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Abstract—We present a 55nm test-chip prototype of a crypto-
system (encryption and decryption) implementing Homomorphic
Encryption that can enable computation on encrypted data.
Test-chip measurements show 50nJ/encode and 13nJ/decode thus
making the cryptosystem suitable for sensor-nodes and IoT
applications.

I. INTRODUCTION

With the widespread proliferation of internet of things (IoT)

sensors and devices, the role of cloud based computing is

becoming ever important. This is associated with increasing

concerns of privacy; where leaks can happen in communi-

cation (between IoT nodes and the cloud), storage (both in

the node and the cloud) and computation (in the cloud).

While both communication and storage can be secured with

conventional cryptosystems; the fact that computation in the

cloud is done primarily on unencrypted data exposes it to

vulnerabilities. Users need to either (1) share their key with

the cloud service provider, which is a security concern (Fig.1),

or (2) download the data on their device to compute, which

the IoT node may not computationally support. One way to

preserve confidentiality of data when outsourcing computation

is to enable computation on the encrypted data itself [1], a

paradigm that has been revolutionized by recent advances in

homomorphic encryption (HE) which allows arbitrary oper-

ations (say, function f) on ciphertexts [2]. HE is a public-

key system based on Learning with Errors (LWE). Further,

fully HE is quantum-resistant and hence expected to bring in

the next paradigm of data-security. However, it is computa-

tionally and energetically expensive; requires extensive data

movement, logic operations, and unique compute blocks (e.g.,

number theoretic transforms (NTTs)). To provide a pathway

towards practical HE for low-power and secure IoT nodes

(e.g., medical devices, secure financial and ID data nodes

etc.) we present a 55nm hardware cryptosystem (encoder and

decoder) operating at a measured FMAX of 60MHz and peak

energy-efficiency of 50nJ/encode and 13nJ/decode. In prior

research homormorphic encryption has been implemented on

CPUs/GPUs and on FPGAs level [3] [4]. [5] presents an ASIC

implementation of a number theoretic transform, which is a

computational kernel used in post-quantum cryptosystems. In

this paper we present a hardware macro for an end-to-end HE

cryptosystem. We believe that this is the first full hardware

demonstration of a HE cryptosystem and the associated system

architecture and circuit macros.

II. SYSTEM AND CIRCUIT ARCHITECTURE

The proposed system implements the BGV scheme [6] [7]

(Fig.2) using a 34bit prime number (q) and can encrypt 4b of
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Fig. 2: Compute blocks and system architecture for the Ho-

momorphic cryptosystem employing BGV algorithm

plaintext per round. Hence the encrypted data is in ring Zq /

Φ5(X), where Φ5(X) represents the 5th cyclotomic polynomial

and Z is the integer space. Data-invariant parameters are

stored in an embedded array and read in parallel for each

compute module. The datapath widths of the sub-blocks in

the system are shown in the corresponding figures. The cryp-

tosystem comprises of three key dedicated compute blocks,

namely the Bluestein inverse/Number Theoretic Transform

[bNTT/ibNTT], modular multiplication [MulMod] and modular

add/subtraction [Add/Sub Mod]. Hardware acceleration for

large integer arithmetic blocks (136b add/sub/mult) are further

supported in the decryption engine. For potential integration

in IoT nodes, we focus on a smaller design area by serializing

the operations through efficient hardware reuse. A control

block synchronizes data movement, whereas full-scan and

input/output FIFOs enable debug and IP integration.

*  978-1-5386-9395-7/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:49:33 UTC from IEEE Xplore.  Restrictions apply. 



(b)

 

Select 
LSB

1

111

136b
Mult

Coarse 
Div. 

prod1
136b
Add

Accum.

136b
SUBprod

bnd

MulMod
sk[3]

ctxt1[3]

16pts
iNTT

Add/Sub 
Mod

dummy111
3

111113
1

ctxt0[0]
ctxt0[3]

111114
0

sk[0]

ctxt1[0]

111114
0

4
2

cntrinv

1
5

cnt

cnt

cnt
cnt

cnt

CMP

ptxt[0]
ptxt[1]
ptxt[2]
ptxt[3]

Select 
LSB½*q

11110
1

mult

MULADD: extra ckt. for Mult. Dec

Normal Dec.Ckt

0000]0000]
[ ]

[0]000[0]000
[ ]

0]00
[ ]

out4

out0,1,2,3

11    3

add sub

111111
0

mult

r[3:0]
e0[3:0]
e1[3:0]

ptxt[3:0]

11111

0
1
2
3

cnt

bNTT 11111

1
2
3
4

cnt

MulMod

Left shift

111112
3
4

cnt

111114
3
2

cnt

Add/Sub 
Mod

11111

3
4
5

cnt

pk0[3:0]

pk1[3:0]

111111

2

cnt

ctxt1
ctxt0

(c)

aussian distribution
σ =1.0 

Mod q

Mod q
Random 
draw in  
[-1,0,1]

Random 
draw in   

[0,q]

Key Generation[pk0, pk1, sk] block diagram

sk[3]

111110
1

[[
sk[0]

cnt
pk0[3][ ]
pk0[0]

bNTT 1
2

cnt

MulMod

pk1[3]]
pk1[0]

Left shift

Add/Sub 
Mod

pk0[3]
pk0[0]

sk[3]
sk[0]

pk1[3][ ]
pk1[0]

34

[000][0000]
[ ]

[000][000]
[3][ ]

34

34

(a)Gaussian distribution
σ=1.0

Fig. 3: Circuit diagram of the (a) key generation (b) encryption (c) decryption engine
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Fig. 5: Timing diagram of the key generation engine.

Fig. 3(a) illustrates the in-situ generation of the secret-key

[sk] and the public-key system [pk0, pk1]. Based on a random

number (input from external TRNG source), sk is generated

via bNTT. The public key is generated from sk. While pk1 is

generated from a TRNG (outside the chip) pk0 is generated as

pk0 = 2pk0NTT-sk*pk1, where pk0NTT denotes the bNTT of a

Gaussian random number (external input). The algorithm flow

for keygen is explained in detail in Fig.4(a). From Fig.5, the

total key generation requires 7172 clock cycles.

Fig. 3(b) shows the encryption scheme with input errors
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Fig. 6: Timing diagram of the encryption engine.

(parameter of LWE), plaintext [ptxt] and public keys generate

ciphertext [ctxt0, ctxt1]. From Fig.4(b), bNTT is executed first

on pre-determined errors [r,e0,e1] and ptxt. Ctxt1 is generated

by computing rNTT*pk1+2e1NTT and ctxt0 is generated by

computing ptxtNTT+rNTT*pk0+2e1NTT. This is shown in the

adjoining flow-chart. The timing diagram in Fig.6 shows a

total of 14294 clock cycles.

Fig. 3(c) and Fig. 7 illustrate how decryption is performed

with sk and the ciphertext. The message [msg] is calculated

by taking ibNTT of ctxt0+ctxt1*sk. The msg is compared with
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Fig. 7: Algorithm flow-chart chart of the decryption engine.
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0.5q and if the msg >0.5q then msg is the final message, or

else its bitwise inversion is the final message. Plain decryption

and decryption of addition on ciphertext generates the correct

plaintext. In order to decrypt multiplication of ciphertexts the

decryption circuit receives four 34bit inputs based on different

value of q [q0,q1,q2,q3]. With each q, we multiply msg with

rinv (i.e., the inverse of prod1). prod1 is the product of all

q[prod]/(current q). For each q, it accumulates the results

[sum] and the results/q[bnd]. After accumulating for all 4

qs, the circuit subtracts prod for bnd times and the lsb of

the computation is the result of the multiplication. This is

illustrated in the adjoining flow-chart and the timing diagram

in Fig.8.

One of the key modules in both the encryption and de-

cryption paths is the bNTT/ibNTT. Fig.9 describes the bNTT
architecture and the NTT serial unit. As opposed to previous

implementations [5],which can perform NTT on powers of 2

only, we implement Bluestein NTT which can compute NTT

on arbitrary number of points. Bluestein NTT enables multiple

post-quantum cryptographic protocols to be implemented. To

compute Bluestein NTT the input is first multiplied with wh,

the list of [10th primitive root of unity] i2. Then 16-point NTTs

are executed on the result with a twiddle factor w, which is

the 16th primitive root of unity. 16-point NTT is implemented

serially with one butterfly unit and intermediate buffers as

shown in Fig.9(b). By taking 32 repetitions (8 reps for 1 round

x 4) of the butterfly unit, the 16-point NTT is performed. Then

the result of NTT is multiplied with rb, which is the NTT of

multiplicative inverse of wh. Since the system implements a

hardware version of 8 input MulMods, two 8 point MulMod in

series are performed to calculate a 16-point MulMod. With the

result, inverse NTT is performed with winv, the multiplicative

inverse of w. Finally the MulMod of the 4th element to the

11th element of the result with ifftw, (multiplicative inverse of

16)*wh is performed to compute the final result. In the last

step, Z5
*th( 1st, 2nd, 3rd and 4th) outputs are read as final

outputs. For ibNTT, the same operations are performed with

the multiplicative inverses of wh and w.
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Fig. 10: Chip micrograph and characteristics
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III. MEASUREMENT RESULTS

The cryptosystem is designed and fabricated in a 55nm

GF CMOS process. The chip characteristics and the die-

photo are shown in Fig.10. It occupies an area of 1.25mm

X 2.5mm, which includes peripheral circuits, debug and test

infrastructure and input/output FIFO. To enable high energy-

efficiency and near-VT to sub-VT operation, the digital cells

do not use stacks of more than 3-transistors and the embedded

latches and flip-flops are fully interruptible. Measurements are

carried out on packaged parts with high speed test-interfaces.

Fig. 11(a) show a wide dynamic range of operation from 1.2

V (nominal VCC) to 280mV (deep sub-VT). A peak system

power of 4.8mW decreases to only 85nW at VMIN=280mV.

The wide dynamic range enables a similar wide throughput

range for the encryption and decryption engines as illustrated

in Fig. 11(b), thus enabling integration with IoT nodes with

variable data-rates.

Fig. 12 illustrates the energy-efficiency of encoding and

decoding. We observe that the system shows higher energy-

efficiency (lower energy/op) as the VCC is scaled. A peak effi-

ciency is observed at VCC=0.425V (VCC=0.4V) for the encoder

(decoder) where 50.63nJ/op (13.11nJ/op) is measured. Table

I shows a comparison of the proposed design with the state-

of-the-art. Unlike previous contributions which were focused

primarily on the implementation of the NTT, the current design

presents an end-to-end cryptosystem. Measurements from the
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Fig. 12: Energy per encryption and decryption as a function

of supply voltage

[8] [5] This work

platform Cortex-M4 40nm CMOS 55nm CMOS
q 12289 16575889409

distribution Binomial Φ16 Binomial Φ5

NTT type NTT Bluestein NTT
N 512 16

Frequency (MHz) 168 300 60
No. of NTT cycles 87223 492 3560
No. of INTT cycles 97789 572 3761
NTT power(mW) 72 58.9 4.51

NTT energy(nJ/NTT) 37400 96 12.03
Cryptosystem power(mW) NA NA 4.8
Energy-efficiency (nJ/op) NA NA 50.62 (encryption)

TABLE I: Comparison with the state-of-the-art designs

current design shows 92.4%, 87.5% improvement in power

and energy/NTT and is well suited for edge-devices. Thus, a

practical HE accelerator operating at high energy-efficiency is

demonstrated for integration with IoT nodes, to enable secure

end-to-end computing on encrypted data.

IV. CONCLUSION

A fully HE test-chip in 55nm CMOS is presented. It enables

secure computation on encrypted data at 50nJ/encode and

13nJ/decode.
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[4] E. Öztürk et al., “Accelerating somewhat homomorphic evaluation using
fpgas,” IACR Cryptology ePrint Archive, 2015.

[5] S. Song et al., “Leia: A 2.05mm2140mw lattice encryption instruction
accelerator in 40nm cmos,” in CICC, 2018.

[6] Z. Brakerski et al., “(leveled) fully homomorphic encryption without
bootstrapping,” ITCS ’12, 2012.

[7] S. Halevi and V. Shoup, “Algorithms in helib,” 2014.
[8] E. Alkim et al. in SPACE, 2016.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:49:33 UTC from IEEE Xplore.  Restrictions apply. 


