
2720 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 12, DECEMBER 2019

Practical Approaches Toward Deep-Learning-Based
Cross-Device Power Side-Channel Attack

Anupam Golder , Student Member, IEEE, Debayan Das , Student Member, IEEE,

Josef Danial, Student Member, IEEE, Santosh Ghosh , Shreyas Sen , Senior Member, IEEE,

and Arijit Raychowdhury , Senior Member, IEEE

Abstract— Power side-channel analysis (SCA) has been of
immense interest to most embedded designers to evaluate the
physical security of the system. This work presents profiling-
based cross-device power SCA attacks using deep-learning tech-
niques on 8-bit AVR microcontroller devices running AES-128.
First, we show the practical issues that arise in these profiling-
based cross-device attacks due to significant device-to-device
variations. Second, we show that utilizing principal component
analysis (PCA)-based preprocessing and multidevice training,
a multilayer perceptron (MLP)-based 256-class classifier can
achieve an average accuracy of 99.43% in recovering the first
keybyte from all the 30 devices in our data set, even in the
presence of significant interdevice variations. Results show that
the designed MLP with PCA-based preprocessing outperforms
a convolutional neural network (CNN) with four-device training
by ∼20% in terms of the average test accuracy of cross-device
attack for the aligned traces captured using the ChipWhisperer
hardware. Finally, to extend the practicality of these cross-
device attacks, another preprocessing step, namely, dynamic time
warping (DTW) has been utilized to remove any misalignment
among the traces, before performing PCA. DTW along with
PCA followed by the 256-class MLP classifier provides ≥10.97%
higher accuracy than the CNN-based approach for cross-device
attack even in the presence of up to 50 time-sample misalignments
between the traces.

Index Terms— Cross-device attacks, deep learning, dynamic
time warping (DTW), principal component analysis (PCA),
profiling attacks, side-channel analysis (SCA).

I. INTRODUCTION

A. Motivation

IN today’s world, to establish secure communication
between two parties, the use of cryptographic algorithms is

commonplace. Although these mathematically secure crypto

Manuscript received February 2, 2019; revised May 23, 2019; accepted
June 8, 2019. Date of publication July 26, 2019; date of current version
November 22, 2019. This work was supported in part by the National Science
Foundation (NSF) under Grant CNS 17-19235. The work of A. Golder was
supported by NSF through the Center for Advanced Electronics through
Machine Learning (CAEML) and its industry members under Grant CNS
16-24810. (Corresponding author: Anupam Golder.)

A. Golder and A. Raychowdhury are with the School of Electrical and Com-
puter Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
(e-mail: anupamgolder@gatech.edu; arijit.raychowdhury@ece.gatech.edu).

D. Das, J. Danial, and S. Sen are with the School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN 47907 USA (e-mail:
das60@purdue.edu; jdanial@purdue.edu; shreyas@purdue.edu).

S. Ghosh is with the Intel Labs, Intel Corporation, Hillsboro, OR 97124
USA (e-mail: santosh.ghosh@intel.com).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2019.2926324

algorithms cannot be broken by means of brute-force attack,
there have been numerous accounts of breaking the secret
key by utilizing side-channel information in the form of
power consumption [1], electromagnetic radiation [2]–[4], and
optical [5], [6], or acoustic [7] vibrations captured from hard-
ware implementations of the algorithms.

In this paper, we focus on power side-channel analy-
sis (SCA)-based attacks, and specifically on profiling-based
attacks [8]. In traditional nonprofiled attacks, such as differen-
tial and correlation power analysis (DPA [1]/CPA [9]) attacks,
the attacker gathers power traces from a target device and uses
statistical techniques, such as the difference of mean (DOM)
traces or Pearson correlation coefficient to break the secret
key. On the other hand, profiling-based attacks [8], [10], [11]
assume the worst case scenario from the perspective of the
target crypto engine, where the adversary is assumed to
possess an identical device to profile the leakage patterns for
all possible combinations for a keybyte (profiling or training
phase), and use this prior knowledge to identify the secret
key of the victim’s crypto engine (online or test phase). Such
an attack has been demonstrated on a commercially available
contactless smart card in [12].

Traditionally, profiling attacks are performed by generating
templates (hence called template attack [8], [13]–[15]) for
different keys by utilizing a multivariate Gaussian distribution
approximation of the preidentified points-of-interest (POIs).
Recently, the hardware security research community has
focused its attention to the machine learning (ML)-based pro-
filed attacks using support vector machine (SVM) [16], [17],
random forest (RF) [17], as well as deep-learning-based
attacks [10], [18]–[20]. The advantage of deep-learning-based
attacks is that not only do they perform as good as the
template-based attacks, they do not require extensive statis-
tical analysis to identify POIs. Moreover, as the number of
dimensions increase, ML-based attacks start to gain interest,
because an increase in number of noninformative points in
POIs degrades performance of template attacks [11]. However,
these ML-based approaches mentioned above rely on the
assumption that the leakage profile from the profiling and the
target devices are similar.

Recently, Das et al. [21] showed the first cross-device
profiling-based attack using neural networks. However,
the attack scenario was limited to a small sample of devices
taken from the same batch.

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0725-1593
https://orcid.org/0000-0003-1843-0124
https://orcid.org/0000-0003-0069-7971
https://orcid.org/0000-0001-5566-8946
https://orcid.org/0000-0001-8391-0576

GOLDER et al.: PRACTICAL APPROACHES TOWARD DEEP-LEARNING-BASED CROSS-DEVICE POWER SIDE-CHANNEL ATTACK 2721

Fig. 1. Box-and-whisker plots showing a distribution of 180 observations
of sample #96 of the power traces obtained from 30 identical microcontroller
devices in two separate batches [CW308T-XMega, Batch1: Date Code: 1848,
Lot Code: 0412—Devices (1–20), Batch2: Date Code: 1830, Lot Code:
0350—Devices (21–30)], running an AES encryption operation for a fixed
plaintext and a fixed subkey 0×00 for the first keybyte. Amplitudes are reported
in Arbitrary Unit (A.U.), as the ChipWhisperer capture platform does not
report any unit for the measured power. The shift in medians and interquartile
ranges can be attributed to manufacturing and packaging variations of different
devices and circuit boards. Outliers, which fall outside the interquartile range
for a specific distribution, are plotted in blue circles.

Hence, the test accuracy for cross-device attack obtained
using a multilayer perceptron (MLP) without any preprocess-
ing was very optimistic. Also, Carbone et al. [22] have evalu-
ated a secure RSA implementation using deep learning where
the training, validation, and testing data were collected from
three different smart cards only.

In a practical attack scenario, the target device may come
from a different batch other than the one on which the
ML-based classifier has been trained. Hence, the interdevice
variations may be significantly higher, making cross-device
attacks more difficult. This paper thoroughly analyzes the
performance of the MLP classifier by obtaining 30 devices
from two different batches (Fig. 1) and shows that using
the MLP even when trained with four devices, the accuracy
across the test devices may be as low as ∼ 8% for the
devices from a different batch or from the same batch with
high interdevice variation. Although this work is an extension
of [21], it presents a significant advancement in generalizing
cross-device attack by utilizing principal component analysis
(PCA)-based preprocessing to project trace samples to their
principal subspace [23], along with the multidevice training of
the MLP classifier, which together provide a drastic improve-
ment in minimum value of test accuracy by boosting it up
to ∼90% from ∼8%. In addition, to extend and improve the
practicality of this attack, we utilize dynamic time warping
(DTW), preceding the PCA stage, to align the traces in case
of desynchronization. Hence, DTW and PCA followed by the
MLP classifier outperform the convolutional neural network
(CNN)-based classifier by >10% in the test accuracy, even in
the presence of up to 50 time sample misalignments among
the traces. This extended paper includes the following key

Fig. 2. ChipWhisperer platform for capturing and recording power traces
from an AVR XMega microcontroller running AES-128 encryption algorithm.
This platform supports programming the microcontroller to execute AES-128,
modification of keys and plaintexts, and capturing of power traces with a
perfectly triggered circuit to ensure alignment between traces.

improvements over [21]: 1) a more detailed analysis on the
performance of deep-learning techniques in cross-device attack
scenario using traces collected from 30 devices; 2) a plausible
explanation of improvement in test accuracy using multidevice
training (Section III-C); 3) use of preprocessing to improve test
accuracy instead of using multiple traces as presented in [21]
(Sections IV and V); and 4) a comparative analysis with CNN
(Sections III-E and V)

Fig. 1 shows a box-and-whisker plot of distributions of the
measured amplitude of power consumption at a specific point
in time from 30 different but identical microcontroller-based
AES-128 crypto engines. Sample point #96 has been chosen
using a feature selection method typically used for template
attacks (Section III), namely, DOMs. Note how the medians
and interquartile ranges vary from one device to another, and
some outliers can be observed even for a particular device. It is
clear from this figure that we need to validate our assumptions
regarding identical leakage patterns from identical but different
devices.

B. Contribution

Specific contributions of this paper are as follows.

1) This work analyzes the practical feasibility of using
a 256-class classifier using MLP and CNN without
any preprocessing to implement a cross-device attack
on an 8-bit microcontroller-based SCA platform named
ChipWhisperer [24] (Fig. 2) and demonstrates how
multidevice training improves the test accuracy of
cross-device attack (Section III) with a plausible expla-
nation.

2) Using PCA [33]-based projection of raw traces to their
principal subspaces along with multidevice training,
we show that the accuracy of cross-device attack for
all the test sets improves significantly (minimum test
accuracy increases by >10×), with ≥89.21% accuracy
across all the 30 devices (Section IV).

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

2722 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 12, DECEMBER 2019

TABLE I

LITERATURE REVIEW FOR PROFILED-ATTACK SCENARIO

3) Finally, to enhance the practicality of the proposed
attack, we consider the misalignment between traces
due to untimely triggering of the capture device (usually
an oscilloscope). To resolve this issue, we demonstrate
that DTW [34]-based preprocessing preceding PCA is
a feasible solution, achieving ≥10.97% higher accuracy
compared to a CNN-based approach (Section V) even
in the presence of up to 50 time sample misalignments
between traces for a cross-device attack scenario.

C. Paper Organization

In this paper, we use the following conventions: uppercase
boldface italics for matrices, lowercase boldface italics for vec-
tors, uppercase and lowercase italics for scalars, and uppercase
italics within curly braces for sets.

The remainder of this paper is organized as follows.
Section II presents the related works in the field of
profiling-based attacks and summarizes the existing works on
machine-learning-based side-channel attacks. In Section III,
two deep neural networks (DNNs), MLP and CNN archi-
tectures, have been presented for a single-trace attack. Also,
their limitations in cross-device attack scenario are presented.
Section IV proposes a PCA-based preprocessing step to project
raw traces to their principal subspace, and thus effectively
increase the cross-device attack accuracy. Section V inves-
tigates a more practical scenario considering misalignment
between traces, which can occur during trace capture, and we
utilize a DTW-based preprocessing to realign traces, to allow
subsequent PCA and MLP-classifier to work properly, and
compare the performance of such an approach with that
of a CNN. In Section VI, we present a relative timing
performance comparison among different deep-learning tech-
niques, and between deep-learning technique and CPA. Finally,
in Section VII, we summarize the findings and conclude this
paper.

II. BACKGROUND AND LITERATURE REVIEW

In the past couple of years, several ML techniques have been
investigated, including but not limited to SVMs [16], [17] and
RFs [17]. More recently, the signal processing community
as well as the hardware security researchers have started
exploring the field of DNNs [10], [30].

A. Related Works

Deep-learning-based profiling attacks have been
successful even in the presence of masking [30] and

jitter/misalignment [10]-based countermeasures. However,
other than [21] and [22], none of the articles proposing
ML-based attacks investigated a practical scenario where the
attack is actually performed on a device other than the one
used in training phase.

Table I summarizes the related works. As can be seen,
most of the template attacks were evaluated on the same
device, whereas only in a few cases [13]–[15], [32], attacks
were performed on a different device. This paper significantly
improves on [21] to present a generalized deep-learning-based
cross-device SCA attack on 30 different devices, utilizing
DTW and PCA along with the multidevice training.

There are two types of classification strategies for ML-based
classifiers, one is based on the Hamming Weight (HW) model
(nine-class classification) and the other is the identity (ID)
model (256-class classification). When the ID model is used,
the attack typically requires a single trace from the target
device. Thus, these attacks are powerful in the event that
the adversary has limited time and opportunity to gather such
traces due to rekeying after each session. This paper utilizes
the ID model to leverage the advantages of such an attack
model.

Most of the previous ML-based attacks were evaluated
using the DPAv2 [35] and DPAv4 [36] contest data sets,
or recently published ASCAD [18] database. To the best of
authors’ knowledge, both data sets consist of traces captured
from one single device, which are not suitable for current
work. Hence, we collected new traces from 30 different 8-bit
AVR microcontrollers running the AES-128 algorithm using
the ChipWhisperer platform [24] (Fig. 2). Although 8-bit
microcontrollers are becoming less preferred for encryption
engines nowadays, a recent body of work [13], [18], [37]–[39]
investigated the performance of profiled SCA attack using data
sets gathered from 8-bit microcontrollers.

B. Background of Neural Networks

One of the most widely used neural networks is MLP that
has an input layer, one or more hidden layers, and an output
layer. Each layer has trainable weights and biases and produces
an output based on its inputs coming from the preceding layer,
weights connected to those inputs, and a nonlinear activation
function, such as rectified linear units (ReLUs), sigmoid,
or tanh. The choice of the number of layers, the number of
neurons in each layer, and the activation function/s together
creates the network architecture and defines the functions
that can be approximated by this model. In a classification

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

GOLDER et al.: PRACTICAL APPROACHES TOWARD DEEP-LEARNING-BASED CROSS-DEVICE POWER SIDE-CHANNEL ATTACK 2723

problem, the last layer is a classification layer followed by a
softmax layer. More complex architectures are possible such
as CNN, which uses so-called convolutional layers that act
as filters and slide over the preceding layer by 1 or more
units (called stride), subsampling layers such as max-pooling
or average-pooling to reduce the number of dimensions, and
the fully connected (FC) layers. The gathered data are usually
divided into three distinct sets: training set, as the name
implies, to train the network, validation set to validate the
performance of trained network on previously unseen data
by usually keeping a part of training set separate from those
actually used in training, and a test set, which is used to
finally test the performance, i.e., prediction or classification
accuracy. Typically, during the training phase, weights and
biases of neurons are tuned iteratively over several epochs to
minimize a categorical cross-entropy loss [40] function using
a form of stochastic gradient descent (SGD) optimizer [41].
The training phase can be conducted in minibatches where
the inputs for the network are continuously drawn from the
complete set of training samples. On top of these, the use of
batch normalization, dropout layer, and L2 regularization are
typical ways to address the problem of overfitting (when the
model works well for the training set, but performs poorly
on the unseen test set) to provide a better generalization on
the test data. All the parameters that define the architecture
of neural networks and dictate the training phase are called
hyperparameters.

Note that, in contrast to template-based attack, where a
template preparation method can be exported across platforms,
the trained neural network architecture may be vastly differ-
ent depending on the implementations. In other words, one
particular neural network architecture for a specific attack
scenario and a specific hardware implementation may not be
the best-suited one for a different platform.

C. Overview of Principal Component Analysis

PCA [33] is a well-known dimensionality reduction tech-
nique and has been proven to be successful for time-series
data. For example, we have a M × N matrix of traces, where
each trace forms a row. In the following matrix representations,
ti j denotes sample j of trace i , and each column vector,
t j (each having a dimension of M × 1) represents data for
j th dimension

T races =

⎡
⎢⎢⎢⎣

t race1
t race2

...
t raceM

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

t11 t12 . . . t1N

t21 t22 . . . t2N
...

...
. . .

...
tM1 tM2 . . . tM N

⎤
⎥⎥⎥⎦

= [t1 t2 . . . tN].
Then, we subtract the mean from each of the dimensions to
obtain a new matrix, T racesad j ust

T racesad j ust

= [t1 − mean(t1) t2 − mean(t2) . . . tN − mean(tN)].
Next, the covariance (a measure of variation of each of the
dimensions from their individual means with respect to each

other; helpful for very high-dimensional data) matrix for the
traces is computed as follows:

Covariance matrix, C

= cov(T races)

= cov([t1 t2 . . . tN])

=

⎡
⎢⎢⎢⎣

cov(t1, t1) cov(t1, t2) . . . cov(t1, tN)
cov(t2, t1) cov(t2, t2) . . . cov(t2, tN)

...
...

. . .
...

cov(tN, t1) cov(tN, t2) . . . cov(tN, tN)

⎤
⎥⎥⎥⎦

Then, we calculate the unit eigenvector matrix of the
covariance matrix, V , and the diagonal eigenvalue matrix, D.
These unit eigenvectors are orthogonal to each other

V = [v1 v2 . . . vN].
Eigenvectors with the highest eigenvalues are the most signif-
icant principal components of the data set. Ordering eigenval-
ues from highest to lowest arranges the components according
to the order of importance. If eigenvalues are very small,
principal components corresponding to those of lesser impor-
tance can be discarded with negligible information loss. Here,
the original data dimension was N , and we have correspond-
ingly N eigenvalues and N eigenvectors. Choosing the first
p eigenvalues after arranging them in descending order of
eigenvalues, reduces the dimension for the data set to p. Then,
we obtain a modified eigenvector matrix, Vm keeping the first
p eigenvectors in that matrix. Finally a new data set, T racesm
is derived using

T racesm = (Vm
′ × T racesad j ust

′)′ (1)

where � denotes a matrix transpose operation.
PCA has been studied extensively [23], [42]–[44] in SCA

context, but rarely so when it comes to deep-learning tech-
niques. In contrast to template attacks, where dimension reduc-
tion is necessary, deep learning can handle large dimensions,
and the benefit of PCA comes from the projection of trace
samples to their principal subspace, and not particularly from
the pruning (Section IV-A).

D. Dynamic Time Warping

Misalignment between captured power traces can occur
due to inaccurate triggering [45] or countermeasures adopted
by device manufacturers such as frequency scaling [46] or
random insertion of dummy operations [47]. As pointed
out in [45], time-series matching algorithms, such as DTW,
originally adopted for alignment in speech recognition
systems [48], can be beneficial to realign them in an attack
scenario where only a limited number of traces from target
device can be collected. However, in contrast to [45], where
DTW has been used as a preprocessing step before performing
a nonprofiled DPA attack or a profiled template attack [8],
we propose to use it as a preprocessing step for a neural
network classifier.

DTW resamples two traces such that matching parts of them
are located at the same time index after the process, thus reduc-
ing distance (Euclidean/absolute) between them to a minimum.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

2724 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 12, DECEMBER 2019

Fig. 3. Overview of DTW. Warp path for traces X and Y shows how both the
traces are nonlinearly resampled to ensure matching. For example, samples 1
and 2 in trace Y are absent in trace X. Hence, DTW samples X at the sample 1
multiple times. Then, samples 3–8 in the trace Y match with the samples 1–6
in trace X, and so on. In this way, two traces are realigned such that the
absolute or the Euclidean distance between them is minimized.

The resampled indices in both traces form a war p path. Note
that as DTW can align only one trace with respect to another,
we need a re f erence trace for realignment. Fig. 3 illustrates
a warp path W = {z(k) : 1 ≤ k ≤ K } that is set of x(k)
and y(k) indices, z(k) = (x(k), y(k)) of two traces X and Y ,
under the following constraints:

z(k + 1) = (x(k + 1), y(k + 1)) =

⎧⎪⎨
⎪⎩

(x(k), y(k) + 1), or

(x(k) + 1, y(k)), or

(x(k) + 1, y(k) + 1))

and

x(1) = y(1) = 1, x(K) = y(K) = T, T ≤ K < 2T

where

T = number of samples in X and Y.

DTW algorithm tries to find a warp path W that results in
the minimum cost L given as

L(X, Y) = 1

2T
min

W

K∑
k=1

d(z(k))c(k)

where

d(z(k)) = |X (x(k)) − Y (y(k))|
and

c(k) = x(k) − x(k − 1) + y(k) − y(k − 1).

This process results in stretching both the traces (X and Y)
by resampling them. The resulting traces become perfectly
aligned.

III. SINGLE-TRACE CROSS-DEVICE POWER SCA USING

NEURAL NETWORKS: PERFORMANCE AND LIMITATIONS

In this section, we present the architectures of our designed
MLP and CNN, along with the empirical choice of hyper-
parameters, and the performance and limitations of these
single-trace attack without any preprocessing.

Fig. 4. Architecture of the proposed MLP for cross-device side-channel
attack. The input layer consists of N = 3000 neurons. The first FC hidden
layer consists of 100 hidden neurons, followed by batch normalization, ReLU
activation, and a dropout layer. The second hidden layer is similar without
the dropout layer. Finally, the output layer has 256 neurons for predicting the
correct keybyte utilizing the softmax function.

A. Experimental Setup

We performed our experiments on CW308T-
XMega, a microcontroller-based SCA platform from
ChipWhisperer [24]. This microcontroller-based target board
houses an 8-bit Atmel AVR XMega128 microcontroller
running software AES-128. To capture traces from the target
device, ChipWhisperer provides a platform CW308T UFO
board, and a capture setup CW Lite Capture using an on-board
ADC. This setup allows to send program, plaintext, and key
to XMega Target board and record captured traces directly
from a personal computer (Fig. 2). The on-board XMega
microcontroller operates at the frequency of 7.37 MHz,
and CW Lite Capture hardware captures traces at four
times of that frequency, at 29.48 MHz. Power consumption
is measured by inserting a small resistor (500 m�) in
series with power supply and measuring the voltage drop
across it. As this measured voltage corresponds directly to
instantaneous current drawn from the dc power supply, it can
be treated as the power trace. We utilize a chosen plaintext
scenario for our attack, where we keep the plaintext fixed
to a chosen value (0×00 . . . 00, i.e., all 16 bytes are 0s).
We collect 10k traces (3k time samples per trace) from
each of the 30 devices by varying the first keybyte in all
256 possible combinations (from 0 to 255) maintaining a
uniform distribution [(10k/256) ≈ 40 traces for each possible
keybyte value], and rest of the keybytes randomly. We attack
only the first keybyte in all our results, but the attack can
be carried out for all other keybytes in the same manner.
Neural network models were implemented using MATLAB
and Python, using the keras [49] library with tensorflow [50]
as backend.

B. Architecture of Multilayer Perceptron

Fig. 4 shows the architecture of our designed MLP for the
256-class classification, which is similar to the one presented
in [21]. The size of the raw or processed traces determines

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

GOLDER et al.: PRACTICAL APPROACHES TOWARD DEEP-LEARNING-BASED CROSS-DEVICE POWER SIDE-CHANNEL ATTACK 2725

Fig. 5. Test accuracy of MLP classifier when the number of devices in training set is (a) one, (b) two, (c) three, and (d) four. As can be seen from (a),
although the test accuracy for the same device attack is very high, it varies widely in case of a cross device attack. In particular, note how Device
#18 has 100% test accuracy when the classifier is trained with that device, but a very low accuracy when the neural network is trained with other devices.
(b)–(d) Illustrate the improvement in test accuracy with an increase in the number of training devices.

the size of the input layer of the MLP. Two fully connected
layers each consisting of 100 neurons form the hidden lay-
ers. Activation function for the layers is chosen as ReLU.
A dropout layer after the first hidden layer having a percent-
age dropout of 10% has been chosen to aid generalization.
L2 regularization seemed to have little effect. We keep it
fixed at 10−4 for all the iterations. Also, the minibatch size
is kept at 256, the network has been evaluated after being
trained for 100 epochs. It was observed that higher number
of hidden neurons and layers led to overfitting to the training
data, resulting in relatively poor performance in the test set.
Also, the choice of the batch size is a critical issue. It was
observed that small batch sizes led to high test accuracy.
To optimize the network, we train the MLP with 8k training
traces for single-device training and optimize the performance
by validating against a test set of the remaining 2k traces from
the same device.

C. Performance of MLP
In this section, we evaluate the performance of MLP. The

problem with one device training is that the neural network
overfits to that device-specific leakage and cannot generalize
to new data set from a different device. As shown in Fig. 5(a),
although the same-device attack performance of MLP is very
high (≥99.99%), cross-device attack performance is relatively
poor, averaging at 61.98% across the 30 devices after training
for 100 epochs (Table II). Also, we note from Fig. 5(a) that
Device 18 is clearly an outlier, although we cannot see much
deviation for Device 18 in Fig. 1. In Fig. 1, we only observed
the distribution for one specific dimension of a 3000-D trace.
That is why, it does not give us the whole picture. To find out
why Device 18 is an outlier in this experiment, the average for
each time sample of all 8k traces (with 3000 samples each)
has been calculated from the training set for all 30 devices in
our data set. Then, the mean μ and standard deviation σ have

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

2726 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 12, DECEMBER 2019

TABLE II

CROSS-DEVICE ATTACK PERFORMANCE OF DEEP-LEARNING-BASED METHODS FOR DIFFERENT TRAINING SCENARIOS*

Fig. 6. Rationale behind Device 18 being an outlier in Fig. 5(a). Approxi-
mately 90 samples of averaged trace for Device 18 fall outside the 3σ range
around the mean for averaged traces across all devices.

been calculated for each time sample of the averaged traces
from all 30 devices. Assuming an approximately Gaussian
distribution, 99.7% of the time samples of the averaged traces
for each device should fall within three standard deviation
around the mean (μ + 3σ and μ − 3σ). Then, the number
of samples (out of 3000) of averaged traces for each device,
which fall outside this range, has been counted. In Fig. 6,
the result has been illustrated, where Device 18 is certainly an
outlier, which explains why we obtained poor test accuracy for
Device 18 when the neural network was trained with traces
from other devices, and vice versa.

To eliminate the problem of low test accuracy of MLP with
single-device training, we perform an empirical evaluation
of the multidevice training method [21], so that the neural
network learns from the device manufacturing and packaging
variations and generalizes to test traces from a new device.
It should be noted that although this would strengthen the
adversary, the attack becomes more difficult to implement,
as it assumes more control on the part of the adversary. Never-
theless, such a multidevice training improves the average test
accuracy to as high as 91.72% as illustrated in Fig. 5(b)–(d)
and Table II. Note that, we merge the data sets for different
devices before multidevice training and use 20k, 30k, and 40k
traces in training and validation set for the two-device, three-
device, and four-device training, respectively. To incorporate
cross validation, but at the same time bearing in mind the
training time required for an exhaustive one, we construct

several training device groups and use them for all subsequent
analysis. Training groups for multidevice training are formed
using the formulation: {G j (i)} = {D(k), D(k + 1), ..., D(k +
j − 1) | k = (i − 1) j + 1 and k + j − 1 ≤ 30}, where {G j (i)}
is the i th group used in j device training, and D(k) is the
kth device in our data set. Also, note that further increasing
the number of traces (or more devices) in training set did not
improve test accuracy.

Although the improvements with multidevice training seem
intuitive, in this paper, we further investigate the factor that
could have led to this. In this regard, we seek inspiration from
a POI selection method, namely, DOMs [8], [13], typically
used in template attacks. Using the sum of the absolute value
of pairwise differences between mean of traces for different
keys (keeping plaintext fixed), we observed that the samples
#96 and #148 are two such POIs. To achieve a more accurate
result, template attacks typically identify 10–20 such POIs
and calculate a probability density function (PDF) using a
multivariate Gaussian distribution approximation. Although
such a high-dimensional template would give us more accurate
results, we concentrated on a simple bivariate analysis (as
it can be visualized in 2-D) to observe if a pattern could
be identified from the distribution. The PDF for multivariate
normal distribution of k-variables is given as

fx = ex p(−1/2(x − μ)T �−1(x − μ))√
(2π)k |�|

where � = Covaraince Matrix and μ = Mean Vector.
Covariance matrix and mean vector for the bivariate normal

joint density function have been calculated from experimen-
tally measured data. Fig. 7 shows the boundary regions of
PDFs. It can be seen that data from different keys lead to
different distributions for the same device. Also, traces from a
single device do not span the whole distribution of 30 devices,
but with four devices, most of it can be spanned. This is
plausibly why our trained MLP model achieved a high average
test accuracy with four-device training.

D. Limitation of Only MLP-Based Attack

Note from Table II that the minimum test accuracy does
not improve much with the increasing number of training
devices, but the average test accuracy improves significantly.
This motivates us to investigate further into preprocessing
techniques such as PCA to improve the minimum test accuracy

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

GOLDER et al.: PRACTICAL APPROACHES TOWARD DEEP-LEARNING-BASED CROSS-DEVICE POWER SIDE-CHANNEL ATTACK 2727

Fig. 7. Boundary of bivariate PDF for different scenarios. Two of the
most prominent leakage samples from the raw power traces are chosen as
the variables for constructing the bivariate distribution. Note that the PDFs
are different for different keybyte values. Also, as the number of devices
increases from 1 to 4, the sample PDF for a specific keybyte value (0×00)
approximates the total PDF of the 30 devices more accurately.

Fig. 8. Architecture of 1-D CNN. Samples of raw traces are directly fed to the
input layer. Two 1-D convolutional layers act as filters and extract high-level
features from raw traces. Next, a max-pooling layer reduces the number of
dimensions by subsampling. The outputs of max-pooling layer are flattened
and provided as inputs to an FC layer, which connects the final classification
Layer.

(Section IV) and utilize the multidevice training to prevent
overfitting and aid generalization.

E. Architecture and Performance of Convolutional
Neural Network

We designed a 1-D CNN architecture (Fig. 8), as shown
in the recent works [10], [18] to have very high accuracy in
the presence of countermeasures. CNN architecture presented
here is different from those works, as it is designed for our
new data set. We gathered inspiration from VGG-Net [51], but
used a much shallower network. Such a choice again depends
on the data set.

We kept the same input layer as in the MLP, i.e., 3000 neu-
rons. In this architecture, the first convolutional layer has
70 filters, each having a kernel size of 60, with a default
stride of 1, and with ReLU activation function. The second
convolutional layer is exactly the same. Then, a max-pooling

layer with a pool size of 3 was used. A subsequent layer
flattens the output of max-pooling layer, followed by an FC
layer with 150 neurons, a batch normalization layer, and finally
the classification layer. A dropout factor of 20% after the
flatten layer, and 10% after the batch normalization layer
reduced overfitting. The parameters have been optimized by
validating on a test set from the same-device, similar to the
approach in the case of the MLP architecture. Note that
CNNs require a larger data set to generalize well to new
data, and we augmented the available data set by introducing
normally distributed noise (with 10−10 standard deviation) to
trace samples, and thus increasing a number of training traces
to 60k in all training scenarios. We evaluate the performance
of CNN for single-device training and multidevice training
after 20 epochs. Fig. 9(a) illustrates the result of single-device
training for CNN, and we can see that this CNN network
achieves very high test accuracy for traces from the same-
device, but cross-device attack accuracy is low. Fig. 9(b) shows
the improvement in cross-device attack accuracy with multi-
device training. However, comparing Fig. 5 to Fig. 9, we can
observe that MLP outperforms the CNN in the cross-device
attack performance (although comparable for the same device
attack) for both single-device and four-device training.

Table II summarizes the comparison of cross-device perfor-
mance between the MLP and the CNN models with multide-
vice training. Compared to the MLP, CNN provides better
minimum accuracy, but lower average accuracy across the
30 devices taken from two different batches. Hence, we choose
MLP as our desired classifier for the next sections and develop
strategies to achieve high accuracies for all the 30 devices.

IV. PERFORMANCE OF MLP WITH PCA-BASED

PREPROCESSING (PCA-MLP)

In this section, we evaluate the effect of PCA [33] as a
preprocessing step to enhance the performance of cross-device
attacks. Fig. 10(a) shows the amplitude of the features
extracted from raw traces using (1). Note that, the eigenvectors
with higher eigenvalues point to the direction of higher vari-
ance in data. As a result, in the transformed trace [Fig. 10(a)],
the samples on the left have higher amplitudes, and as we
proceed to the right, the amplitudes decrease. From Fig. 10(b),
we can see that the first 60 time samples contribute the most
to the total variance. Also, it has been observed that, for
this data set, 99% of total variance is contributed by the first
370 principal components.

A. Performance of PCA-MLP

As seen earlier, MLP-based classifier without preprocessing
achieves good average accuracy (>90%) with multidevice
training, but the minimum accuracy is as low as ∼8% (Fig. 5
and Table II). In this section, we show that with PCA as a
preprocessing step, the performance of the neural network
classifier is substantially improved due to the projection of
raw trace samples to their principal subspace. For a principal
subspace, coordinate axes are ordered in a way that they point
to the direction of the maximal variance in data [23].

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

2728 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 12, DECEMBER 2019

Fig. 9. Test accuracy of CNN classifier when the number of devices in training set is (a) one and (b) four. As can be seen from (a), although the test
accuracy for the same device attack is very high, it is extremely low in the case of a cross device attack. In (b), improvement in test accuracy with an
increase in number of training devices is seen, but compared to MLP, the average accuracy still remains lower.

Fig. 10. PCA of raw traces. (a) Transformed trace after PCA (first 1000 time samples). Note that amplitudes are lower with higher dimensions. (b) Contribution
of each principal component as percentage of total variances (first 200 principal components). The zoomed-in region corresponds to the first 20 samples. Note
that the first 60 samples contribute the most to the total variance.

Fig. 11(b) shows that both the minimum and the average test
accuracy of PCA-MLP improve significantly with four-device
training compared to only MLP [Fig. 5(d)]. Also, as summa-
rized in Table II, it can be seen that the average as well as the
minimum test accuracy improve going from single-device to
multidevice training. Since with four devices, the PCA-MLP
model achieves the best average accuracy, we chose 4 as the
number of devices for multidevice training. It should be noted
that the same number of training traces was used to train this
model as reported in Section III. Fig. 11(a) illustrates that
reducing a number of dimensions did not improve the average
test accuracy in our case. Hence, we used all the 3000 principal
components in the analysis presented in this section, although
higher dimensions have less informative features.

B. Limitation of PCA-MLP
One inherent assumption in Sections III and IV-A was that

the traces were all perfectly aligned (as they were collected
using the ChipWhisperer capture setup), which may not always
be the case in a practical scenario due to faulty triggering.
Fig. 12(a) shows the traces when they are misaligned. The
limitation of PCA and MLP is that the traces need to be per-
fectly aligned. This motivates us to investigate ways to realign
traces so that the benefits of the high classification accuracy
for PCA-MLP can be utilized. Cagli et al. [10] proposed using
CNN in case of misaligned traces, but as PCA-MLP showed
better cross-device attack performance, we chose to use PCA-
MLP, and to account for the misalignment, we adopted DTW
as a preprocessing step (Section V).

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

GOLDER et al.: PRACTICAL APPROACHES TOWARD DEEP-LEARNING-BASED CROSS-DEVICE POWER SIDE-CHANNEL ATTACK 2729

Fig. 11. Performance of PCA-MLP. (a) Average test accuracy (%) versus the number of principal components used (for Training Device Group G1). Test
accuracy does not improve on removing the principal components with a lower contribution in the percentage variance. Hence, we chose to include all the
3000 principal components in the PCA-MLP model. (b) Test accuracy after training PCA-MLP with four devices shows drastic improvement in the minimum
cross-device accuracy. Note that ”*” symbol has been used to highlight the cases with 89%–94% test accuracy, and ”#” symbol for 95%–98% test accuracy.

Fig. 12. Ten traces superimposed on each other (first 200 samples shown) when they are (a) misaligned randomly up to 50 time samples and (b) realigned
using DTW.

V. DYNAMIC TIME WARPING AS A PREPROCESSING

FOR MISALIGNED TRACES

In this section, we show how DTW can be used to realign
misaligned traces due to a fault in triggering. As Chip-
Whisperer platform perfectly synchronizes each capture event,
the traces obtained from CW308T-XMega target board are
perfectly aligned with each other. To simulate the event of
trace misalignment, we artificially create up to 50 time-sample
misalignments to evaluate the performance of the proposed
DTW-PCA-MLP architecture. Misalignment has been created
by shifting traces by a random number of samples, in the same
manner presented in [18]. Fig. 12(a) shows such a collection of
ten traces superimposed on each other. Note that the traces are
randomly misaligned up to 50 samples. We chose five devices

from our set of 30 devices and created misaligned data sets
M1–M5. Then, we evaluated the performance of our proposed
approach on a cross−device attack to show its effectiveness
by training on four devices from the misaligned data set and
testing on the other one and performing cross validation for
all the possible combinations.

A. Implementation of DTW-PCA-MLP

As mentioned in Section II, DTW method requires a refer-
ence trace to realign another trace. Obtaining such a reference
trace is possible for an adversary from the device/s he has in
his possession. In our experiments, we use a reference trace
that has a 3000 time-sample window, containing all relevant
samples. The network has been trained on four devices and

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

2730 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 12, DECEMBER 2019

TABLE III

PERFORMANCE COMPARISON OF DTW-PCA-MLP WITH CNN FOR MISALIGNED TRACES

TABLE IV

QUALITATIVE COMPARISON BETWEEN DIFFERENT DEEP-LEARNING-BASED ATTACK METHODS

Algorithm 1 Algorithm for DTW-Based Trace Realignment

tested on one, as shown in Table III. We keep the neural
network architecture for MLP the same as in previous sections,
apart from a change in the size of the input layer. With
experiments, it has been observed that for realigned data set,
dimensionality reduction after PCA improved test accuracy.
This can be partly due to the fact that DTW resamples the
traces to find the best match, and in doing that, some samples
are copied multiple times. We empirically found that 600 fea-
tures led to the best test accuracy. Therefore, we modified the
number of input neurons to 600, but the rest of the architecture
remains the same. Algorithm for DTW-based trace realignment
is shown in Algorithm 1. Using this algorithm, traces have
been realigned [Fig. 12(b)].

B. Performance Comparison Among Different Methods for
Misaligned Traces

After trace realignment using DTW, subsequent PCA-based
preprocessing and MLP-based classifier resulted in ≥98.86%
test accuracy, compared to the CNN (which has been reop-
timized to deal with the misalignment) with ≥78.98% test

accuracy. The minimum difference between the test accuracy
of DTW-PCA-MLP and CNN is 10.97% for the test set M3.
We expect this trend to continue if extended to all 30 devices
of our data set, based on results presented in Table III.
Consequently, based on the results, we can clearly see that
DTW-PCA-MLP is a convenient method for cross-device
profiled-attack for misaligned traces, not only because of high
average test accuracy but also due to its simpler architecture
and less effort on the choice of hyperparameters and lower
training time compared to CNN. For the sake of completeness,
we also evaluate the performance of CNN with only DTW and
both DTW and PCA-based preprocessing. CNN is expected
to benefit from realignment through DTW, although CNN
is believed to be able to handle misalignments intrinsically.
To see if CNN benefits from DTW (and PCA) when traces
are misaligned, we conducted the experiment and Table III
summarizes the results. From Table III, we see that the
inclusion of DTW certainly helps to improve test accuracy
in all cases for CNN, but inclusion of PCA after DTW may
improve test accuracy in some cases compared to DTW-CNN,
but that does not generalize well across all sets.

VI. RELATIVE TIMING PERFORMANCE COMPARISON

BETWEEN DIFFERENT SCA APPROACHES

In comparison to profiled attacks, nonprofiled attacks, such
as CPA/DPA, would require at least tens to thousands of
traces to correctly identify the key. As shown in [21], even
in low signal-to-noise (SNR) scenarios, the benefit of using
deep-learning techniques persists, as CPA requires ∼ 10×
more traces for the same level of accuracy.

Training time depends on network complexity, chosen
hyperparameters, size of the data set, software platform (e.g.,
tensorflow, pytorch, etc.), and last but not least, the hardware
used to train. We have conducted the training and testing phase
for MLP and CNN on the same hardware platform, and we
observed that for the same training set (four training devices
used), the batch size (256), and the number of epochs (100),
CNN requires 6× more time to achieve the same level of
accuracy (≥99%) compared to MLP (453.4 s compared to

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

GOLDER et al.: PRACTICAL APPROACHES TOWARD DEEP-LEARNING-BASED CROSS-DEVICE POWER SIDE-CHANNEL ATTACK 2731

75.6 s), which can be attributed to larger number of parameters
to train. Also, during the testing phase, CNN takes 2.5× longer
time to generate the output class (0.442 s compared to 0.177 s).

We would like to mention that as the training and testing are
done off-line, the training time for the network is not crucial
to launch a successful attack, whereas the number of traces
is required to recover a key. An adversary may record all the
ciphertexts and corresponding power traces, and later break
them off-line. As a result, the high probability of success using
deep-learning techniques for a single-trace attack is of a major
concern.

VII. CONCLUSION

This paper presents a practical cross-device attack using
deep-learning methods even in the presence of misalignment
in the captured traces and with significant interdevice varia-
tions. Both of these practical issues are challenging to deal
with while implementing a cross-device attack. This paper
demonstrates how multidevice training improves average test
accuracy (e.g., from 61.98% to 91.72% in case of MLP).
Moreover, it presents how such attacks can be further improved
using preprocessing methods, such as PCA and DTW, and
identifies the best deep-learning-based approach. PCA-based
preprocessing improves the minimum test accuracy by 10×,
and DTW-based preprocessing allows subsequent PCA-MLP
to maintain its high test accuracy (up to 99.94%). Although
deep-learning techniques are more interesting when leakage is
harder to model, we note that success of such techniques lies
in data, and preprocessing can help to clean the data for more
efficient learning.

Table IV summarizes the findings by presenting a qualitative
comparison of average test accuracy of different methods
for both same-device attack and a cross-device attack with
multidevice training. In our experiments, CNN maintained a
high accuracy in all scenarios, but the best cross-device per-
formance was obtained using the proposed DTW-PCA-MLP.
Moreover, compared to the CNN, the proposed DTW-PCA-
MLP has a much simpler architecture (less number of tunable
parameters) and also requires shorter training time.

Going forward, we would like to study the feasibility of
the proposed deep-learning attack on 32-bit ARM micro-
controllers and field-programmable gate array (FPGA)-based
platforms, which have more widespread use.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proc.
Annu. Int. Cryptol. Conf. Berlin, Germany: Springer, 1999, pp. 388–397.

[2] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM
side—Channel(s),” in Proc. Int. Workshop Cryptograph. Hardw. Embed-
ded Syst. Berlin, Germany: Springer, 2002, pp. 29–45.

[3] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards,” in Smart Card Pro-
gramming Security. Berlin, Germany: Springer, 2001, pp. 200–210.

[4] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Con-
crete results,” in Proc. Int. Workshop Cryptograph. Hardw. Embedded
Syst. Berlin, Germany: Springer, 2001, pp. 251–261.

[5] M. G. Kuhn, “Optical time-domain eavesdropping risks of CRT dis-
plays,” in Proc. IEEE Symp. Secur. Privacy, May 2002, pp. 3–18.

[6] J. Loughry and D. A. Umphress, “Information leakage from optical
emanations,” ACM Trans. Inf. Syst. Secur., vol. 5, no. 3, pp. 262–289,
2002.

[7] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in Proc.
IEEE Symp. Secur. Privacy, May 2004, pp. 3–11.

[8] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Proc.
Int. Workshop Cryptograph. Hardw. Embedded Syst. Berlin, Germany:
Springer, 2002, pp. 13–28.

[9] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in Proc. Int. Workshop Cryptograph. Hardw. Embedded
Syst. Berlin, Germany: Springer, 2004, pp. 16–29.

[10] E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks with
data augmentation against jitter-based countermeasures,” in Proc. CHES,
2017, pp. 45–68.

[11] L. Lerman, R. Poussier, O. Markowitch, and F.-X. Standaert, “Template
attacks versus machine learning revisited and the curse of dimensionality
in side-channel analysis: Extended version,” J. Cryptograph. Eng., vol. 8,
no. 4, pp. 301–313, 2018.

[12] D. Oswald and C. Paar, “Breaking mifare DESFire MF3ICD40: Power
analysis and templates in the real world,” in Proc. CHES, 2011,
pp. 207–222.

[13] M. O. Choudary and M. G. Kuhn, “Efficient, portable template attacks,”
IEEE Trans. Inf. Forensics Security, vol. 13, no. 2, pp. 490–501,
Feb. 2018.

[14] D. P. Montminy, R. O. Baldwin, M. A. Temple, and E. D. Laspe,
“Improving cross-device attacks using zero-mean unit-variance normal-
ization,” J. Cryptogr. Eng., vol. 3, no. 2, pp. 99–110, 2013.

[15] N. Hanley, M. O’Neill, M. Tunstall, and W. P. Marnane, “Empirical
evaluation of multi-device profiling side-channel attacks,” in Proc. IEEE
Workshop Signal Process. Syst. (SiPS), Oct. 2014, pp. 1–6.

[16] T. Bartkewitz and K. Lemke-Rust, “Efficient template attacks based
on probabilistic multi-class support vector machines,” in Proc. Int.
Conf. Smart Card Res. Adv. Appl. Berlin, Germany: Springer, 2012,
pp. 263–276.

[17] L. Lerman, G. Bontempi, and O. Markowitch, “Power analysis attack:
An approach based on machine learning,” Int. J. Appl. Cryptogr., vol. 3,
no. 2, pp. 97–115, 2014.

[18] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas,
“Study of deep learning techniques for side-channel analysis
and introduction to ASCAD database,” Cryptol. ePrint Arch.,
San Diego, CA, USA, Tech. Rep. 2018/053, 2018. [Online]. Available:
https://eprint.iacr.org/2018/053.pdf

[19] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in Proc. Int. Conf.
Secur. Privacy Appl. Cryptogr. Eng. Cham, Switzerland: Springer, 2016,
pp. 3–26.

[20] Z. Martinasek, P. Dzurenda, and L. Malina, “Profiling power analysis
attack based on MLP in DPA contest V4.2,” in Proc. 39th Int. Conf.
Telecommun. Signal Process. (TSP), Jun. 2016, pp. 223–226.

[21] D. Das, A. Golder, J. Danial, S. Ghosh, A. Raychowdhury, and S. Sen,
“X-DeepSCA: Cross-device deep learning side channel attack,” in Proc.
56th Annu. Design Automat. Conf., 2019, p. 134.

[22] M. Carbone et al., “Deep learning to evaluate secure RSA implemen-
tations,” Trans. Cryptograph. Hardw. Embedded Syst., vol. 2019, no. 2,
pp. 132–161, Feb. 2019.

[23] C. Archambeau, E. Peeters, F.-X. Standaert, and J.-J. Quisquater,
“Template attacks in principal subspaces,” in Proc. Int. Workshop
Cryptograph. Hardw. Embedded Syst. Berlin, Germany: Springer, 2006,
pp. 1–14.

[24] C. O’Flynn and Z. D. Chen, “Chipwhisperer: An open-source platform
for hardware embedded security research,” in Proc. Int. Workshop
Constructive Side-Channel Anal. Secure Design. Cham, Switzerland:
Springer, 2014, pp. 243–260.

[25] C. Rechberger and E. Oswald, “Practical template attacks,” in Proc.
Int. Workshop Inf. Secur. Appl. Berlin, Germany: Springer, 2004,
pp. 440–456.

[26] E. Oswald and S. Mangard, “Template attacks on masking—Resistance
is futile,” in Proc. Cryptographers’ Track RSA Conf. Berlin, Germany:
Springer, 2007, pp. 243–256.

[27] L. Lerman, G. Bontempi, and O. Markowitch, “A machine learning
approach against a masked AES,” J. Cryptograph. Eng., vol. 5, no. 2,
pp. 123–139, Jun. 2015.

[28] A. Heuser and M. Zohner, “Intelligent machine homicide,” in Proc.
Int. Workshop Constructive Side-Channel Anal. Secure Design. Berlin,
Germany: Springer, 2012, pp. 249–264.

[29] L. Lerman, G. Bontempi, S. B. Taieb, and O. Markowitch, “A time series
approach for profiling attack,” in Proc. Int. Conf. Secur. Privacy Appl.
Cryptogr. Eng. Berlin, Germany: Springer, 2013, pp. 75–94.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

2732 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 12, DECEMBER 2019

[30] R. Gilmore, N. Hanley, and M. O’Neill, “Neural network based attack
on a masked implementation of AES,” in Proc. HOST, May 2015,
pp. 106–111.

[31] Z. Martinasek, J. Hajny, and L. Malina, “Optimization of power analysis
using neural network,” in Proc. Int. Conf. Smart Card Res. Adv. Appl.
Cham, Switzerland: Springer, 2013, pp. 94–107.

[32] M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, D. Kamel, and
D. Flandre, “A formal study of power variability issues and side-channel
attacks for nanoscale devices,” in Proc. Annu. Int. Conf. Theory Appl.
Cryptograph. Techn. Springer, 2011, pp. 109–128.

[33] I. Jolliffe, “Principal component analysis,” in International Encyclopedia
Statistical Science. Cham, Switzerland: Springer, 2011, pp. 1094–1096.

[34] M. Müller, “Dynamic time warping,” in Information Retrieval for Music
and Motion. 2007, pp. 69–84.

[35] DPA Contest, 2008–2009, TELECOM ParisTech SEN Res. Group, 2009.
[36] DPA Contest, 2013–2014, TELECOM ParisTech SEN Res. Group, 2014.
[37] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, “Make

some noise: Unleashing the power of convolutional neural networks for
profiled side-channel analysis,” Trans. Cryptograph. Hardw. Embedded
Syst., vol. 2019, no. 3, pp. 148–179, May 2019.

[38] G. Yang, H. Li, J. Ming, and Y. Zhou, “Convolutional neural network
based side-channel attacks in time-frequency representations,” in Proc.
Int. Conf. Smart Card Res. Adv. Appl. Cham, Switzerland: Springer,
2018, pp. 1–17.

[39] S. Picek, A. Heuser, A. Jovic, K. Knezevic, and T. Richmond, “Improv-
ing side-channel analysis through semi-supervised learning,” in Proc.
Int. Conf. Smart Card Res. Adv. Appl. Springer, 2018, pp. 35–50.

[40] Y. LeCun and F. J. Huang, “Loss functions for discriminative training
of energy-based models,” in Proc. AIStats, vol. 6, 2005, p. 34.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980

[42] L. Batina, J. Hogenboom, and G. J. van Woudenberg, “Getting more
from PCA: First results of using principal component analysis for
extensive power analysis,” in Proc. RSA, 2012, pp. 383–397.

[43] M. O. Choudary and M. G. Kuhn, “Efficient stochastic methods: Profiled
attacks beyond 8 bits,” in Proc. Int. Conf. Smart Card Res. Adv. Appl.
Cham, Switzerland: Springer, 2014, pp. 85–103.

[44] E. Cagli, C. Dumas, and E. Prouff, “Enhancing dimensionality reduction
methods for side-channel attacks,” in Proc. Int. Conf. Smart Card Res.
Adv. Appl. Springer, 2015, pp. 15–33.

[45] J. G. van Woudenberg, M. F. Witteman, and B. Bakker, “Improving dif-
ferential power analysis by elastic alignment,” in Proc. Cryptographers’
Track RSA Conf. Springer, 2011, pp. 104–119.

[46] K. Baddam and M. Zwolinski, “Evaluation of dynamic voltage and
frequency scaling as a differential power analysis countermeasure,” in
Proc. 20th Int. Conf. VLSI Design Held Jointly 6th Int. Conf. Embedded
Syst., Jan. 2007, pp. 854–862.

[47] J. A. Ambrose, R. G. Ragel, and S. Parameswaran, “RIJID: Random
code injection to mask power analysis based side channel attacks,” in
Proc. DAC, 2007, pp. 489–492.

[48] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Trans. Acoust., Speech, Signal
Process., vol. ASSP-26, no. 1, pp. 43–49, Feb. 1978.

[49] F. Chollet et al., “Keras: The python deep learning library,” Astrophys.
Source Code Library, Tech. Rep., 2018.

[50] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. OSDI, vol. 16, 2016, pp. 265–283.

[51] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: https://arxiv.org/abs/1409.1556

Anupam Golder (S’19) received the B.Sc. degree
in electrical and electronic engineering from the
Bangladesh University of Engineering and Technol-
ogy (BUET), Dhaka, Bangladesh, in 2015. He is
currently working toward the Ph.D. degree at the
Georgia Institute of Technology, Atlanta, GA, USA.

He is currently a Graduate Research Assistant at
the Integrated Circuits and Systems Research Labo-
ratory (ICSRL), School of Electrical and Computer
Engineering, Georgia Institute of Technology. His
current research interests include analog and digital

VLSI circuit and system design, machine learning, and hardware security.

Debayan Das (S’17) received the B.E. degree in
electronics and telecommunication engineering from
Jadavpur University, Kolkata, India, in 2015. He is
currently working toward the Ph.D. degree at the
SPARC Lab, Purdue University, West Lafayette, IN,
USA.

From 2015 to 2016, he was an Analog
Design Engineer with xSi Semiconductors (startup),
Bengaluru, India. His current research interests
include hardware security and mixed-signal IC
design.

Mr. Das was a recipient of the IEEE HOST Best Student Paper Award
in 2017 and 2019 and the 3rd Best Poster Award in IEEE HOST 2018.

Josef Danial (S’14) received the B.Sc. degree in
computer engineering from Purdue University, West
Lafayette, IN, USA, in 2018, where he is currently
working toward the master’s degree at the SPARC
Lab.

He has two years of industry experience, in auto-
motive (Fiat Chrysler Automobiles, Auburn Hills,
MI, USA) and IOT (Cisco Jasper, Santa Clara,
CA, USA) companies. He is currently a Graduate
Research Assistant with the SPARC Lab, Purdue
University. His current research interests include

machine learning, hardware security, and computer vision.

Santosh Ghosh received the Ph.D. degree from the
Department of Computer Science and Engineering,
IIT Kharagpur, Kharagpur, India, in 2011.

He was a Post-Doctoral Researcher at COSIC,
KU Leuven, Leuven, Belgium. He is currently
at Intel Labs, Intel Corporation, Hillsboro, OR,
USA. He has authored or coauthored more than
35 research publications and 35 filed patents in USA.
His current research interests include cryptography,
hardware security, security for IoT, and autonomous
driving.

Shreyas Sen (S’06–M’11–SM’17) received the
Ph.D. degree in electrical and computer engineering
from the Georgia Institute of Technology (Georgia
Tech), Atlanta, GA, USA, in 2011.

He has more than 5 years of industry research
experience at Intel Labs, Hillsboro, OR, USA, Qual-
comm, Austin, TX, USA, and Rambus, Los Altos,
CA, USA. He is currently an Assistant Professor at
the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN, USA. He has
authored or coauthored 2 book chapters, more than

120 conferences and journal papers. He holds 13 patents granted/pending. His
current research interests include mixed-signal circuits/systems for Internet of
Things (IoT), biomedical, and security.

Dr. Sen serves/has served as an ETS and Technical Program Committee
Member for DAC, CICC, DATE, ISLPED, ICCAD, ITC, VLSI Design,
IMSTW, and VDAT and an Executive Committee Member for the IEEE
Central Indiana Section. He was chosen by MIT Technology Review as
one of the top 10 Indian Inventors Worldwide under 35 (MIT TR35 India
Award), in 2018, for the invention of using the Human Body as a Wire, which
has the potential to transform healthcare, neuroscience, and human–computer
interaction. He was a recipient of the AFOSR Young Investigator Award
2017, the NSF CISE Research Initiation Initiative (CRII) Award 2017,
the Google Faculty Research Award 2017, the HKN Outstanding Professor
Award, the Intel Labs Divisional Recognition Award 2014 for industry-wide
impact on USB-C type, the Intel Ph.D. Fellowship 2010, the IEEE Microwave
Fellowship 2008, the GSRC Margarida Jacome Best Research Award 2007,
the Best Paper Awards at CICC 2019, HOST 2017, 2018, and 2019,
the ICCAD Best-in-Track Award 2014, the VTS Honorable Mention Award
2014, the RWS Best Paper Award 2008, the Intel Labs Quality Award 2012,
the SRC Inventor Recognition Award 2008, and the Young Engineering
Fellowship 2005. He serves/has served as an Associate Editor for the IEEE
Design & Test.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

GOLDER et al.: PRACTICAL APPROACHES TOWARD DEEP-LEARNING-BASED CROSS-DEVICE POWER SIDE-CHANNEL ATTACK 2733

Arijit Raychowdhury (SM’13) received the B.E.
degree in electrical and telecommunication engi-
neering from Jadavpur University, Kolkata, India,
in 2001, and the Ph.D. degree in electrical and
computer engineering from Purdue University, West
Lafayette, IN, USA, in 2007.

From 2013 to July 2019, he was an Associate
Professor and held the ON Semiconductor Junior
Professorship with the School of Electrical and
Computer Engineering, Georgia Institute of Tech-
nology, Atlanta, GA, USA. His industry experience

includes 5 years as a Staff Scientist at the Circuits Research Lab, Intel
Corporation, Hillsboro, OR, USA, and 1 year as an Analog Circuit Researcher
with Texas Instruments Inc. In January 2013, he joined the School of
Electrical and Computer Engineering, Georgia Institute of Technology, where
he is currently a Professor. He is currently the Co-Director of the Georgia
Tech Quantum Alliance, Atlanta, GA, USA. He has authored or coauthored
more than 170 articles in journals and refereed conferences. He holds more
than 25 U.S. and international patents. His significant contributions to the
semiconductor industry include the design of the world’s first adaptive

echo-cancellation network for integrated DSLs (TI) and embedded world-line
boosting for SRAM arrays (Intel). His current research interests include
low-power digital and mixed-signal circuit design, design of power
converters, sensors and exploring interactions of circuits with device
technologies.

Dr. Raychowdhury has served on the Technical Program Committees for
VLSI Symposium, CICC, DAC, ICCAD, ISLPED, and DATE. He has also
been a Guest Editor for multiple IEEE and ACM journals. He has also taught
many short courses and invited tutorials at multiple conferences, workshops,
industries, and universities. He was a recipient of the IEEE/ACM Innovator
under 40 Award, the NSF CISE Research Initiation Initiative Award (CRII)
in 2015, the Intel Labs Technical Contribution Award in 2011, the Dimitris
N. Chorafas Award for outstanding doctoral research in 2007, the Best
Thesis Award, College of Engineering, Purdue University, in 2007, the SRC
Technical Excellence Award in 2005, the Intel Foundation Fellowship in 2006,
the NASA INAC Fellowship in 2004, the Meissner Fellowship 2002. He and
his students have received 11 best paper awards over the years. He was
the Associate Editor of the IEEE TRANSACTIONS ON COMPUTER AIDED

DESIGN from 2013 to 2018 and the Editor of the Microelectronics Journal
(Elsevier Press) from 2013 to 2017.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:41:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

