IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 3, MARCH 2020

629

OPTIMO: A 65-nm 279-GOPS/W 16-b
Programmable Spatial-Array Processor with
On-Chip Network for Solving Distributed
Optimizations via the Alternating
Direction Method of Multipliers

Muya Chang™, Student Member, IEEE, Li-Hsiang Lin, Justin Romberg™, Fellow, IEEE,
and Arijit Raychowdhury™, Senior Member, IEEE

Abstract—This article presents OPTIMO, a 65-nm, 16-b,
fully programmable, spatial-array processor with 49 cores and
a hierarchical multi-cast network for solving distributed opti-
mizations via the alternating direction method of multipli-
ers (ADMM). ADMM is a projection-based method for solving
generic-constrained optimizations’ problems. In essence, it relies
upon decomposing the decision vector into subvectors, updating
sequentially by minimizing an augmented Lagrangian function,
and eventually updating the Lagrange multiplier. The ADMM
algorithm has typically been used for solving problems in which
the decision variable is decomposed into two or multiple subvec-
tors. We demonstrate six template algorithms and their applica-
tions and measure a peak energy efficiency of 279 GOPS/W.

Index Terms— Alternating direction method of multipliers
(ADMM), array processing, distributed, multi-cast network,
near-memory computing, optimizations.

I. INTRODUCTION

HE EXPLOSION of big-data problems arising in sta-

tistics, machine learning (ML), image processing, 5G
systems, and other related areas [1] has accelerated the
development of hardware prototypes that rely on data-flow
architectures and near-memory processing to address the
memory bottleneck. As computational models that rely on a
close coupling between data storage and computation become
relevant, the importance of specialized hardware architectures
that can provide breakthrough advances in energy efficiency

Manuscript received June 26, 2019; revised September 8, 2019 and
October 29, 2019; accepted November 2, 2019. Date of publication
December 12, 2019; date of current version February 25, 2020. This article
was approved by Guest Editor Qun Jane Gu. This work was supported in
part by the Semiconductor Research Corporation through JUMP CBRIC Task
under Grant 2777.006, in part by the National Science Foundation under
Grant 1640081, and in part by Nanoelectronics Research Corporation (NERC),
a wholly owned subsidiary of the Semiconductor Research Corporation
(SRC), through Extremely Energy Efficient Collective Electronics (EXCEL),
an SRC-NRI Nanoelectronics Research Initiative, under Grant 2698.001 and
Grant 2698.002. (Corresponding author: Muya Chang.)

The authors are with the School of Electrical and Computer Engi-
neering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
(e-mail: mchang87@gatech.edu; 1lin79@gatech.edu; jrom@ece.gatech.edu;
arijit.raychowdhury @ece.gatech.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2019.2953831

and performance is also increasing. The current generation of
such hardware is mostly geared toward inference in neural
networks (NNs). However, looking beyond the success of NN
accelerators for classification [2]-[5], we recognize a growing
need for solving complex optimization problems, which arise
in all areas of signal processing [6]—[9], such as ML model
training, computational imaging (medical, optical, and hyper-
spectral) [10], resource allocation in 5G massive multiple-
input and multiple-output (MIMO) networks [11], and solving
inverse problems, such as low-density parity-check (LDPC)
decoding [12]. Currently, most of these algorithms are solved
in GPUs and CPUs; however, with the widespread prolif-
eration of ML, embedded signal processing, computational
imaging, and so on, there is a growing demand for solving
such optimizations both at edge nodes as well as the cloud.
In spite of the diversity of applications, a common mathe-
matical framework, namely solving constrained optimizations
(i.e., minimize [(x) under a constraint r(x) = 0 for a
vector x and functions / and r) binds most optimization
problems. A particularly challenging task in solving opti-
mization problems is the dimensionality of the task, namely,
the size of the data set or the feature set. This requires
innovative algorithms as well as hardware-algorithm code-
sign. Of increasing importance are distributed optimization
algorithms where different processing elements can work on
different parts of the data or features, then communicate
their local solutions with each other too, and finally, reach a
global consensus. These algorithms have been discussed in the
literature [1], [13]-[15]. Among these algorithms, alternating
direction method of multipliers (ADMM) has been particularly
successful for solving the constraint optimization problems
for large-scale data sets [1]. In particular, ADMM provides
excellent convergence for distributed data. In addition, it has
been shown in [16] that quantization error does not lead to
unbounded error for large problem classes. This allows us to
use fixed-point arithmetic for solving ADMM on large data.
A review of the ADMM algorithm is provided in Section II,
but it suffices to say that ADMM is one of the most common
iterative algorithms for solving a large class of optimization

0018-9200 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-3035-1106
https://orcid.org/0000-0002-6616-197X
https://orcid.org/0000-0001-8391-0576

630

‘ Constrained ‘ minimize 1(x)

Optimization | ynder constraint r(x) = 0

‘ ADMM Form ‘ minimize l(x) + r(z) under x —z =10
‘ Distributed minimize Y. l(x) + r(z) under x —z =0

ADMM Form

Wait for OPUy Finish

ININAV PoqInsi & WINAYV € Pazl[enus)

*OPU: Optimization Processing Unit Time

Fig. 1. OPTIMO: A spatial-array processor for solving distributed optimiza-
tions via distributed ADMM.

: Distributed ADMM

Update x Update u

=~
e

uonezZIenIu]

é@

|
|
i
|
|
|
|
|

-

Finish

Fig. 2. Program flow for distributed ADMM.

problems and interested readers are pointed to [1] for a detailed
survey. From a hardware perspective, ADMM, particularly in
its distributed form is a universal and powerful computing
model as it relies on local, iterative computing on a subset of
the data (local memory) along with periodic exchange of infor-
mation with near/distant neighbors (a programmable or re-
configurable data flow) to converge to a global solution (called
consensus), as shown in Fig. 1. Also, Fig. 2 briefly shows how
the program is initialized, executed, and terminated. Here x, z,
and u are intermediate variables, which will be introduced in
Section II, but the information flow is captured in this diagram.

In this article, we present OPTIMO, a spatial-array
processor with near-memory processing, a hierarchical and
multi-cast on-chip network, and full-programming support
for solving distributed optimizations via ADMM. The moti-
vation for OPTIMO is shown in Fig. 1. We demonstrate
six template algorithms: 1) least-squares optimizations [17];
2) least absolute shrinkage and selection operator (LASSO)
[18]; 3) elastic net [19]; 4) linear support vector machine
(SVM) [20]; 5) group-LASSO [21]; and 6) distributed aver-
aging [22]. The algorithms use different objectives and con-
straints and represent a vast majority of statistical algorithms
that are used on big data sets. To understand the importance

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 3, MARCH 2020

1
M Least Square SIMT

— ® Lasso shared-cache »
2 0.75 | & Elastic Net .
= A Linear SVM
g 05 |™Group Lasso o
£ ;
80.25 & 4.77 x
) 4+ <
[E B This work

0

0 0.25 0.5 0.75 1

Time to Compute (normalized)

Fig. 3. This article (measured) shows 4.77x (4.18 x) improvement in energy
(performance) compared to a GPU-style SIMT machine (simulated).

of the data-flow architecture for solving such optimizations,
we simulated a GPU style SIMT machine (with both local and
shared cache) and compared it with OPTIMO, for iso-number
of cores and clock frequency. From simulations (see Fig. 3),
we note a 4.77x (4.18x) improvement in energy (perfor-
mance). To the best of our knowledge, this is the first at-scale
demonstration of a programmable array processor for solving a
set of optimization problems that are used for various emerging
applications, such as training of ML models, computational
imaging, and signal processing.

II. OVERVIEW OF THE ALGORITHM

In this section, we provide an overview of ADMM as well
as its distributed representation, namely distributed ADMM.

A. ADMM

The ADMM algorithm [1] is a projection-based method
for solving generic problems of constrained optimizations.
In essence, it relies upon decomposing the decision vector into
subvectors, updating each subvector sequentially by minimiz-
ing an augmented Lagrangian function, and finally updating
the Lagrange multiplier corresponding to the constraint that
couples the subvectors using a dual subgradient method.
The ADMM algorithm has typically been used for solving
problems in which the decision variable is decomposed into
two or multiple subvectors. For simplicity, we only review the
form of ADMM with two subvectors, and its generalization
to the case of multiple subvectors is straightforward and is
omitted here.

The original form of ADMM with two subvectors denoted
as x € R" and z € R solves the problem expressed as

min [(x) 4+ r(z)
st. Ax+Bz=c¢ (H
where A € RP*" B € RP*™ and ¢ € R”. We assume that
both /(x) and r(z) are convex.
We solve (1) using ADMM by first deriving the augmented
Lagrangian function of (1), and it is given by
Ly(x,z,y) =1(x) +7() +y" (Ax + Bz — )
+(p/N|Ax + Bz —cll; ()

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.



CHANG et al.: OPTIMO: 65-nm 279-GOPS/W 16-b PROGRAMMABLE SPATIAL-ARRAY PROCESSOR WITH ON-CHIP NETWORK 631

where y is the Lagrange multiplier corresponding to the
constraint Ax + Bz = ¢ and p is a positive scalar. Then,
we perform an iterative algorithm that starts from arbitrary
initial values x(©, z© and y©, and update using the follow-
ing updated rules:

x KD = argmin L, (x, z®, y(k))
X
z(k+1) = argmin L, (x(kH), Z, y(k))
Z
YD = gk A 6HD gD ) 3)

Equation (3) is solved iteratively for k > O until convergence
is achieved.

B. Distributed ADMM

By splitting up an objective function carefully, one can
transform ADMM to solve a range of useful optimization pro-
grams in a distributed fashion, and this gives rise to distributed
ADMM. In its distributed form, one can parallelly solve a large
optimization problem over a large data set or a large vector
over multiple cores with intermittent communication between
the cores to achieve consensus. This makes solving many
problems in image processing, signal recovery, ML, model
prediction, and classification efficient and real time. To provide
an overview of distributed ADMM, we consider the following
problem:

min [(Ax — b) + r(x) 4)
X
or its ADMM form

min I(x) +r(2)
st.x =Az—b (5)

which is a transformed representation of the original ADMM
problem (1). There are two ways to solve (4) and (5) in a
distributed manner: one is splitting across the data (or training
examples in case of model fitting), and the other is by splitting
across feature vectors. We explain the two splitting methods
and provide their related examples and applications in the
following.

1) Splitting Across Data: In most classical statistical esti-
mation and ML problems, the number of features is modest,
but the number of training examples can be very large. Thus,
we can utilize the structure of the problem by letting each
processor core handle a subset of the training data. This
is useful in many scenarios, such as online social network
data processing, wireless sensor networks, and many cloud
computing applications. We partition A and b by rows

Ay by
A»r by
A= . s b = .
AN by

where A; € R™i*" b; € R™, and ZlN:l m; = m. Thus, A;
and b; represent the ith partition of the data handled by the ith

processor. Over the partitions, if function f in (4) is separable
in the sense

N
f(Ax =b) =D 1i(Aix — by)
i=1
the optimization problem (4) becomes
N
rr;in Zli(Aix —bj)+rx)
1
or in the ADMM form

N
IniHXN Zli(Aix,‘ —bi)+r(2)
1
st.x;j =z fori=1,...,N. (6)

Following the ADMM algorithm described in Section II-A,
we can solve (6).

Equation (6) is a generalized version of many problem
formulations and the applications are referred to as penalized
empirical risk minimization and structural risk minimization
in ML. For example, when /;(A;x — b;) = ||A;x — b;||3 and
r(x) = Al|x||1, problem (6) becomes the well-known LASSO
problem [18] in its distributed form.

2) Splitting Across Features: For another set of applications
such as natural language processing (NLP) [23] and bioinfor-
matics [24], there are often a modest number of examples but a
large number of features. In such situation, we would partition
A by columns x by rows

X1

X2

A=[A1 Ay ... AN], x=| . (7

XN

where A; € R™  x € R", and ZlNzl n; = n. This implies
that Ax = ZIN=1 A;x;, i.e., Ajx; can be thought of as a
“partial” prediction of b using only the features referenced
in x;. With this partitioning and under the assumption (which
in most practical applications is true) that r(x) is separable
such that r(x) = ZlN:l gi(x;), the problem (4) in its ADMM
form becomes

N N
0 2= 0 D)
l 1=

s.t. Ax; =z; fori=1,...,N. (8)

More examples of problems which can be formulated in the
form of (8) can be found in [1], and interested readers are
pointed to [1] for further reading.

C. Distributed Optimization as a Template Problem

What has been described earlier is an overview of the
distributed ADMM problem formulation, the details of how
it can be mapped to specialized hardware will be described
in Section IV. We have chosen six popular algorithms from
signal/image processing and ML community, namely as least-
square optimization [17], Lasso [18], Group Lasso [21],

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.



632

fx) 9(z) Applications

(1/2)llAx - bll3

Algorithms

Least Square Modeling for Prediction

Variable selections

_ 2
(1/2)|1Ax — bl Modeling for prediction

Lasso Alxlly

Variable selections
Robust modeling for prediction

Elastic Net | (1/2)llAx = blI3 | Aqllxlly + A llx113

Structure variable selection

_ pl2
(1/2)l1Ax - bl|3 Modeling for prediction

Group Lasso AR Nl

Linear SVM [l; 112 yk(a,fxl- + b) Classification
Distributed 2 Large scale modeling and
Averaging (A/2)l1Ax = blI2 prediction

Fig. 4. Table for loss functions and regularization functions.

walsAs / |V£)<I:I
=
a
&

Q0B}I0)U] KIOUWDIN

[01uo

— ClockIn—>

[01}U0D) 0T

<«Clock Out—

Multicast
Layer 0
Multicast
Layer 1

oru [ oru [ om [ oo

Fig. 5. System architecture showing the 49 OPUs and a two-layer multi-cast
on-chip network.

elastic net [19], SVMs [20], and distributed averaging [22].
The table of loss functions and the regularization functions
for each template problem are shown in Fig. 4.

One thing to keep in mind is that even though all the
six algorithms follow the same program flow as in Fig. 2,
how x and z are updated depends on the loss function
and the regularization functions. This calls for hardware-
level programmability which we describe next. Furthermore,
the programming model ensures that a larger class of algo-
rithms can be mapped to the hardware, and although we do not
describe them in this article, the hardware architecture and the
programming model provide a fundamental fabric for solving
a very large class of distributed optimizations. Once a problem
can be written in the form of (6) and (8), distributed ADMM
can be efficiently mapped and executed on the proposed test
chip, which we call OPTIMO. To introduce OPTIMO, we first
present its architecture in Section III.

III. OVERVIEW OF THE SYSTEM ARCHITECTURE
A. System Architecture

Fig. 5 shows the chip architecture where 49 programmable
16-b optimization processing units (OPUs) are capable of:
1) computing locally and iteratively and 2) transmit-
ting/receiving data from the neighbors. The chip boundary has

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 3, MARCH 2020

Computation Module
Data Load & Control Logic
Instruction
akmy | | [t |
Programmable DSP
(2 KB) # et
.
[
g
’r 32b ,Tr 32b 3
32b Al 160 Data
Instruction <—/—>{ Compute Control ‘ % >l (S:{;:]l;’;
Decode S
TRX Control =
32b =
=3
/r 32b »1' 32b o)
3
TX Module RX Module
TX Data TX Data 16b RX Data
Write & Load & | [“7] Write & "
Control Control Control
Logic Logic Logic
1 16b
TX Cache TX RX
(256 B) Interface Interface
L) Ly
D = -
v 16b v 16b

Fig. 6. Architecture of the OPU showing the principal modules.
communication interfaces to the PCB that contain: 1) scan
ports; 2) system control ports; and 3) clock ports. High-level
program code and data sets are translated to instruction and
data, scanned into the chip through scan ports and then exe-
cuted. The control ports are used to start/reset the system and
the clock ports are used to either provide the clock externally
and/or monitor the system clock frequency. Convergence is
declared either after a fixed number of iterations or when the
maximum cycle-to-cycle change of data in an OPU falls below
a threshold. The system also contains two multicast layers,
which will be described in Section III-D.

The choice of 16 b is driven by the data set and the appli-
cations. For signal and image processing applications, that are
of interest to us, the raw data is 8 b and we have determined
that 16-b precision yields the same results as floating point for
the thousands of image and signal processing data sets that we
have analyzed. Furthermore, ADMM is forgiving in terms of
quantization error, and the system converges because of the
iterative nature of the algorithm.

In Section IV, the detailed architecture of each OPU is
described.

B. OPU

One of the important challenges for spatial-array archi-
tectures is scalability. In this design, we ensure that the 10
pins for each OPU are placed in a symmetric fashion such
that the OPUs can easily abut. Each of the OPU features
is given as follows (see Fig. 6): 1) one computation module
consisting of a programmable digital signal processor (P-DSP),
a scratchpad memory, and control logic; 2) 2 kB of instruction
cache; 3) 4 kB of data memory (for local data R/W); and
4) a transceiver module for the gather and scatter processes.
Programming is supported via 32-b instructions, which will
be described in detail in Section IV, and each inter-OPU data
movement is supported on dedicated links. For this article,
we mainly focused on how such architecture relates to iterative
optimization problems; therefore, we assume that the weights
and data can fit into each OPU. For more complex problems,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.



CHANG et al.: OPTIMO: 65-nm 279-GOPS/W 16-b PROGRAMMABLE SPATIAL-ARRAY PROCESSOR WITH ON-CHIP NETWORK 633
Macro | No. of | Algorithm Type Functional No. of Boolean Functions —] b= -
Functions| instr. [ja|q |3 |45 |5%|6* Blocks Instr. Shrinkage Function —»| D @ Flags>
ALU — a
L, Norm 3 vV . Hinge Function —»{ Ko
1 Computation 1 Square Root  —»f —
(L, Norm)?} 3 viviIv|v|v Controller Comparotor  —f °oe _’(;PUtPUt*
| Q
L, Norm 6 v o
Communication 3 —— | Pattern
Ly Norm | 3 v Controller > °llT Detect™
Shrinkage| 3 v Q
MAC 4 A g0 1.1, Programmable 768
DSP Pipeline stage 1 Pipeline stage 2 Pipeline stage 3
Hi L 3 v .
1nge 089 1%, Least Square 4%, Elastic Net * Adder *Multiplier *ALU *Square Root
ot 2%, Lass 5*. Lincar SVM . «Divi «Shri . i
Dlsmbulted 10 A 01, o (Jﬂr:;(; Lasso Z* r)‘|;f:[111tcd Subtractor Divider Shrlnkage Max/Min
Averaging Averaging *Bypass *Bypass *Hinge *Bypass
(a) (b)
Fig. 7. (a) Programming support is enabled via a custom ISA with a 32-b instruction format and macro functions. (b) P-DSP architecture showing a

three-stage pipeline.

eJejeeierere]
booqboo
0000000 9o
bodonQ
boo@ooq
boo

i“ffﬁﬂ

9 ©
QQQDQQQ aggbggg aggbsgg aggbgs

Gather and calculate
global consensus

Compute cluster
consensus

Fig. 8.
Least Square A
(w/ local structure) 29% §4-Neighbor
S Y (Diagonal Only)
LeastSquare HHHHHHHH\HHHH\ 67%
SO 5 Y m4-Neighbor
Lasso % (Vertical & Horizontal)
MM AN
Elastic Net /I DRI 0%
° 8-Neighbor
. AN
Linear SVM  [IMMRHNINRRNMRARY (o
55 SRR .
Group Lasso [ IRIIINIRNR ALY =8-Neighbor +
Hierarchical Multicast
Distributed Network
Averaging (This work)
) 50 100 150
No. of clock cycles
§ - -
2N N
4-Neighbor 4-Neighbor 8-Neighbor
(Diagonal Only Vertical & Horizontal
g Yy

Fig. 9. Time for convergence for template algorithms as a function of their
connectivity with their neighbors.

the architecture can remain the same albeit with a more
sophisticated network on chip (NoC) and higher bandwidth
OPU to OPU bandwidth. Before data transmission, a transmit
buffer temporarily stores the data and it is flushed out at
the end of the transmission. Received data are not buffered;
instead, the control logic directly writes the incoming traffic
to the data cache, thereby reducing both latency and energy.
The design supports synchronous, mesochronous, as well as
asynchronous communication among OPUs with bidirectional

9000009
(@) 0

Scatter phase 1

0000000
0 DQOQD 0
oo,b:ggb

e
JA#WO‘OQLA#F

o¥0q 0000660 85%@%?%

Scatter phase 3

Scatter phase 2 End of comm.

Gather and scatter processes of communication enabled by a hierarchical on-chip network result in fast convergence to a global consensus.

—Ist—> v rd_ptr Request
—we—¥ e — A .
«full = = ty> 4 Y
< o pty ge [ 1
'I/;%ata,'“— g 4 x 16 bits g --Ilﬁ—bdata_oul-b Acknowledge
—clk\—> % % lkg—  Start event i Event i+1 done
- - ” |-| I-I I-I Event i done Start event i+1
I A wr_ptr Ready for next event
Fig. 10. FIFO architecture and the corresponding timing diagram.

first-in-first-outs (FIFOs) enabling fast and parallel data
exchange across clock-crossing boundaries [25]. Fig. 7(a)
further shows the number of instructions supported by each
module, the commonly used macrofunctions and the number
of instructions per function, and their usage in the six template
algorithms.

C. P-DSP

Fig 7(b) shows the principal components of the P-DSP,
which consists of three pipeline stages in an architecture
designed to maximize energy efficiency. The first supports
add/subtract (or bypass), the second stage supports multi-
ply/divide (or bypass), and the final stage supports a class of
fixed-function blocks, as shown in Fig. 7(b). The key fixed-
function blocks are Boolean functions processors, shrinkage
function unit, a 16-b ALU, a hinge function calculator, and a
square root function evaluator. Instruction-level control of the
pipeline and variable latency through the P-DSP is maintained
via a program counter. The number of cycles required to
execute an instruction will dynamically change depending on
the type of instruction and the architecture configuration. The

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.



634 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 3, MARCH 2020
. Total Program: 2455k clk N
K "
A One iteration: 245k clk N |
1813k clk >|, 54k clk Ve 190k clk Je 125 clk W) !
clk TS T uuungmﬁnnmumnnﬂunuumuuwmn
1 1
rst ] ! : : !
Y T T v
mode __X Scan In »{ Computation § X _ Communication X Divergence? ):—( Computation § X:XSS)—( Done )}~ Scan Out )
! |
DSP (LoXCALXwB— \@@@ H-eane—OG
COMM (Local meanXGather X Scatter )
sys_start |_|
sys_done
Fig. 11. Timing diagram of showing the various steps of a template optimization problem.
4 Technology TSMC 65nm GP 1P9M

i ==
outler [Eose] |

Data T
SRAM

329.6 um

329.6 um

69.6 um

—
69.6 um

Fig. 12. Die micrograph.
detail of how to program the P-DSP block as well as the related
instructions is described in Section IV.

D. On-Chip Network Design

The OPUs indexed as (row and column) interact via a two-
layered multi-cast network with: 1) layer-0 establishing near-
neighbor (neighborhood of 8) bi-directional connections and
() layer-1 connecting four cluster center OPUs, i.e., (2, 2),
(6, 2), (2, 6), and (6, 6) with the chip-center OPU, i.e., (4,4).
Depending on the algorithm and structure of the data, opti-
mization algorithms require complex data-flow patterns where
both near-neighbor (layer-0 connections) as well as global
information (layer-0 and layer-1 connections) are used. The
48 OPUs (excluding the chip center) are divided into four
clusters as shown, with the OPU in the center as shown
in Fig. 8. Global consensus is reached in each iteration via
the following steps.

1) The four clusters reach cluster-level consensus (layer-0).

2) Gather process where the chip center obtains cluster-
level consensus information from cluster centers
(layer-1) and calculates the global data.

3) Scatter (step-1) process where the chip center scatters
the global data back to the cluster centers.

4) Final scatter (steps 2 and 3) process where the cluster
centers spread the data across all the OPUs

Chip Size 3.41 mm x 3.41 mm
Core Area 3 mm x 3 mm
Package QFN6x6-48

Pin Count 48

Gate Count (logic only) 2725 kGates (NAND2)
On-Chip SRAM 306.25 KB

Number of OPUs 49

No. of pipeline stages in programmable DSP 3

0.5-12V
2.5V
10-270 MHz

Core Supply Voltage

10 Supply Voltage
Clock Rate
Network

Asynchronous & Mesochronous
279 GOPS/W
16-bit fixed-point

Peak Energy Efficiency

Arithmetic Precision

Fig. 13.  Chip characteristics.

Once these processes terminate, the system will ready all the
OPUs for the next iteration. The scatter and gather processes
are intrinsic to distributed optimizations as the system com-
putes locally, distributes information globally, and iterates to
reach consensus. We compare the proposed hierarchical multi-
cast network with networks that allow four or six connections
to the neighbors-as is common in convolutional and deep
NNs [2]. It is intuitive to understand that instead of connec-
tions to all the six neighbors, consensus data can also be trans-
mitted by just connecting to the four near neighbors (as found
in Google’s TPU). However, this comes at a cost of increase
number of iterations. Architectural and network simulations of
various optimization algorithms on more than 10000 random
data sets reveal a 29%—77% reduction in convergence time
compared to a fixed, four-neighbor connection (see Fig. 9).

E. Clocking

Clocking often becomes critical when scalability and power
efficiency are considered. To overcome this issue, we imple-
ment two clocking options on the chip: 1) a single global
clock (synchronous) either internal or external or 2) digital
controlled oscillator (DCO)-based clock per-OPU enabling
asynchronous/mesochorous links. The DCO-based local clocks
have external control via scan for fine-tuning. The single
global clock option acts as the baseline for us to compare
with per-OPU-based clocking, where we show the comparison
in Section V. The system runs at full capacity when all the
OPUs are producing outputs at a fixed and equal rate—which
requires synchronous communication. In such a scenario,
no OPU has to wait for its neighbors to finish computation.
However, per-OPU-based clocking removes design constraints

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.



CHANG et al.: OPTIMO: 65-nm 279-GOPS/W 16-b PROGRAMMABLE SPATIAL-ARRAY PROCESSOR WITH ON-CHIP NETWORK 635

2b  4b 11b 11b 4b
A A A N A Nn—A—
v} Operand 1 Operand 2 Other
2 | Mode P P
i DSP Configurations | Mask Other
- > f
Ly, e Multi-purpose operand 1 & 2
e Configurations & Mask (DSP mode)
e Mode
> o Instruction destination
Fig. 14. 32-b Instruction format.
[10101010] N
5
WwW
ss €2 S 4
—
EE
NN SS
A 4
Fig. 15. Example of a “mask” configuration.
Stage 1 Stage 2 Stage 3
Adder 1 Multiplier 18 | Square Root i 14
Number Subtractor 1 Divider 27 | Others 1
of cycles
Bypass 1 Bypass 1

Fig. 16. Number of cycles required for each function.

on fine-grained control of clock skew. As a compromise,
mesochronous clocks running at identical frequencies but
mismatched phases maintain high throughput without requir-
ing stringent skew requirements. To support mesochronous
as well as asynchronous clocks per-OPU, the clock-crossing
FIFO features a 64-b buffer and operates on a four-phase
handshaking scheme, as shown in Fig. 10. The example timing
diagram for executing ADMM is shown in Fig. 11.

F. Die Micrograph and Chip Characteristics

The test chip is fabricated in a TSMC 65-nm GP CMOS
process and occupies a total area of 12mm?, as shown
in Fig. 12. It features 306.25 kB of on-die memory distributed
across 49 cores. The chip characteristics are shown in Fig. 13.

IV. ISA AND PROGRAMMING

As mentioned in Section II, the complexity and details
of the algorithmic steps to be followed to update x and z
that depends on the combinations of the loss function and
the regularization functions. For example, both Lasso and
Group Lasso use Lj norm as the penalty function; however,
as previously shown in Fig. 7, the functions required for
each algorithm are very different, therefore resulting in a very
different sequence of instructions. To enable programmability,
we develop a customized instruction set architecture (ISA)
to support the possible set of arithmetic functions that are
required. The instructions can be categorized by targets into
four kinds as follows: 1) computation controller; 2) com-
munication controller; 3) P-DSP; and 4) branch controller.
As shown in Fig. 14, the instructions are 32 bits long and

150
: 100%
5

0

0.5 0.6 0.7 0.8 09 1
Vee (V)

1.1 1.2

Fig. 17. Measured maximum frequency and power consumption.

S 279 GOPS/W 53
& 250 |& :3
2 E = &=
2200 |5 Sk
= Q £Q
=2 150 |, 3
88 100 | 2
a 50 |°

(=]

05 06 07 08 09 1 1.1 12
Vee (V)

Fig. 18. Measured energy efficiency.

contain fields that include destination, mode, and operands and
other fields for detailed masks or configurations. A complete
discussion of all the instructions in the ISA is not needed;
this is to say that the programmability provides us with the
software stack that enables a large class of distributed opti-
mizations to be efficiently executed. During the initialization
phase mentioned in Section II, the instructions and the initial
data are scanned into the instruction cache and data cache,
respectively. Once the initialization is done, a “start” signal
is broadcast to all the cores and the iterations begin until the
convergence criteria are fulfilled.

A. Computation Controller

As mentioned in Section III, P-DSP takes up to four data
inputs concurrently; thus fetching the data and keeping it ready
for the P-DSP to access becomes critical. Furthermore, in order
to support various operations with limited instruction cache,
setting the corresponding reading pattern and reading size is
also important. Thus, by setting the initial address, the desired
size, and the desired operation, the computation controller
automatically determines the corresponding target address and
the pattern of reading a chunk of data from the local memory
depending on the kind of operation (i.e., scalar operations,
vector operations, matrix multiplications, and so on), then
fetches the next elements in order and buffers them for the
P-DSP to access. Thus, a combination of the instruction cache
and fixed-function instruction decoders allows minimization of
the overall gate count.

B. Communication Controller

As described in Section III-D, gather and scatter mecha-
nisms (shown in Fig. 8) play an essential role in OPTIMO,
and to make it efficient, a “mask”™ is associated with each
corresponding “send” or “receive” instruction, which is used

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.



636

10%

: Z
X

th per-OPU Clock
N
X

2%

Total Power Reduction

w1

0%

06 08 1 1.2
Vee (V)

(2) (b)

Fig. 19. (a) Total power reduction for asynchronous design (per-OPU
clocking) compared to a purely sequential design. (b) Measured breakdown
of power consumption.

1000
V=06V
Feoek =70 MHz

2100

E

Q

£

£ 10 H ;

1 I-I-I H

Least Lasso Elastic Linear Group
Square Net SVM  Lasso

Fig. 20.  Measured algorithm-level benchmarking showing the time to
compute for six template algorithms. The errors bars show different problem
instances that were characterized.

Energy (m))

Linear
SVM

Lasso  Elastic

Least
Square Net

Group
Lasso

Fig. 21.  Measured algorithm-level benchmarking showing the energy to
compute for six template algorithms. The errors bars show different problem
instances that were characterized.

to enable/disable up to eight neighborhood links depending
on the operation. An example of mask enabling only the
horizontal and vertical links is shown in Fig. 15.

From the “sender’s” side, the sequence of data that it wishes
to send is first buffered in the TX buffer. Then, along with
the proper mask, the data are broadcast to the links that are
enabled in the present iteration. Since the unbalanced masks
between “sender” and “receiver” will result in deadlocks,
it relies on the compiler to guarantee that the masks as well
as the length of data sequence are properly configured and
matched.

C. P-DSP Controller

A total of 9 bits of configuration are aggregated in the
instruction and will be decoded inside the P-DSP. Since the
P-DSP supports up to four concurrent inputs and is composed
of three pipeline stages (shown in Fig. 7) (b), by changing and

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 3, MARCH 2020

5 iterations

<
8
Random Samples Reconstructed g
30 g
o <
@25 &
nZ: 20
2 15
10
4 5 6 7 8 9
Subspace Dimension Parameter Y
(a) (b)

Coefficients

No. Features = 10

0 Constraint Parameter 1

(©)

Fig. 22. Application of OPTIMO in (a) MRI image reconstruction, (b) binary
SVM, and (c) Lasso feature extraction for sample problems.

permuting the configurations, it supports up to 768 different
kinds of computations. In addition to that, the number of cycles
required is also varied depending on the instruction and the
configuration, which is shown in Fig. 16.

D. Branch Controller

In order to support a dynamic program flow, the ability to
execute different instructions on different register values is cru-
cial. By comparing the expected value with the target register
value, we can jump to the instruction with the resulting offset
and execute a desired branching operation. The current design
provides full branch control and allows effective programming
of a large class of algorithms.

V. MEASURED RESULTS

The test chip is packaged in a QFN package and integrated
on a PCB with the necessary passives and connectors onboard.
It is programmed via serial scan through an external field-
programmable gate array (FPGA). Before the system starts,
the instructions for each OPU are scanned in and followed by
a “start” signal, the FPGA then waits for the “done” signal of
the system. Measured electrical performance and algorithm-
level benchmarking are presented here.

Fig. 17 shows the measured power—performance tradeoff
showing a peak Fypax (in a synchronous setting) of 270 MHz
(at 0.5 V) and an operation down in 0.5 V (with Fyjax =
10 MHz). Fig. 18 shows that as the operating voltage is
reduced, the dynamic energy scales as V2, whereas the time to
complete the computation increases, thereby increasing active
leakage power. The peak energy efficiency, considering both

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.



CHANG et al.: OPTIMO: 65-nm 279-GOPS/W 16-b PROGRAMMABLE SPATIAL-ARRAY PROCESSOR WITH ON-CHIP NETWORK

This work [6] [3] [4] [5] [2]
Application Distributed Optimization ECG Signal Reconstruction CNN Inference DNN Inference |CNN Inference CNN Inference
Optimization algorithm |ADMM implementation subspace pursuit none none none none
Technology 65nm 40nm 180nm 65nm 65nm 65nm
Area 12mm’ 3.06mm’ 3.3mm’ 16mm’ 16mm’ 16mm’
On-die SRAM 306.25 KB 192KB 144 KB 36 KB 490.5 KB 181.5 KB

Programming support yes fixed function

fixed function fixed function fixed function fixed function

On chip network 8 neighbors with hierarchical multicast not reported

systolic (4 neighbor) not reported systolic (4 neighbor)  |systolic (6 neighbor)

Resolution 16b 32b 4b-16b 16b 16b 16b
Power 3.63-143.2mW 21.8-93mW 7.5-300 mW 45 mW 6.57 mW 278 mW
Frequency 10 - 270 MHz 67.5 MHz 200 MHz 125 MHz 10 - 100 MHz 200 MHz
Supply voltage 0.5-1V 0.9V v 1.2V 0.7-1.2V 0.82-1.17V
Performance/Watt 0.279 TOPS/W 21.5 MOPS/W 0.26-10TOPS/W 1.42TOPS/W  [11.8-19.7 GOPS 0.21TOPS/W
Fig. 23. Comparison of the proposed array processor with competitive spatial-array processors. The proposed design addresses distributed optimization that

presents a more complex data flow and computes faster than traditional CNN and DNN inference architectures.

dynamic and leakage power, is measured at 0.6 V where
we note a peak efficiency of 0.279 TOPS/W. Below 0.6 V,
the design is leakage dominated due to the large (306.25 kB)
on-die SRAM. It should also be noted that an operation here
represents the execution of a single pipeline stage of the
P-DSP and is computationally more demanding than MAC
operations that are often considered as a benchmark for
signal processing or NN accelerators. Per-OPU DCO-based
clocking reduces the overhead of routing a global clock.
We measure 2.7%-7.75% power savings compared to a fully
synchronous global clocking strategy. This is measured at iso-
performance by ensuring that the system throughput for both
the synchronous and asynchronous/mesochronous designs over
a long measurement window is identical.

The power breakdown among computation, communication,
and storage at 0.6 and 1.0 V is shown in Fig. 19. We see
that the power consumed by all three components is almost
equal at 1.0 V and the system is dominated by SRAM power
(mostly leakage) at 0.6 V. Thus, distributed optimization,
as presented here, shows an interesting class of algorithms
where computation, communication, and storage are almost
equally important in terms of power consumption.

We use the hardware prototype to execute template algo-
rithms across multiple data sets and plot the time-to-compute
and energy at 0.6 V (see Figs. 20 and 21). The data sets
are generated at random, and MATLAB-based simulations are
used to ensure correct functionality and convergence. The error
bars indicate the range of energy and performance required for
different data values in the data sets. We also note that group
LASSO and linear SVM require the most number of iterations
and energy—which is as expected, given the complexity of
these algorithms. Although we demonstrate the capability of
this near-memory spatial architecture in solving distributed
optimizations, the proposed hardware and programming model
can also support a variety of other array processing tasks as
well, including inference in deep and convolutional NNs. The
on-chip network and the P-DSPs allow flexibility to map such
NN-based computing models, albeit with less energy efficiency
that fixed-function accelerators.

VI. APPLICATIONS

The programmable and iterative optimization solver is
capable of addressing multiple applications. MRI image recon-
struction from non-uniformly sampled data points is computa-
tionally challenging and requires patients to lie in the machine

for a long time. Our solution uses iterative least-squares opti-
mization [see Fig. 22(a)] to reconstruct MRI images with high
peak signal-to-noise ratio (PSNR) in less than 8ms. Similarly,
binary SVMs [see Fig. 22(b)], a popular choice in ML classifi-
cation problems shows convergence with an increasing number
of iterations (multi-class SVM records 91% accuracy on the
MNIST data set, which is the state of the art). Furthermore,
feature extraction with LASSO (L1 regularization) used in
ML is shown in Fig. 22(c). In Fig. 23, a comparison with the
state of the art shows: (1) a highly programmable, iterative
optimization solver with peak efficiency of 279 GOPS/W;
2) a hierarchical multi-cast network for program-specific data
movement; and 3) competitive energy efficiency and voltage
scalability.

VII. CONCLUSION

In this article, we present a 49-core fully programmable
spatial-array processor for solving distributed optimizations
with support for a large class of algorithms and applications.
We present a full-stack solution that enables full programma-
bility, a key requirement for future high-performance systems
that need to solve a large class of similar problems. We note
a peak performance of 270-MHz and peak energy efficiency
of 279 GOPS/W.

REFERENCES

[1]1 S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed
Optimization and Statistical Learning Via the Alternating Direction
Method of Multipliers. New York, NY, USA: Now, 2011.

Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138,
Jan. 2017.

B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5 Envi-
sion: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm
FDSOL,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2017, pp. 246-247.
J. Sim, J. Park, M. Kim, D. Bae, Y. Choi, and L. Kim, “14.6 A
1.42TOPS/W deep convolutional neural network recognition proces-
sor for intelligent IoE systems,” in I[EEE ISSCC Dig. Tech. Papers,
Jan./Feb. 2016, pp. 264-265.

S. Choi, J. Lee, K. Lee, and H.-J. Yoo, “A 9.02mW CNN-stereo-
based real-time 3D hand-gesture recognition processor for smart mobile
devices,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 220-222.
L. L. Scharf, Statistical Signal Processing, vol. 98. Reading, MA, USA:
Addison-Wesley, 1991.

T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms
for Signal Processing. London, U.K.: Pearson, 2000.

M. Vetterli, J. Kovacevié, and V. K. Goyal, Foundations of Signal
Processing. Cambridge University Press, 2014.

[2]

[3]

[4]

[5]

[6]
[7]
[8]

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.



638

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]
[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

N. Cao, M. Chang, and A. Raychowdhury, “14.1 A 65nm 1.1-to-
9.1TOPS/W hybrid-digital-mixed-signal computing platform for accel-
erating model-based and model-free swarm robotics,” in IEEE ISSCC
Dig. Tech. Papers, Feb. 2019, pp. 222-224.

M. Chang, S. Gangopadhyay, T. Hamam, J. Romberg, and
A. Raychowdhury, “Efficient signal reconstruction via distributed least
square optimization on a systolic FPGA architecture,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019,
pp. 1493-1497.

V. Jungnickel et al., “The role of small cells, coordinated multipoint, and
massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44-51,
May 2014.

E. Sharon, S. Litsyn, and J. Goldberger, “Efficient serial message-passing
schedules for LDPC decoding,” IEEE Trans. Inf. Theory, vol. 53, no. 11,
pp. 4076-4091, Nov. 2007.

N. A. Lynch, Distributed Algorithms. Amsterdam, The Netherlands:
Elsevier, 1996.

D. P. Bertsekas, “Incremental gradient, subgradient, and proximal meth-
ods for convex optimization: A survey,” Optim. Mach. Learn., vol. 2010,
nos. 1-38, p. 3, 2011.

J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging
for distributed optimization: Convergence analysis and network scal-
ing,” IEEE Trans. Autom. Control, vol. 57, no. 3, pp. 592-606,
Mar. 2012.

S. Zhu and B. Chen, “Distributed average consensus with deterministic
quantization: An ADMM approach,” in Proc. IEEE Global Conf. Signal
Inf. Process. (GlobalSIP), Dec. 2015, pp. 692-696.

N. R. Draper and H. Smith, Applied Regression Analysis, vol. 326.
Hoboken, NJ, USA: Wiley, 1998.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Roy.
Statist. Soc., B (Methodol.), vol. 58, no. 1, pp. 267-288, 1996.

H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” J. Roy. Statist. Soc., B (Stat. Methodol.), vol. 67, no. 2,
pp. 301-320, 2005.

J. A. K. Suykens and J. Vandewalle, “Least squares support vector
machine classifiers,” Neural Process. Lett., vol. 9, no. 3, pp. 293-300,
Jun. 1999.

M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” J. Roy. Statist. Soc., B (Statist. Methodol.), vol. 68,
no. 1, pp. 49-67, 2006.

L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65-78, 2004.

C. D. Manning, and H. Schiitze, Foundations of Statistical Natural
Language Processing. Cambridge, MA, USA: MIT Press, 1999.

W. J. Ewens and G. R. Grant, Statistical Methods in Bioinformatics: An
Introduction. New York, NY, USA: Springer, 2006.

J. Ax, N. Kucza, M. Vohrmann, T. Jungeblut, M. Porrmann, and
U. Riickert, “Comparing synchronous, mesochronous and asynchronous
NoCs for GALS based MPSoCs,” in Proc. IEEE 11th Int. Symp. Embed-
ded Multicore/Many-core Syst.—Chip (MCSoC), Sep. 2017, pp. 45-51.

Muya Chang (S°16) is a Dual-Degree Graduate
Student with the Georgia Institute of Technology
(Georgia Tech), Atlanta, GA, USA, where he is
currently pursuing the M.S. degree in computer sci-
ence and the Ph.D. degree in electrical and computer
engineering (ECE).

He is a member of the Integrated Circuits
and Systems Research Laboratory, Georgia Tech,
and is advised by A. Raychowdhury, the ECE
Associate Professor. His research interests include
energy-efficient hardware design for distributed
optimizations.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 3, MARCH 2020

Li-Hsiang Lin is currently pursuing the Ph.D.
degree in industrial engineering with the H. Milton
Stewart School of Industrial and Systems Engineer-
ing, Georgia Institute of Technology (Georgia Tech),
Atlanta, GA, USA. His specialization is statistics,
with a minor in machine learning and operations
research.

His research interests include computer exper-
iments, nonparametric modeling, and developing
Y new statistical methodologies in engineering appli-
cations, especially in electronics engineering and
biomechanical engineering.

Justin Romberg (F’18) received the B.S.E.E., M.S.,
and Ph.D. degrees from Rice University, Houston,
TX, USA, in 1997, 1999, and 2004, respectively.

From fall 2003 to fall 2006, he was a Post-Doctoral
Scholar in applied and computational mathemat-
ics with the California Institute of Technol-
ogy, Pasadena, CA, USA. He spent the summer
of 2000 as a Researcher at Xerox PARC, Palo Alto,
CA, USA, the fall of 2003 as a Visitor at the
Laboratoire Jacques-Louis Lions, Paris, France, and
the fall of 2004 as a Fellow at the Institute for
Pure and Applied Mathematics, University of California at Los Angeles,
Los Angeles, CA, USA. In fall 2006, he joined the ECE Faculty, Center for
Signal and Image Processing, Atlanta, GA, USA, as a member. He is currently
a Professor with the School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta.

Dr. Romberg received the ONR Young Investigator Award in 2008 and the
PECASE Award and the Packard Fellowship in 2009 and was named the Rice
University Outstanding Young Engineering Alumnus in 2010. From 2006 to
2007, he was a Consultant for the TV show “Numb3rs.” From 2008 to 2011,
he was an Associate Editor for the IEEE TRANSACTIONS ON INFORMATION
THEORY.

Arijit Raychowdhury (SM’13) received the B.E.
degree in electrical and telecommunication engi-
neering from Jadavpur University, Kolkata, India,
in 2001, and the Ph.D. degree in electrical and
computer engineering from Purdue University, West
Lafayette, IN, USA, in 2007.

His industry experience includes five years as a
Staff Scientist at the Circuits Research Lab, Intel
Corporation, Santa Clara, CA, USA, and a year as an
Analog Circuit Researcher at Texas Instruments Inc.,
Santa Clara. In January 2013, he joined the School
of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA, USA, where he is currently a Professor. From 2013 to July 2019,
he was an Associate Professor and held the ON Semiconductor Junior
Professorship with the Georgia Institute of Technology. He is currently the
Co-Director of the Georgia Tech Quantum Alliance, Atlanta. He has published
over 170 articles in journals and refereed conferences and multiple IEEE and
ACM journals. He holds more than 25 U.S. and international patents. His
research interests include low-power digital and mixed-signal circuit design,
design of power converters, and sensors and exploring interactions of circuits
with device technologies.

Dr. Raychowdhury is the winner of IEEE/ACM Innovator Under 40 Award,
the NSF CISE Research Initiation Initiative Award (CRII) in 2015, the Intel
Labs Technical Contribution Award in 2011, the Dimitris N. Chorafas Award
for Outstanding Doctoral Research in 2007, the Best Thesis Award from the
College of Engineering, Purdue University, in 2007, the SRC Technical Excel-
lence Award in 2005, the Intel Foundation Fellowship in 2006, the NASA
INAC Fellowship in 2004, and the Meissner Fellowship in 2002. He and his
students have won eleven best paper awards over the years.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


