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Abstract— Low-power edge-intelligence is leading to spectac-
ular advances in smart sensors, actuators, and human–machine
interfaces. In particular, energy efficiency is driving key advances
in robotics, where low-power computation is augmented with
smart control and mechanical systems to enable small-sized and
intelligent drones, unmanned aerial vehicles (UAVs), micro-sized
cars, and so on with applications in surveillance, disaster relief,
and reconnaissance. Furthermore, for a variety of tasks, swarms
of robots are often used as opposed to the individual robots.
This article presents an energy-efficient computing platform that
can enable a sample class of algorithms for swarm robotics.
We demonstrate that both physical-model-based algorithms as
well as learning-based algorithms can be supported on the same
computing platform. We also demonstrate that with changing
swarm sizes, the number of bits required to compute also scales.
We take advantage of this observation to propose a hybrid-digital-
mixed-signal computing platform, whose energy efficiency scales
with the resolution of the data path and hence the swarm size.
Measurements on a 65-nm CMOS test-chip demonstrate a peak
energy efficiency of 9.1 TOPS/W at a 3-b resolution, and it scales
down to 1.1 TOPS/W at an 8-b resolution.

Index Terms— Machine learning, mixed signal, robotics, swarm
intelligence.

I. INTRODUCTION

INSPIRED by the collective intelligence of biological
systems, swarm robotics is an emerging area where mul-

tiple robots work together to enable complex swarm behav-
ior. The problem-solving capability enabled through simple
interactions among the agents enables novel applications
[1]–[5]. In swarm robotics, multiple small and distrib-
uted robots coordinate and gather data to enable intelligent
decision-making as a group (shown in Fig. 1). These have been
used in applications, such as exploration, reconnaissance, and
disaster relief [6]. The fact that distributed and swarm robotics
are resilient to component-level failures further motivates the
use of swarms. In swarm robotics, multiple robots often
coordinate in real time to solve diverse problems, such as
pattern formation, cooperative reinforcement learning (RL),
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Fig. 1. Swarm algorithms that can successfully accomplish (a) collaborative
path planning, (b) pattern formation, (c) multi-agent patrolling, and (d) multi-
agent predator-prey.

and path planning. Some of these algorithms use learning-
based methods and have gained increasing importance with the
success of deep neural networks and neuromorphic computing.
Although certain swarm algorithms rely on real-time learning
(e.g., cooperative RL) representing a model-free approach,
many powerful algorithms that have been developed over the
past two decades (e.g., pattern formation) rely on a mathemat-
ical structure and represent a more traditional physical-model-
based approach. The next generation of swarm hardware
needs to support both of these approaches; and hence, it is
important to identify the common computational kernels that
need to be supported in hardware. However, hardware designs
that can support computation in swarms are computationally
challenging; especially from an energy-perspective. This is
discussed in [7]: the main processor in a coin-size swarm
robot consumes 4× energy than a micro-controller, and this
energy is compared (more than 80%) with motors and camera-
based sensors [7]. As swarm robots are expected to enable
the so-called “intelligence” in reduced form factors, energy-
efficient hardware design continues to be an active area of
research. In this article, we identify the commonalities and
shared compute primitives across a variety of model-based
and model-freeswarm algorithms and present a unified, fully
programmable, energy-efficient, and scalable platform capable
of real-time swarm intelligence. Although we demonstrate how
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Fig. 2. Schematic map showing APF-based path planning and formation.

to support some sample algorithms here, the design principles
are scalable and can be applied to larger swarms, enabling
more advanced algorithms.

To enable a unified energy-efficient computing platform for
swarm robotics, we demonstrate a hybrid-mixed-signal and
digital design. In [8], we demonstrated a purely time-based
mixed-signal neural network for RL on edge devices. How-
ever, a purely mixed-signal solution shows superior energy
efficiency for low bits of resolution. As the number of bits on
the data path increases, mixed-signal solutions tend to be less
efficient than purely digital counterparts. In swarm robotics,
the size of the swarm determines the size of vectors that need
to be computed, and hence, the bit-width required for high
accuracy also scales with the swarm size. Hence, the mixed-
signal solutions are efficient for small swarms, while the digital
solutions tend to outperform in larger swarms. To enable
such scalability, we demonstrate a hybrid-digital-mixed-signal
(HDMS) solution where a time-domain mixed-signal (TDMS)
kernel computes on 3–5-b data. A digital wrapper around the
mixed-signal kernel further scales the computing platform to
6–8 b. This allows high energy efficiency for low precision
along with the excellent energy scalability of digital computing
for larger bit-widths.

The test chip has been fabricated in a 65-nm CMOS process.
We demonstrate 9.1-TOPS/W peak energy efficiency at 3-b
resolution. The energy efficiency decreases to 1.1 TOPS/W
for 8-b resolution. The test chip interfaces with a Raspberry
Pi platform consisting of integrated sensors (inertial sensors
and ultrasonic distance sensors) and long-range (LoRa) radios
for decentralized, peer-to-peer communication among mobile
robotic vehicles in a swarm. The rest of this article is divided
as follows. Section II provides an overview of the swarm
algorithms. Sections III and IV describe the scalability of
the computing platform with the swarm size and the HDMS
design. The system overview is described in Section V, and the
measurement results are shown in Section VI. Finally, an out-
look of potential future works is discussed in Section VII, and
the conclusion is drawn in Section VIII.

II. OVERVIEW OF SWARM ALGORITHMS

Swarm algorithms can be broadly classified into two cat-
egories: the ones based on the physical and mathematical

models and the ones based on learning. In Sections II-A and
II-B, we provide an overview of the types of algorithms that
are supported by the common unified platform.

A. Algorithms Based on Physical Models

Over the past decades, there has been a significant devel-
opment in swarm control algorithms inspired by the physical
and mathematical models. Among these mathematical models,
artificial potential field (APF) is a popular and practically
useful computational approach. In APF, we assume that the
robots and the objects (goal, obstacles, and teammates) are
similar to “electrical charge” that produces artificial attractive
and repulsive potential fields whose potential functions are
to be leveraged by the system designer for optimal robotic
control and system performance. By aggregating the potential
fields (i.e., forces), the motion vector can be obtained at
each evaluation step. In general, the APF algorithm has the
following format [9]–[13]:

mi
d �vi

dt
= �Fpro,i + �Fint,i + �Fesp,i + �Fest,i . (1)

This is based on Newton’s second law to describe the i th
robot’s velocity vi change determined by propulsion �Fpro,i ,
interaction �Fint,i , objective escape �Fesp,i , and stochastic forces

�Fest,i and mass mi . By properly choosing the potential function
that generates each term, we are able to design a cooperative
control algorithm that can implement applications, such as
collaborative path planning and co-coordinated formation.
A typical example is shown in Fig. 2.

For example, for path-planning applications as shown
in Fig. 1(a), the positional information of objectives and
obstacles is required in determining the motion vectors. In this
design, we consider the standard parabolic potential Uobj for
the object and an exponential potential barrier for the obstacles
Uobs from [9]

Uobj(�r) = kobjdis(�r , �robj)
2 (2)

Uobs(�r) = kobsdis(�r , �robs)
−1 (3)

where �robj and �robs are the positions of the objective and
obstacles, respectively. The force vectors created by these
potential functions in the 2-D plane are of the form

�Fpro = −k f ∇i

(
Uobj(�r) +

M∑
m=1

Uobs(�r)

)
(4)

Fpro,x = α|�r − �robj| cos θobj+
M∑

m=1

βm |�r − �robs,m |−2cosθobs,m

(5)

Fpro,y = α|�r − �robj| sin θobj+
M∑

m=1

βm |�r − �robs,m |−2sinθobs,m .

(6)

For formation applications as shown in Fig. 1(b), the poten-
tial function uses a logarithm-cosine-hyperbolic function

Uint(�r) = βln(cos h|�r − �R|) (7)

where �r is the interaction vector, while �R is the target vector.
Enabling each interaction with a dedicated target vector allows
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fine-tuning of the shape of the formation. The resulting force
equations in the 2-D plane can be expressed as

�Fint = −∇i (Uint(�ri , �ri ) (8)

Fint,x =
M∑

m=1

αi [tanh(|�r j − �R j |) cos θ j ] (9)

Fint,y =
M∑

m=1

αi [tanh(|�r j − �R j |) sin θ j ]. (10)

To solve swarm problems, we need to compute (1) with
the correct parametric representations of the functions and
parameters as obtained from (4) to (6) and (8) to (10). These
parameters are obtained from system-level simulations before
deployment.

B. Learning-Based Algorithms

With the rapid development of hardware systems to support
machine learning and artificial intelligence [8], [14]–[16],
advanced learning-based techniques are becoming popular for
applications, such as multi-robot predator-prey and multi-
agent patrolling, as shown in Fig. 1(c) and (d); learning-
based algorithms have now become competitive in a variety of
problems where the pre-defined models may not exist or may
be incomplete. The motivation for the learning-based approach
is to allow each robot to learn continuously without human
intervention and establish a control model with real-world
knowledge. Among all the approaches, an RL-based coop-
erative Q-learning [2], [17]–[19] algorithm has shown great
promise.

Single-agent Q-learning [20], [21] is based on the iterative
update of the Q value, as a robot navigates through a series
of (state, action, and reward) tuples. This iterative scheme is
derived from the Bellman equation [22] for optimal control.
The iterative algorithm can be summarized as

Qt+1(St , At )

= Qt (St , At ) + α(Rt + γ max Qt (St+1, At )−Qt (St , At ))

(11)

Rt = f (St ) (12)

where γ and α are the discount factor and the learning
rate to aggregate the distant rewards and update Q-tables,
respectively. By taking a series of actions A (moving forward
and backward) in the state space S (positions and obstacle
vectors), the robot calculates the reward for each action and
updates the Q-table, thus creating a robust functional mapping
from the state space to the action space. The reward is based
on a single robot’s current state. A hardware implementation
of Q-learning for autonomous navigation has been presented
in [8] and [23], and interested readers are pointed to the
references for more details.

In cooperative Q learning, global, instead of local, states
and rewards are utilized to facilitate multi-agent collaboration.
As opposed to the baseline Q-learning where a single agent’s
local state is used, in a swarm, the local states are broadcasted
to all the teammates. This forms a global state, which incor-
porates the knowledge of all teammates. The Q value of the

swarm is now evaluated as

Qt+1(St,global, At ) = Qt (St,global, At )

+α(Rt,global+γ max Qt (St+1,global, At )

− Qt (St+1,global, At )) (13)

St,global = [St,1, St,2 · · · St,N ]. (14)

As described in [23], each robot will now take an action based
on the best Q value of the current global state. A global reward
is evaluated based on the team’s performance, for example,
whether one of the targets has been reached by one of the team
members. It is worth noting that we incorporate the task com-
pletion time as a reward function, as it improves the swarm’s
performance and facilitates convergence by encouraging all
robots to take continuous actions

Rt = g(St,global, t). (15)

When the environment is complex and the swarm size is
large, the global state can also be significantly large. It is
difficult to store all the Q values in a table, especially in
memory-constrained design. Therefore, the Q value is typ-
ically approximated as a neural network output. The states
(St,global) (sensor values and current positions) act as inputs
to the neural network. Then, every neural network propagates
the states through an embedded neural network and produces
Q values of each action. A hard-max function at the end of
the neural network establishes the best action to be taken.
We use ε-greedy as means to perform exploration. The details
of cooperative Q-learning for multi-robot action are a rich and
evolving area of algorithmic research. For more details on
cooperative Q-learning, interested readers are directed to [2].

III. COMMON COMPUTING PLATFORM

As we mentioned earlier, future computing platforms that
can support swarm algorithms need to support both math-
ematical algorithms as well as learning-based algorithms.
Interestingly, we observe that both these two algorithms have
a basic mathematical structure. As computational problems,
they both feature as follows.

1) Linear Processing Unit (LPU): Both types of algorithms
work on vectors and matrices, and hence, linear process-
ing is a critical component of computation. In APF-
based algorithms, linear operations are performed on
trigonometric transformations of motion vectors [see
(1)]. In neural networks, the linear units allow the
synaptic weights to be summed up at the input of
a neuron. Fundamentally, the computational platform
needs to support multiplications and additions [through
multiply-and-accumulate, multiplication and accumula-
tion (MAC) units].

2) Non-Linear Processing Unit: Apart from linear vector
processing, both algorithms require non-linear transfor-
mations. In APF algorithms, these transformations are
mostly trigonometric [see (4)–(6) and (8)–(10)], whereas
in neural networks, these transformations are the activa-
tion functions (sigmoid and rectified linear unit). In APF,
the linear processing is done on non-linearly transformed
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Fig. 3. Algorithmic simulations demonstrate how the required bit precision
scales with the swarm size for two template problems (a) collaborative path
planning and (b) multi-agent predator-prey. (c) Number of bits required to
accurately compute different template algorithms for varying swarm sizes.

motion and position vectors; hence, we perform non-
linear processing followed by linear processing. On the
other hand, in neural networks, we perform MACs first,
followed by non-linear activation functions.

Since linear/non-linear operations are the major work-
loads in robotic algorithms, this unified compute platform is
designed to provide a unified solution to accelerate both types
of computation. With a dedicated non-linear processing unit
and an LPU, we achieve high energy efficiency as will be
described in Section VII.

The order of linear and non-linear processing is different
in the two algorithms, but in a memory-centric system, this
amounts to simply changing the order of instructions to
support both the classes of algorithms. This shows that a
unified computing platform comprising of: 1) an LPU; 2) a
programmable non-linear processing unit; 3) a data cache; and
4) an instruction cache will be able to support both the model-
based and learning-based algorithms. In the proposed ASIC,
we demonstrate support for both types of algorithms with a
non-linear processing unit, which is composed of a lookup
table (LUT)-based piecewise approximation of the non-linear
function. The LPU is composed of an MAC array and data
cache and instruction cache with standard 6T SRAM cells.

IV. SCALABILITY WITH SWARM SIZE

The number of agents in a swarm, also called the swarm
size, is a major design parameter for providing optimal perfor-
mance and robustness at a minimal system cost. For example,
in disaster relief, to ensure the largest area coverage and the
fastest convergence rate, a relatively large number of agents
are often preferred. However, for indoor exploration, a small
group of robots is likely to be sufficient, given the reduced
problem complexity and increased environmental clutter. As a

Fig. 4. Circuit schematic illustrating (a) TDMS MAC circuit, (b) DPC, and
(c) DCO.

consequence, future computing platforms that can support
multiple swarm algorithms also need to be able to support
multiple swarm sizes. To prevent over-design, the computing
platforms need to perform at optimal energy efficiency for a
large scale of swarm sizes.

To better understand the computation requirement for vary-
ing swarm sizes, we analyze both the model-based and
learning-based algorithms as a function of the swarm size.
In model-based APF swarm control, the mathematical struc-
ture of the problem follows a general form:

�F =
M∑

m=1

N Lm ( �dm) (16)

where �F , N Lm , and �dm represent the aggregated potential
field force vector, the mth nonlinear function, and the mth
distance vector, respectively, while M is the total number of
vectors. On the other hand, for learning-based cooperative
RL algorithms, as the Q-table is approximated by the neural
network, the general computation paradigm is the same as
computing each neuron’s output

y j = a

(
N∑

i=1

wi, j (xi)

)
(17)

where x , w, y, and a are the inputs, weights, neuron outputs,
and nonlinear activation functions, respectively, while N is
the number of pre-synaptic neurons. It is easy to understand
that M will scale with swarm size, especially in applications
such as pattern formation. Similarly, N is determined by the
dimension of the global states of the system, which scales
with the swarm size. As a result, a larger swarm will require
a wider range of operands, thus requiring a higher bit precision
to correctly process APF algorithms as well as cooperative RL.
Fig. 3(a) and (b) shows the simulation results of representing

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 13:05:41 UTC from IEEE Xplore.  Restrictions apply. 



CAO et al.: 65-nm 8-TO-3-b 1.0–0.36-V 9.1–1.1-TOPS/W HDMS COMPUTING PLATFORM FOR ACCELERATING SWARM ROBOTICS 53

Fig. 5. Energy map versus an operand range in pJ for (a) digital, (b) TDMS, and (c) HDMS MAC implementations. (d) Energy/MAC (normalized to a
digital implementation) for TDMS and HDMS implementations. We see that HDMS outperforms TDMS (average and worst cases) and digital (average case)
for large swarm sizes.

the required range of the operands for different swarm sizes
in both physical model-based (coordinated path planning) and
learning-based (multiple predator-prey) template algorithms.
We note that as the swarm size increases, the bit precision
required to correctly compute also increases. The simulation
results can be summarized in Fig. 3(c), where the template
algorithms that can be supported require a bit-width of 3 b
to a maximum of 8 b. In these applications, the sensor data
are assumed to have a bit-width of 8 b or less, and obstacle
avoidance is performed using ultrasonic sensors.

V. HYBRID-DIGITAL-MIXED-SIGNAL COMPUTING

The advantage of using analog and mixed-signal design
principles for energy-efficient computing has been demon-
strated in [8], [23], and [24]. More recently, there has been
an increasing interest in time-based mixed-signal computing.
Here, information is represented in a phase or frequency
domain, and hence, the effective number of bits is not limited
by the voltage scalability of the design. However, since the
data are processed in the time domain, the system throughput
is lower than the corresponding digital systems. For many
problems of practical interest, in particular, for control and
robotics on small form factors where the data-processing speed
is relatively low, this is a favorable tradeoff. It has been
demonstrated successfully in RL problems [8], [23] as well
as in convolutional neural networks [25], decoders [26], and
pipelines circuits [27]. In spite of its superior energy efficiency
at low bit-widths (typically less than 5 or 6 b depending on the
process), it is well understood that as the bit precision scales
to high values, the energy efficiency of digital circuits takes
over. Hence, for the problem at hand, where an increasing
swarm size should be supported with a higher bit-width,
an ideal system should scale seamlessly between a mixed-
signal (time-based) to a digital design, such that high energy
efficiency is obtained, as the system specifications scale.

A. Time-Domain Multiplication and Accumulation

The details of time-domain MAC have been described
in [8] and will be summarized here for completeness.
Fig. 4(a)–(c) shows the time-based MAC circuit. The time-
based circuit operates on the 5-b data, representing both

positive and negative numbers. It has a pulse input (Tp) used
as the “enable” signal to an up-down counter. Signed operation
is handled by XOR operation of sign bit, as shown in Fig. 4(a).
One of the operands (X[0:4]) is encoded in the pulsewidth of
Tp using a digital-to-pulse-converter (DPC) with X[4] as a
sign bit. For the i th input Xi , we obtain

Tpi = Xi ∗ T0 (18)

where T0 is the unit time-constant for the DPC. The other
input (Y[0:4]) is encoded in the signed magnitude format
and controls a digitally controlled oscillator (DCO). Y[4]
represents the sign bit, and Y[0:3] represents the magnitude of
the second operand. The three-stage DCO converts the digital
value to a frequency proportional to Y[0:3]. Each stage of
the DCO consists of a bank of parallel binary-sized inverters
controlled by the digital value (Y[0:3]), as shown in Fig. 4(b)
and (c). The frequency of the DCO for the j th word (Y j ) is
Fj , and ignoring the second-order effects such as non-linearity
is given by

Fj = Y j ∗ F0 (19)

where F0 is the unit frequency of the DCO corresponding
to a code 1 when W = 00001. The clock to the counter is
driven by the DCO, and the enable signal is controlled by the
pulsewidth (Tpi ). Hence, the counter output is given by

DTij = Tpi ∗ Fj = Xi ∗ Y j ∗ F0 ∗ T0. (20)

From (20), we can observe that the counter output is
proportional to the product of the two operands. As shown
in Fig. 4(a), the polarity of MAC is taken care of through
up-down knob of the counter controlled by an XOR of
X[4] and Y[4]. The constants, F0 and T0, represent the
overall system throughput and designed to maintain correct
functionality amidst non-linearities. The scalability of this
design to a large number of vector-parameters has been
discussed in [23] and [24].

B. Hybrid-Digital-Mixed-Signal Computing Platform

It is worth noting that the time-domain MAC shows high
energy efficiency for low bit-widths only. Fig. 5(a) and (b)
shows the simulation results of a 65-nm CMOS GP process,
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Fig. 6. Circuit schematic of the HDMS circuit illustrating the 5-b TDMS
kernel and the digital peripherals to enable efficient scaling to 8 b.

and it reveals that the energy consumed for an MAC operation
scales faster than a digital system. This can be intuitively
understood from the fact that the number of switching events
(in the worst case) for a time-domain phase–frequency-based
design scales as 2N for N-bit operands. This results in
an interesting artifact, where important computation (where
operands have higher magnitudes) consumes more energy
than less important computation (where operands have lower
magnitudes). The 2-D energy bar shown in Fig. 5 shows how
a time-domain system displays high energy efficiency for bit-
width less than 5, but it increases dramatically as the bit-
width increases. To maintain high efficiency across the entire
operating range, we propose an HDMS MAC kernel, as shown
in Fig. 6.

The HDMS MAC kernel consists of a conventional TDMS
multiplier, a 5–8-b digital adder and shifter, and a 5–8-b
TDMS controller. For bit precisions less than 5 b, the circuit
is operated completely in the time domain. The idea is to
compute an 8-bit multiplication via shift-and-add. At the
core, we have an energy-efficient time-domain 5-b multiplier.
Around that, we have peripheral circuits (add-shifter and
controller) to reconfigure the multiplier to higher bit precision,
as needed by allowing seamless shift and add operations. The
5–8-b digital add-shifter circuit diagram is shown in Fig. 6.
Fig. 6 shows the HDMS circuit: a shifter shifts the TDMS
products by 0, 2, 4, and 8 bit each time and accumulates
through time with a 16-b full adder. The computation starts
from the most significant bit and proceeds to the least signifi-
cant bit (LSB). This helps us to save unnecessary switching by
stopping the computation as soon as any overflow is detected
through the embedded overflow detection. By driving a digital

Fig. 7. Overall system architecture of the unified computing platform.

Fig. 8. (a) Circuit schematic and (b) corresponding control bits for the NFE.
(c) Circuit schematic and (d) instructions for the LPU.

select signal (DS_SEL) active, the 5–8-b TDMS controller
splits 8-bit input operands A and B into 4-bit components,
passes them to the TDMS multiplier in pairs, and controls
the add-shifter to produce high-precision output. With the
proposed kernel, we are able to preserve the energy efficiency
of the time-domain computation for lower bit precision while
leveraging the efficiency of digital computation for higher bits
of precision. The energy map of HDMS is shown in Fig. 5(c),
and TDMS/HDMS energy normalized to a digital circuit with
the same bit precision is shown in the table in Fig. 5(d).
It should also be noted that the proposed scheme is scalable
to handle more than 8-b operations.

We should also note that, although HDMS requires addi-
tional clock cycles (4×) than TDMS, it still shows higher
throughput; owing to the fact that HDMS avoids long clock
periods, typical of 8-b TDMS (16×). With both energy and
throughput advantages, the major tradeoff is the additional
area required for the digital peripherals. However, it should
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Fig. 9. Clock diagram for examples in (a) APF and (b) cooperative RL.

be noted that HDMS achieves lower throughput than high-
speed digital. In the current application, the throughput that
we achieve is more than sufficient to support the data rate for
the sensors and actuators.

VI. SYSTEM OVERVIEW

The system architecture of the proposed computation plat-
form is shown in Fig. 7. As mentioned in Section IV, we have
noted that APF and cooperative RL are essential combina-
tions of nonlinear evaluations and linear operations. This has
inspired us to design a dedicated accelerator for nonlinear and
linear computations, which are called the nonlinear function
evaluator (NFE) and the LPU, respectively. NFE implements
the non-linear function using the piecewise linear approxi-
mation of the nonlinear functions. We embed a number of
widely used nonlinear functions in the NFE. By choosing the
function to evaluate and provide the input parameter, NFE
generates an offset (xoff ), a reference gradient (gref ), and a
reference offset (yref ) in one clock cycle. The corresponding
evaluation result is generated by multiplication/addition of
xoff , gref , and yref in the LPU. The number of clock cycle
depends on the bit precision selected. We observe that many
of the required functions show symmetry or periodicity, and
we take advantage of that to implement a mapping mechanism
to reduce the number of comparisons and computations. This
saves active die-area as well as computational energy. The
reference parameters are stored in an LUT. By storing only
the important parameters, determined from the range of the

Fig. 10. Die photograph and chip characteristics.

inputs and by interpolating in the LPU, NFE is achieving
target accuracy for the entire range of the data. As opposed
to using an LUT for the complete range of inputs, the pro-
posed design allows a compact implementation with a reduced
memory footprint. On the other hand, the LPU supports
all the linear operations (addition and multiplication). Most
operations are implemented in the digital domain except for
MAC. Circuit and control details of NFE and LPU are shown
in Fig. 8(a)–(d).

We provide the bi-directional local data path between LPU
and NFE for computations. Data can move between the LPU
and the NFE seamlessly to preserve the data locality.

A 16-kB on-chip SRAM is embedded together with an
instruction cache, a data loader, and write-back controllers.
A front-end controller is also provided, and the design is full-
scan. It should be noted that, either in model-based or learning-
based applications, required information storage will scale
with the swarm size and the complexity of the environment.
The current design is a prototype with the 16-kB on-chip mem-
ory. For more complex “experience maps,” off-chip storage is
required. This is not supported in the current test chip. With the
embedded computation/storage capability, the chip is able to
interface with the sensors and communication components for
swarm robotics. The sensors and actuators interface through a
Raspberry Pi, which acts simply as an interface. All the sensors
produce digital outputs. Ultrasonic sensors are used for depth
measurements. Inertial measurement units are used to estimate
position, by integrating into the Raspberry Pi. In future work,
the system may be scaled to enable more complex mapping
and localization algorithms. With limited on-chip resources,
this test chip is intended to work as a co-processor to support
key algorithms and applications. Sample timing diagrams for
two tasks, one for APF algorithm and one for the cooperative
RL, are shown in Fig. 9.

VII. MEASUREMENTS

The proposed computational platform is implemented and
taped-out in a 65-nm GP CMOS process. It occupies a total
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TABLE I

BENCHMARKING TABLE SHOWING COMPETITIVE FIGURES-OF-MERIT COMPARED WITH SIMILAR HARDWARE ACCELERATORS

Fig. 11. Measured linearity of (a) DCO and (b) DPC.

area of 2 mm2 and is packaged in a chip-size quad flat no-
leads package. The chip die photograph and characteristics are
shown in Fig. 10. Since the TDMS circuits use mixed-signal
DCO and DPCs, we characterize their non-linearities at two
different voltages (VCC = 1.0 V and VCC = 0.6 V). The worst
case integral nonlinearity and differential nonlinearity range
from −1.0 to 1.1 LSB, as shown in Fig. 11. The measured
power-performance tradeoff is shown in Fig. 12. We note a

Fig. 12. Measured power-performance tradeoff.

Fig. 13. Measured energy per MAC across for different bit-widths at VCC =
0.4, 0.6, and 0.8 V.

measured peak FMAX of 1.5 MHz and correct functionality
down to VMIN of 0.36 V, below which the embedded SRAM
arrays cease to function. The processing throughput scales
with supply voltage and thus clock frequency. We measure
a logic-power dissipation of 3.2 μW (1.9 μW) for 8-b (5-b)
operations. The measured energy/operation (in Fig. 13) shows
high scalability with the bit resolution, illustrating a peak of
energy efficiency of 0.22 (at 3 b) and 1.76 pJ/MAC (at 8 b).
We note that at low bit-widths, the TDMS circuit cores show
superior energy efficiency, while the digital peripherals allow
almost linear energy-scaling for 5–8 b. We also measure the
average arithmetic energy efficiency as a function of the supply
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Fig. 14. Measured arithmetic energy efficiency as a function of the operating
voltage for different bit-widths.

Fig. 15. Measured power breakdown among different computational blocks.

voltage and record a 9.1 TOPS/W (for 3-b operations), and
it decreases to 1.1 TOPS/W (for 8-b operations) as is shown
in Fig. 14. This shows how the bit-resolution scalability allows
efficient operations for multiple bit-widths and hence swarm
sizes. We plot the energy breakdown of the computation unit
in Fig. 15 and show that the LPU and the NPE consume 88%
and 12% of the logic power, respectively. The power distribu-
tion across various blocks of the LPU is further shown, and all
the components contribute equally in the power dissipation.

The test chip is integrated and mounted on an application
platform. It is used as a controller for a robotic car as shown
in Fig. 16(a) and (b) and interfaces with a Raspberry Pi,
motor controllers, sensors, and LoRA radios. The conver-
gence of cooperative RL is shown in Fig. 16(c). The neural-
network Q-approximator has two layers, and each layer has
100 neurons. Through hyper-parameter tuning, this setting
results in the best performance under the constraints of the
limited on-chip memory. Here, the inference is implemented
in 5-b TDMS and learning in 8-b HDMS. In either mode,
the non-linearity of the DPC and DCO (post-calibration) does
not affect the accuracy of the algorithms. Particularly during
learning, the digital peripheral circuits for HDMS reduce the
impact of non-ideality and can successfully train the network.
Furthermore, for applications requiring higher bit precision,
the proposed HDMS can be scaled to 12–16 b. A video
demonstration of this can be found in https://www.
youtube.com/watch?v=_NqdJabFJKo. In this video,

Fig. 16. (a) Test chip mounted on a robotic car with peripheral circuits.
(b) Experimental setup. (c) Number of iterations required for convergence in
cooperative RL.

Fig. 17. Application-level benchmarking demonstrating measured
energy/performance for different template algorithms.

we demonstrate a two-robot cooperative learning task for
predator-prey applications. The swarm size can also be scaled
in the future for more complex demonstrations. However,
the current design is limited in the number of sensor interfaces
that it can handle; and further modifications are required to
develop real-time demonstrations of larger swarms. We imple-
ment four template swarm algorithms, namely, path planning,
pattern formation, predator-prey, and joint exploration. The
first two are based on the physical and mathematical models,
and the last two are based on the learning algorithms. We mea-
sure the total energy as well as the number of actions taken
per second for each of these tasks in sample environments.
These are plotted in Fig. 17, and we note a large variation in
both the energy cost and the number of actions per second for
these template problems. This also illustrates the wide variety
of algorithms [simultaneous localization and mapping (SLAM)
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and vision-based path planning] that need to be supported
in the future robotic controllers, as the complexities of the
environments and the cost functions can dramatically change.

The test chip has been benchmarked against similar designs
and shows competitive figures-of-merit, as shown in Table I.
This is also the first demonstration of a unified and program-
mable platform that can accelerate a large class of algorithms
for swarm robotics with efficient scalability in terms of swarm
sizes and application.

VIII. OUTLOOK

Swarm robotics is computationally challenging, and the
proposed test chip is a prototype to demonstrate some key
enabling features. The first challenge is scalability. The current
design is limited by the on-chip memory and the number
of interfaces. Future platforms can extend the design by
incorporating off-chip memory to store complex “experience
maps.” For higher bit precision, the HDMS circuits need to
be evaluated, in particular, when support for more complex
algorithms is required. Furthermore, to support advanced
applications, such as SLAM and vision-based navigation,
the current design needs to enable with higher throughput and
near-/in-memory computing. Finally, higher throughput can be
supported through an array of LPUs and NPEs, which can
parallelize the algorithms.

IX. CONCLUSION

This article presents a 65-nm CMOS platform that supports
both model-based and learning-based algorithms for swarm
robotics. The proposed HDMS computational unit provides
excellent scalability with swarm sizes. We measure a peak
energy efficiency of 9.1 TOPS/W. The test chip is integrated
with the peripheral controllers and sensors and mounted on
a robotic car. Sample algorithms have been executed and
benchmarked.
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