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Computationally-secure cryptographic algorithms when implemented on physical
platforms leak critical physical signals correlated with the secret key in the form
of power consumption and electromagnetic (EM) emanations. This can be
exploited by an adversary, leading to side-channel attacks (SCA) that can recover
the secret key. Gircuit-level on-chip countermeasures include a switched-capacitor
current equalizer [1], charge-recovery logic [2], an integrated voltage regulator
(IVR) [3], and an all-digital low-dropout (LDQ) regulator [4], which suffer from
performance degradation, high power/area overheads because of large embedded
passives, as well as EM leakage from large metal-insulator-metal (MIM) capacitor
top plates. Alternatively, simulations of shunt LDO-based regulators have been
shown to be effective for power SCA resistance [5]. Noting that the correlated
current is the source of both power (at supply pin) and EM leakage (radiation
throughout current path), this work embraces current-domain ‘signature
attenuation’ (CDSA) as a low-overhead generic countermeasure against both EM
and power side-channel attacks to achieve the highest minimum traces to
disclosure (MTD>1B) reported to date.

The 65nm CMOS test chip contains both protected and unprotected AES256
implementations, running at a clock frequency of 50MHz. By embedding the
crypto engine within the CDSA, the supply current becomes almost constant, i.e.
independent of the AES current (Fig. 27.3.1), increasing the MTD for power SCA
by a factor of the square of attenuation factor. This also improves EM SCA MTD,
as the current flowing through higher-level radiating structures (e.g. pins, board
traces) is near constant. Through 3D finite element method (FEM) simulation of
metal traces, it is validated that the EM leakage is a strong function of the metal
dimensions carrying the correlated current. To avoid on-chip structures radiating
correlated signatures, before the current passes through CDSA, lower-metal
routing (only up to M6, Fig. 27.3.1) is adopted between the crypto core and the
physically close CDSA circuit, while limiting additional IR drop to <0.4mV (Fig.
27.3.3). AES256 is implemented with parallel datapaths to provide high
performance and requires 14 cycles per encryption. Designs include unprotected
(Mode 1), power protected but EM unprotected (Mode 2, to analyze effect of
different metal layers on EM leakage) and both power + EM protected (Mode 3,
default protection mode).

The CDSA circuit (Fig. 27.3.2) utilizes a digitally tunable cascode current source
(CS) with high output impedance to power the AES. The goal of the CDSA circuit
is to provide the average load (AES) current plus a delta current that leaks through
the bypass PMOS bleed path to ground, providing local negative feedback, which
leads to the ability to support any s, in between two quantized current levels
of the CS (i.e. aids in analog regulation without a high-power shunt-loop). The
CS consists of 32 PMOS slices, 16 of which are turned on nominally. A slow digital
switched-mode control (SMC) LDO tracks and regulates the voltage across the
AES (Vg between VippgertA, and Viapger-A.) by turning on or off the required
number of PMOS CS slices. The unit current (~94uA) is chosen such that it is
higher than the key-dependent variation in lpes,g (~72uA), so that the key-
dependent information in average DC current is not transferred to supply current
and is leaked by the bleed PMOS, making the design highly secure. The SMC loop
can handle any PVT variation from chip-to-chip (Fig. 27.3.3). At start-up, CDSA
requires <500us to settle, which can be dummy operations. It should be noted
that the SMC LDO is a low-BW loop (clocked at <10KHz, Vp,q output pole at
~106kHz) and has a dead band of 50mV, such that it remains disengaged during
steady-state operation of the CDSA-AES circuit. Two dynamic comparators
compare Vp,g With Viaeert+A, and Voagger-A. respectively, and a 32b up-down
counter with averaging (to control the loop frequency) controls the appropriate
number of CS slices to be turned on. Unlike traditional series LDOs, the supply
current in CDSA does not track the AES current. Instead, we choose to tolerate
the ~30-to-50mV voltage droop across the AES engine (Vg is guard-banded to
ensure no performance degradation at the cost of some power overhead), and

the high impedance (rg >10KQ) (Fig. 27.3.2) CS on top ensures that the current
fluctuation at the supply is attenuated by waesCrys, i.6. >350x. The use of a
cascode CS biased in subthreshold saturation increases ry by ~10x compared to
a one-stack CS, allowing 10x reduction in C, (only 150pF, iso-attenuation) across
the crypto engine. G, uses only MOS cap (lower metal layers) rather than MIM
(top metal layers) so that the EM radiation is minimized. The shunt-path PMOS
bias (near-threshold operation), as well as the number of PMOS legs ON are scan
controllable to analyze the effect of the extra bleed current on signature attenuation
(Fig. 27.3.3).

To provide high EM SCA resilience, both the protected AES along with the CDSA
circuit embedding the AES engine locally is routed in lower metal layers up to M6
(Fig. 27.3.3), which suppresses the correlated local EM leakage significantly,
before passing the attenuated signature (i.e. almost constant current) through to
the top-level metal layers. The design has scan-controlled highly isolating switches
(SW1, Fig. 27.3.1) to connect the Vpq node to an external pin for observability
(SW1 ON) or disconnect without leaking EM during normal operations. Lower-
metal routing (up to M6) provides a local attenuation of ~6x (compared to passing
the signature directly to M9 which has larger dimensions and radiates more) (Fig.
27.3.3). Time-domain measurements of the unprotected AES vs. CDSA-AES show
a signature attenuation of >350x for both the power and EM traces. Design space
exploration of the CDSA-AES reveals the optimal operating point at dropout
voltage of 0.3V across the CS stage and a bleed bias of 0.35V. The unprotected
AES is powered with 0.8V input and consumes ~1mA average current at 50MHz.

Figure 27.3.4 shows the hamming distance (HD) attack model used between the
last 2 rounds of AES (13" round output and the ciphertext) and a correlational
power attack (CPA) on the unprotected AES implementation shows an MTD of
8K, while the CDSA-AES is protected even after 1B traces. While all key bytes
show similar trends, we demonstrate the efficacy of the countermeasure with
attacks on the 1st key byte. Fixed vs. random Test Vector Leakage Assessment
(TVLA) on the unprotected AES shows a t-value of 1056 after 200M traces
compared to ~12 for CDSA-AES. Frequency-domain CPA with windowed FFT has
been performed with a window size of 10MHz and the center frequency is swept
from 10MHz to 1GHz. However, the correct key byte was not revealed even after
1B traces, showing an MTD improvement of ~125,000x.

CEMA on the unprotected AES shows an MTD of ~12K, while the CDSA-AES is
not broken after 1B measurements (Fig. 27.3.5). TVLA on the unprotected AES
shows a t-value of 961 compared to a t-value of 5.1 for the CDSA-AES (with lower-
metal routing — Mode 3: Fig. 27.3.1). The effect of higher-metal-layer routing on
EM leakage is analyzed by turning on highly isolating switches (SW2-SW4) that
connects Vpq to higher metal radiating structures (Fig. 27.3.2). In this Mode (2)
with all M7-M9 connected, the EM leakage crosses the threshold of 4.5 within
20M traces, compared to ~170M traces for Mode 3, demonstrating the effect of
local attenuation (>7x) and the significance of the local lower-metal routing for
EM SCA protection. In comparison with previous countermeasures, CDSA-AES
achieves 100x higher MTD (10M — >1B) and >125,000x (power) and 83,333x
(EM) MTD improvement compared to the unprotected implementation, without
any performance overhead and comparable power/active area overheads (Fig.
27.3.6). The die photograph and chip characteristics are shown in Fig. 27.3.7.
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Figure 27.3.1: Motivation and overview of the design principles for Current
Domain Signature Attenuation (CDSA) hardware to achieve both power and EM
SCA resilience.
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Figure 27.3.2: System architecture showing the circuit details of the cascode
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components.
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Figure 27.3.4: Measurement results: power SCA (both time and frequency
domain) and leakage analysis demonstrating the resiliency of CDSA-AES256
(MTD > 1B, i.e. >125,000x improvement).
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Figure 27.3.5: Measurement results: time and frequency domain CEMA attack
and TVLA on the unprotected vs. CDSA-AES256. Effect of metal routing on TVLA
is demonstrated for the first time.

Figure 27.3.6: PCB for the test chip, overhead analysis and comparison with
state-of-the-art countermeasures (>100x improved MTD compared to the state-
of-the-art).
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Figure 27.3.7: Die micrograph of the system in 65nm CMOS process and design
summary.
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