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Simultaneous localization and mapping (SLAM) is a quintessential problem in
cyber-physical systems with wide-spread applications in mobile robotics, self-
driving vehicles, AR, VR, etc. While computational methods [1] and hardware
demonstrations [2-5] based on filtering or keyframe techniques are popular, we
recognize that ultra-low-power edge-robotics requires circuit solutions that will
significantly reduce the power consumption. Interestingly, biological systems can
solve SLAM with extreme energy-efficiencies by employing methods that are
robust, flexible, and well-integrated into the creatures’ sensory systems.
Particularly, rodents have shown an extraordinary ability to store and organize
visual cues so that a brief sequence of visual cues can globally re-localize the
animal. Further, the neural recordings of the rodent hippocampus have led to the
discovery of place cells and head direction cells which show striking correlation
with mapping tasks. This led to the recent development of a neuromorphic vision-
based SLAM algorithm with great success on benchmark tasks [6]. In this paper,
we present NeuroSLAM, a spiking neural network (SNN)-based mixed-signal
oscillatory circuit, coupled with a lightweight vision system that provides
odometry and appearance information. We demonstrate a 65nm test-chip
integrated on a mobile robot, performing visual SLAM at 17.27mW (23.82mW)
with a net energy-efficiency of 7.25TOPS/W (8.79TOPS/W).

Place cells (X, Y) and head direction cells (θ), which are arranged in a grid, encode
spatial location in rodents. Visual odometry allows path integration as the creature
moves (self-motion), and the corresponding place and head direction cells fire
(Fig. 31.1.1). However, this accumulates error and finally, as the rodent recognizes
a previously visited visual cue, neuronal dynamics allows competition to resolve
the difference between self-motion and visual cues enabling the rodent to re-
localize and construct a robust map. Correspondingly, NeuroSLAM features a 2D
mixed-signal SNN-based pose-cell array (X, Y) coupled with digital head-direction
(θ) computation in O(N) complexity. Fig. 31.1.1 illustrates the chip-architecture
with (1) a vision front-end based on scan-line intensity profiles, (2) visual template
(VT) matching, (3) pose-cell control and path integration (odometry) (4) 2 banks
of 18.94kB/bank of SRAM for VT storage, and (5) a 7×7 SNN-based circularly
connected pose-cell array mimicking the attractor properties of the continuous
neural network.

The vision system relies on scan-line intensity profiles [6] where pixel-data are
column-wise added, quantized to 4b and 1D-max-pooled (Fig. 31.1.2). Visual
odometry requires calculation of: (1) translational velocity (v) based on the
difference between the current input and the previous input, and (2) rotational
velocity (ω) estimated via shifting the index for the minimum difference [6]. Path
integration is conducted by digital integration of ω to obtain θ and virtual pose-
cell shift for (X,Y). Loop closure in the SLAM is tracked via VT matching, where
a new image needs to be compared to every stored VT. When a new VT is
generated, the SRAM stores the input VT and the address corresponding to the
pose-cell with maximum energy. Power consumption and latency are minimized
during VT matching via: (1) Dual Thresholds (DT): If the difference between the
image and a stored VT (ΔVT) < THLOW (lower threshold), the VT is immediately
returned reducing further memory access. Only if ΔVT > THHIGH (higher threshold)
for every VT, then a new VT is appended, thus reducing the total memory usage
compared to employing a single threshold THLOW; and if THLOW < ΔVT < THHIGH for
every VT, the best matched VT is returned with a full scan of stored VTs, and (2)
Dynamic Indexing (DI): We exploit the fact that once the agent sees a previously
seen visual cue (i.e., VT match at index [j]), the probability of a VT match for the
next input is high near [j], by starting the VT search at [j]. DT and DI enable the
front-end to reduce the number of memory accesses to 63% of the baseline (Fig.
31.1.2).

Localization of (X,Y) is performed through a bio-mimetic 7×7 SNN-based pose-
cell array that implements the dynamics of a neural attractor network. Each
pose-cell in the array has excitatory and inhibitory connections to its neighbors
with distance-dependent weights (Fig. 31.1.3) [6] and circular boundary
conditions to enable continuous tracking while preventing the map-size from
being limited. Each pose-cell features: (1) a 5-stage ring-VCO to implement rate-

coded spiking neurons, (2) a 4b current DAC (IDAC) for each excitatory (sourcing
current) and inhibitory (sinking current) inputs, including global inhibition and
current boost (BST) for self-excitatory feedback, and (3) a 4b asynchronous
counter-based energy detector that encodes instantaneous pose-cell energy.
When a VT match occurs, the vision front-end injects energy into the
corresponding pose-cell via Einj, the coupled attractor dynamics (timing diagram
shown in Fig. 31.1.3) resolves competition between visual cues and self-motion,
and loop closure occurs. SLAM generates the corresponding experience map (Fig.
31.1.4) where error correction during loop closure leads to a redistribution of the
distance error across the entire loop. NeuroSLAM allows the agent to continuously
move and acquire data and the map is seamlessly updated, corrected and
appended. The measured IDAC control voltage (Fig. 31.1.4) is tuned to provide a
robust attractor (>500MHz of pose-cell firing rate), while minimizing spurious
spiking by non-excited pose-cells and reducing the power consumption. DT and
DI reduce the measured latency of the visual system to >65% over benchmark
maps and can support >100fps (currently limited by the speed of the camera
interface). Each pose-cell can be stalled in its current state and the corresponding
energy (frequency) can be individually read out to provide unique observability
into SNN attractor dynamics. Fig. 31.1.4 illustrates one instance of the measured
competition of the 7×7 array where (X,Y)max is initially at (3,3). After a VT match,
a new visual cue injects energy at (6,0) and the neuronal dynamics eventually
resolves and corrects the error in odometry.

Figure 31.1.5 illustrates the measured power-performance characteristics and
shows an FMAX of 130.8MHz at 23.82mW. This corresponds to a measured peak
energy-efficiency of 8.79TOPS/W and 0.203pJ/MAC (Both include power of
SRAM, digital and mixed-signal blocks) for the 4b SNN-based pose-cell array.
The breakdown of the system power across various building blocks is shown in
Fig. 31.1.5 which shows that the pose-cell array, more specifically the IDAC,
consumes a significant portion of the system power owing to its continuous-time
dynamics. Mismatches and random process variation among the pose-cell VCOs
can cause certain low-VTH pose-cells to fire spuriously even when they are weakly
excited. In the worst case, a spurious pose-cell can fire faster than the pose-cell
with the maximum excitation and can cause algorithmic errors. We quantify the
robustness of the system as the pose-cell frequency margin (= frequency of pose-
cell with maximum excitation – worst-case spurious firing) and show
measurements across multiple dies (Fig. 31.1.5) illustrating >200MHz of margin
and correct operation across the entire operating range.

The test-chip is integrated on a mobile robot with an interface to a Raspberry-PI
and an embedded camera. We test the system across various standard indoor
benchmark arenas and show correct SLAM operation (overlaid on the blueprint
of arena 1) and successful loop closure. Fig. 31.1.6 also illustrates how the
number of VTs increases with the map-size (i.e. number of frames) for three
template indoor arenas. The benchmarking table shows competitive figures-of-
merit, ultra-low power (17.27mW) operation and successful system integration
and deployment. The die-shot and the chip-characteristics are shown in Fig.
31.1.7.
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Figure 31.1.1: Motivation for NeuroSLAM, comparison with other algorithms
and the overall system architecture illustrating the key design components.

Figure 31.1.2: Proposed scan-line intensity profile-based visual odometry and
template matching, and path integration via virtual pose-cell shift in the pose-
cell array.

Figure 31.1.3: Proposed oscillator-based mixed-signal pose-cell design, circuit
components and timing diagrams.

Figure 31.1.5: Power consumption, operating frequencies, energy efficiency,
power breakdown across various design components, and resiliency of the
system showing pose-cell frequency margin across multiple test-chips.

Figure 31.1.6: Application of the test-chip to SLAM in mobile micro-robotics,
measurement results of SLAM operation across benchmark arenas, and
comparison with competing designs.

Figure 31.1.4: Experience map management, overall system timing diagram,
and memory access in proposed visual template matching, pose-cell operating
region, and continuous attractor network-based pose-cell activities.

31

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:56:21 UTC from IEEE Xplore.  Restrictions apply. 



•  2020 IEEE International Solid-State Circuits Conference 978-1-7281-3205-1/20/$31.00 ©2020 IEEE

ISSCC 2020 PAPER CONTINUATIONS

Figure 31.1.7: Microphotograph of the test-chip, chip characteristics and
summary of performance.

Figure 31.1.S1: Operation of the test-chip in a real environment showing map
correction in the experience map during exploration.
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