different conductance levels are shown as a function of
the number of programming pulses.

IV. FerroFet PIM ARCHITECTURE AND END-TO-END
TOOL CHAIN DEVELOPMENT
In this paper, we explore the FerroFET memory-based pro-
cessing in memory (PIM) architecture in a hierarchical man-
ner. A short description of each layer of the design abstraction
is provided here. Fig. 4 provides the flowchart of the entire
design cycle from devices to the PIM architecture. The salient
features are as follows.

FIGURE 3. (a) Simulated FerroFET channel conductance and
(b) measured FerroFET channel conductance (GDS) as a
function of pulse number.

FIGURE 4. Flowchart of design hierarchy from device to system.

1) There are 64 cores, eight rows, with each row contain-
ing eight cores. With respect to Section II, this implies
Nx = Ny = 8.

2) Each core is capable of performing Jacobi iterations
with subspace dimensions Kx and Ky (horizontal and
vertical dimensions) equal to 8. The subspace dimen-
sions determine the core complexity and accuracy of
signal reconstruction. From our analysis, we identified
that 8 × 8 subspace dimensions are sufficient for
signal-processing applications in hand.

3) Analog-to-digital converters (ADCs) are critical in
terms of determining the latency and power consump-
tion. In order to explore the design space properly,
we have used ADCs with different resolutions and
design constraints.

4) For the current design, the B-coefficients (B−1jj Bji) and
z-coefficients (zkj ) are represented in 12-bit fixed-point
representations where the MSB 6 bits represent the
integer part and last 6 bits represent the fractional part.

5) Tomodel the system,we have used Spice for simulating
bit cells, Verilog and VerilogA models for array-level
circuit architecture simulations and gem5 for architec-
tural simulations.
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FIGURE 5. FerroFET cell schematic. (a) Conceptual and
(b) transistor-level implementation [20].

A. FerroFET CELL STRUCTURE
Fig. 5 shows the schematic for a differential FerroFET mem-
ory cell. The cell, apart from storage, provides the facility to
compute 12-bit by 3-bit in-memory multiplications. Unlike
previous work [25]–[27], the proposed bit-cell allows both
positive and negative values for stored values as well as
the inputs. During a read operation, the word line (WL) is
fully turned on, appropriate VGS values are provided through
GL1 and GL2. The entire row is read simultaneously through
the current that is accumulated on source line (SL). The accu-
mulated current corresponding to 1G and 1V is given by

I1 = −1V .(G−1G), I2 = 1V .(G+1G) (5)

I = 1V .(−G+1G+ G+1G) = 1V .(21G). (6)

The weights of B-coefficients are encoded as multiples
of 21G, and the inputs or z-coefficients are coded as mul-
tiples of 1V . Here, both the 1G (B-coefficients) and 1V
(z-coefficients) can be positive or negative; or in other words,
no additional peripheral structure is required that is deter-
mined by the sign of the number being multiplied. The
FerroFET-based product evaluation has been done by imple-
menting the full design through spice simulation.

This cell structure allows in situ analog computation of
multiply and accumulate (with both positive and negative
operands) in the memory array itself.

B. CORE ARCHITECTURE
Fig. 6 shows the block diagram for the entire core and pro-
vides the detailed structure of the FerroFET memory array.
Cores can be divided into threemajor blocks: 1) the FerroFET
memory array that computes vector dot product (sum of prod-
ucts); 2) peripheral blocks; and 3) the communication block.
The memory array and the peripheral blocks together form
the compute unit. Each core has a maximum of eight compute
units corresponding to each neighbor. The details of the archi-
tecture and the subblocks are shown as a part of the supple-
mentary material. Here, we discuss the salient features only.

1) FerroFET MEMORY ARRAY STRUCTURE
The hierarchy of the FerroFETmemory array has been shown
in detail in Fig. 6. In each iteration, the memory array
performs matrix–vector product of B and z using a pseudo-
crossbar architecture.

TABLE 1. Specifications of baseline Von-Neumann architecture
in 28-nm CMOS process.

2) PERIPHERAL BLOCKS
The current summing FerroFET subarrays have per-column
ADCs to digitize the summation of the inner products. The
peripheral blocks include, shift plus add (S + A) arrays,
adders to collect the output of each compute unit, followed by
a subtraction block. Once these blocks finish their operation
the z-coefficients are computed and sent to the communica-
tion blocks. Each core receives inputs from the neighboring
cores. Digital to analog converters (DACs) produce voltage
signals corresponding to a digital value of z-coefficients and
these voltages are asserted on bit-lines (BL1, BL2) of the
memory array.

3) COMMUNICATION UNIT
Communication between cores is done through an asyn-
chronous mechanism. In this design, a four-phase handshake
protocol has been used because of reduced logical complexity
and competitive power and area efficiency when compared
with respect to a two-phase protocol. The details of the pro-
tocol have been discussed in the Supplementary material.

C. SYSTEM ARCHITECTURE
The proposed architecture comprises of eight rows with
eight cores in each. The entire design is synthesized in the
28-nm CMOS process. To simulate and obtain latency and
power estimations for the baseline Von-Neumann architec-
ture, we used the gem5 simulator [28] and McPAT [29].
Table 1 shows the system specifications for the gem5 sim-
ulator. For each iteration of the baseline Von-Neumann archi-
tecture, we collect a set of workload statistics. The system
configuration and the data for a single iteration are then run
through McPAT to obtain power estimations.

Simultaneously, we construct an SRAM PIM to com-
pare its performance with the proposed FerroFET-based PIM
architecture. In this design, we use a single read and write
ports and peripheral adders and multipliers to design a com-
pute unit. The structure of cores in the SRAMPIM is identical
to that of the FerroFET PIM. The SRAM PIM prototype also
consists of 64 cores.

V. DESIGN SPACE EXPLORATION
Fig. 7(a) illustrates how the average normalized error changes
with respect to the number of iterations for a varying number
of bits per FerroFET cell. The average normalized error
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FIGURE 6. Schematic of a typical core.

FIGURE 7. (a) Average normalized error in signal reconstruction
via distributed least-squares method as a function of the
number of bits/cell of FerroFET. The ADC bit resolution is fixed
to 16. (b) Average normalized error of Z in nonuniform sampling
algorithm with respect to different ADC bit resolution.

is defined as the L2 norm of the difference of Z between
the proposed architecture and a corresponding floating-point
architecture. In our design, we use 2/3/4/7 bits/cell to store
12 bits (excluding sign bit) of the fixed point (6 bits for
integer and 6 bits for the decimal). For example, the range
corresponding to 2 bits with the sign bit, that is, [−4, 3] is
represented by 3 bits/cell (due to the cell architecture). In our
design the default ADC resolution is 16 bits; and we also
study the effect of 16-bit data converters on the design.We use
the linear part of the FerroFET’s conductance, as discussed
above.

We observe that the average normalized error increases as
the number of bits/cell increases as shown in Fig. 7(a). This is
attributed to the fact that the use of a larger number of bits/cell
requires higher ADC and DAC bit resolution to maintain
precision. average normalized error from 7 bits/cell FerroFET
array is much larger than 2, 3, 4 bit/cell FerroFET array
mainly due to the loss of precision during data conversion.
A higher resolution from the data converters beyond 16 bits
requires noise-shaping and advanced architectures that are
not amenable for low-power designs.

In order to quantify the effect of the finite resolution of
the ADC/DAC on the fidelity of the final results, we plot

the average normalized error of Z in Fig. 7(b). Three cases
corresponding to the ADC/DAC resolution of 12, 14, and
16 bits are studied. Here the number of bits per FerroFET cell
is considered to be 3. We observe that an ADC/DAC of 14-bit
resolution results in convergence, whereas the quantization
offered resulting for a 12-bit ADC/DAC is unacceptable. This
leads to the design point where 14-bit ADC/DACs are used
in the peripherals.

So far, we have studied the effect of the peripheral circuits
and storage architecture on the convergence of the optimiza-
tion algorithm. FerroFETs, in spite of their multi-state storage
capability, suffer from inherent nonlinearities where the con-
ductance does not change linearly with the number of pulses.
We analyze the effect of this nonlinearity in conductance on
the average normalized error of Z in Fig. 9. The nonlinearity
in conductance of FerroFET is modeled as a normalized
sigmoid function

G(x) =
βeαx

1+ eαx
+ Gmin, β = Gmax − Gmin (7)

where Gmax and Gmin are the maximum and minimum con-
ductance values, α is an empirically derived parameter. This
is in contrast to the convex/concave functions that have been
used in [30], [25], and [31] to model nonlinearity. We note
that in the case of FerroFETs, the sigmoidal function is 1) a
better fit and 2) physically meaningful. The sigmoidal con-
ductance response manifests from the approximately Gaus-
sian distribution of coercive fields among individual domains
within the ferroelectric. Therefore, an amplitude-modulated
pulse scheme, which in essence integrates across the domain
distribution is expected to produce sigmoidal characteristics.

Fig. 8(a) presents the experimental data of device-to-device
Vth variation among 40 FerroFETs and the maximum vari-
ation in Vth is 30%. More detailed experimental data are
shown in [33]. Like other algorithms, we note that increasing
variations will increase the error in computation. Fig. 8(b)
shows the averaged normalized error of the algorithm with
respect to % of random variation on Vth after 20 iterations of
the algorithm. As expected, the error increases as the number
of bits of storage per cell increases.
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FIGURE 8. (a) Experimental data of device-to-device Vth variation
over 40 FerroFET devices. Vth high/low means the variation on
the maximum/minimum Vth. (b) Averaged normalized error of
the algorithm with respect to % random variation on Vth of
FerroFET.

FIGURE 9. (a) Nonlinear conductance of 4 bit/cell FerroFET.
(b) Average normalized error of as a function of the nonlinear
conductance of FerroFETs (4 bits/cell FerroFET and 16-bit
ADCs are considered).

Fig. 9(a) shows the nonlinear conductance of FerroFET as
a function of the number of write pulses and (b) shows how
nonlinearity in conductance affects the average normalized
error. In this design, the number of bits per FerroFET cell
is assumed to be 3. It is shown that if α is greater than
0.1, the average normalized error increases as the number
of iterations progresses. This illustrates that the use of Fer-
roFETs in optimizations for PIM architectures require linear
changes in conductance during potentiation and depression.
In [30], the authors have shown that when resistive processing
units (RPUs) are used in crosspoint architectures for solving
inference in deep neural network architectures, the resistive
units need high degrees of linearity. We arrive at a similar
conclusion when such resistive elements are used in solving
optimization problems. This motivates further research in
the device community to address the issue of nonlinearity
when PIM architectures are used for solving linear-algebraic
problems.

We study the effect of the design space on critical system
parameters such as compute time, energy, power, and area.
The number of bits that can be stored in a FerroFET decides
the FerroFET array size. Our baseline design uses a cell
with 4 bits/cell. We also consider the case of 5 bits/cell
where we need 64 × 256 memory cells (eight subarrays of
64 × 32 dimension) to store all the B-coefficients. As we
decrease the number of bits/cell, the total number of memory
cells required increases. For example, a design with 3 bits/cell

FIGURE 10. Compute time and energy behavior of the compute
unit versus DAC resolution for the parallel-computation
approach and storage per FerroFET memory cell is (a) 2 bit/cell,
(b) 3 bits/cell, (c) 4 bits/cell, and (d) 5 bits/cell.

requires a total memory size of 64× 384 cells (12 subarrays
of 64× 32 cells per subarray), and so on.

Similarly, the DAC resolution also affects the compute unit
area and other critical metrics. In this architecture, the multi-
stage DAC resolution can be configured to 2, 3, 6, and 12 bits.
The main role of the DAC is to provide analog values of
the z-coefficients, which are represented in a 12-bit fixed-
point format. As we reduce the DAC resolution, there are two
options that can be pursued in the design: 1) duplicate the
subarrays to compute in parallel and maintain the compute
time at the expense of area overhead and 2) perform the
computations sequentially. The sequential computation can
be explained by the following simple example. For a 6-bit
DAC, we first evaluate the sum with six LSB bits of all the
z-coefficients, and in the next cycle, we evaluate the sumwith
the sixMSB bits for all z-coefficients and eventually add them
with appropriate scales using S + A blocks. We define the
first approach as parallel computation which results in higher
throughput but lower area efficiency and the second approach
as sequential computation, which consumes the lower area
at the cost of lower throughput. Another important fact to
note is that decreasing the number of bits/cell or the DAC
resolution reduces the dynamic range of the read current out
of SL lines resulting in simpler peripheral design. In our case
studies, we have optimized the read peripheral circuits and
ADCs based on the DAC configuration [32].

Figs. 10 and 11 illustrate the compute time and
energy as the DAC resolution and number of bits/cell
are varied for the parallel-computation and sequential-
computation approaches, respectively. It can be clearly
seen from the two figures that in case of a sequential
approach, the computation time is 2–3× higher than in
the parallel-computation approach. For parallel computation
[Fig. 10(a)–(d)], we observe a trend that the compute time
goes up as the DAC resolution increases. This is because the
ADC starts to dominate the system latency. As we increase
the DAC resolution, to maintain the same quantization error
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FIGURE 11. Compute time and energy behavior of the compute
unit versus DAC resolution for the sequential-computation
approach and storage per FerroFET memory cell is (a) 2 bit/cell,
(b) 3 bits/cell, (c) 4 bits/cell, and (d) 5 bits/cell.

for the read current a higher resolution ADC is required
and ADC latency increases super-linearly as the resolution
increases. In Fig. 10(a) and (b), a monotonic decrease in
energy is noted as the DAC resolution increases. This is
because for both cases, the parallel memory array and asso-
ciated peripheral hardware overhead is the dominant factor,
which decreases as the DAC resolution increases and eventu-
ally causes a reduction in the overall energy consumed. How-
ever, for Fig. 10(c) and (d) that have higher bits/cell (4 and
5 bits respectively) the ADC overhead starts to be significant.
As mentioned before, as the DAC resolution for these two
cases increases, we have to switch to a higher resolution ADC
that adds to the energy consumed and off-sets the improve-
ment due to the reduction of the parallel subarrays and adders.

Fig. 11 exhibits an increasing trend of compute time as
the DAC resolution and bits/cell decrease. With less bits/cell
and DAC resolution, it results in multiple iterations of com-
pute cycle since the number of subarrays is fixed. Due to
the energy tradeoff between peripheral units and the ADC
(discussed above), the trend for energy dissipation is similar
to Fig. 10. Also, it can be noted that the sequential approach
consumes higher energy than the parallel approach due to
the multiple iterations that are required. The comparison with
an SRAM PIM structure has been shown using a dotted line
in each of the histograms. The proposed design outperforms
SRAM PIM structure in terms of compute time and energy
for the majority of design cases, as has been shown.

Figs. 12 and 13 present the latency and energy breakdown
of each block in the computation and communication units.
In Fig. 7, we present the analysis of the averaged normalized
error of the nonuniform sampling algorithm with respect to
the ADC bit resolution and the number of bits that a single
FerroFET cell can store. Based on this analysis, the nor-
malized error is minimized when the ADC bit resolution is
≥14 bits and number of bits per FerroFET cell is ≥3. With
the same system configuration as shown in Fig. 6, a 12-bit
DAC, a 14-bit ADC and 3 bits/cell, we calculated the latency

FIGURE 12. (a) Latency breakdown of the compute unit and
communication channel (comm.) of FerroFET-based PIM.
(b) Latency breakdown of the compute unit and communication
channel (comm.) of SRAM + ALU PIM.

FIGURE 13. (a) Energy breakdown of the compute unit and
communication channel (comm.) of FerroFET-based PIM.
(b) Energy breakdown of the compute unit and communication
channel (comm.) of SRAM + ALU PIM.

and energy breakdown of the FerroFET-based compute unit
and communication as shown in Figs. 12(a) and 13(a).
Figs. 12(b) and 13(b) show the latency and energy breakdown
of SRAM+ arithmetic logic unit (ALU) PIM, where SRAM
is used as a storage and all computation is handled inmultipli-
ers and adders. Instead of DAC andADC, SRAM+ALUPIM
core has multipliers and adders and the memory size is 6 KB.
‘‘SRAM’’ in Figs. 12 and 13 note the SRAM with its periph-
eral. From Fig. 12(a), the block that takes the most latency is
14-bit ADC, which has 92% of the total latency [32]. In case
of SRAM+ALUPIM, the computation inALU takes the 63%
of the total latency. In Fig. 13(a), communication between
the neighboring cores dissipate 62% of the total energy since
we use a four-phase handshaking mechanism with Muller-C
elements (details in supplement material) whose clock fre-
quency is 1 GHz. In Fig. 13(b), SRAM and its peripherals
dissipate the most amount of power because the SRAM size
expanded three times compared to the size of FerroFET cells
to store all elements of B coefficients from (4).

Fig. 14 shows the total power of the computation unit when
the number of bits/cell and DAC resolution are varied for the
parallel and sequential cases. From both Fig. 14(a) and (b) we
observe that power consumption reduces as we increase either
the number of bits/cell or the DAC resolution. From this,
we conclude that the total power consumed is determined by
both the memory subarrays and peripheral logic. As the num-
ber of bits/cell or the DAC resolution increase, we observe
a reduction in number of S + A array stages and memory
subarrays, and this reduction causes an overall reduction in
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FIGURE 14. Power consumption of the compute unit when
bits/memory cell and DAC resolution are varied for (a) parallel
computation and (b) sequential computation.

FIGURE 15. Estimated area of the compute unit when
bits/memory cell and DAC resolution are varied for (a) parallel
computation and (b) sequential computation.

TABLE 2. Compute time and energy comparison in different
architectures.

power. Further when Fig. 14(a) and (b) are compared to each
other the parallel computation approach consumes higher
power because of the additional memory array and associated
peripheral hardware requirements.

Fig. 15 shows the total area of the computation unit when
the number of bits/cell and the DAC resolution are varied for
the parallel and sequential cases. For the parallel computation
approach [Fig. 15(a)], the area is larger than in the sequential
approach [Fig. 15(b)] since the computations are executed
in parallel with a higher number of memory subarrays and
peripheral blocks. As the DAC resolution and the number of
bits/cell increase the total area increases because the memory
subarray, S + A and multistage adders required are lesser in
number, and they dominate any increase caused by the ADC
area. For all the figures the dotted lines show the performance
of a corresponding SRAM + ALU Von-Neumann architec-
ture (baseline).

Table 2 presents the architectural results of compute time
and energy for the baseline, SRAM PIM and FerroFET PIM
architectures of 64 cores. FerroFET PIM shows 3× improve-
ment in compute time and 21× improvements in energy
efficiency compared to SRAM PIM.

VI. APPLICATIONS
As examples of prototypical problems that can be solved
using the proposed algorithm and architecture, we present
two applications: 1) signal reconstruction from 1-D EEG
signals and 2) recovery of CT Images used in medical
imaging.

FIGURE 16. Reconstruction steps. (a) 1-D example: recovery of
EEG signal profile. (b) 2-D example: brain computed topography
recovery [20].

FIGURE 17. PSNR and SSIM. (a) 1-D example: recovery of a
nonuniformly sampled 1-D signal from an EEG probe. (b) 2-D
example: recovery of a sampled image from the CT scan of a
brain.

Typical examples have been shown in Fig. 16(a) and (b).
Both the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) are shown in Fig. 17. We note that increas-
ing the subspace dimension increases the fidelity of the
reconstruction process. This justifies the use of a subspace
dimension of 8 × 8 for the current applications in hand.
It also shows the power of iterative algorithms in systolic PIM
architectures for solving distributed convex optimization.

VII. CONCLUSION
This paper presents a systolic PIM architecture based on
analog FerroFet pseudo-crosspoint arrays with in situ com-
putation to enable distributed convex optimization via least
square minimization. Key contributions of the paper are as
follows.

1) A FerroFET-based differential cell can compute matrix
multiplication of both positive and negative numbers.

2) A FerroFET-based PIM architecture for solving a least
squares minimization.

3) Development of a complete end-to-end tool chain
and demonstration of 21× in energy efficiency and
3× in compute time compared to an SRAM-based PIM
architecture.
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We demonstrate that cross-bar resistive architectures are
not only capable of accelerating machine-learning algo-
rithms, but also distributed optimization in a systolic array.
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