
XBAROPT - Enabling ultra-pipelined, novel STT MRAM based
processing-in-memory DNN accelerator

Aqeel Anwar†, Arijit Raychowdhury†, Ryan Hatcher‡, Titash Rakshit‡

Georgia Institute of Technology, Atlanta, GA, USA†, Samsung Semiconductor Inc. ‡

Abstract—An explosion in big data driven machine learning
(ML) applications in conjunction with a severe slowdown
of Moore’s Law are prompting the search for alternative
application-specific hardware fabrics. With its focus on bring-
ing the compute inside memory bitcells, processing-in-memory
(PIM) has been proposed to accelerate ML inference applica-
tions. In this paper, we present a modular, end-to-end simulation
framework that is required to find a power-performance opti-
mized solution for PIM based architectures for a given applica-
tion. Our simulation framework encompasses multiple levels of
hierarchies including device bitcell, array, memory hierarchy,
dataflow, data re-use and algorithm-to-system mapping. Novel
concepts at two levels of the hierarchy are introduced and
evaluated: 1. Logic embeddable, high Ion/Ioff Magnetic Tunnel
Junction (MTJ) bitcell and 2. Cycle accurate inter and intra
layer pipelined operation for high performance and low power
operations. Results are compared to pure digital custom ASIC
implementation showing orders of magnitude improvements in
power-performance on widely accepted MLPerf benchmarks.

I. INTRODUCTION

Deep neural networks (DNN) are currently being widely

used in a myriad of real world ML applications. The high

compute and memory demands of the DNNs make them hard

to fit in power constrained edge devices. Severe slowdown

of Moore’s Law has exacerbated the burgeoning gap between

the application demand and the hardware compute/memory

supply. Memory-centric PIM has been proposed to accelerate

machine learning applications for inference with its focus on

bringing computing inside memory bitcells. This addresses

the logic-to-memory bottleneck and the reduced technology

improvements that currently plague general purpose compute

like CPUs and GPUs when applied to ML. However, to

analyze, benchmark and optimize a PIM based architecture, a

full-stack end-to-end simulator and optimizer is needed that

can encompass different levels of hierarchies. Optimizations

and innovations at all levels of this end-to-end hierarchy

are needed to produce a system that can provide very high

performance within an acceptable power budget. In this paper

we outline such a hierarchical and modular simulator that is

used 1. to evaluate system impacts of two novel concepts at

two different layers of hierarchy, a novel logic embeddable

2T2MTJ bitcell and an ultra-pipelined mapping scheme 2.

to modularly analyze critical parameters across the stack

for highest power-performance and finally 3. to compare

the PIM system to a digital custom ASIC framework and

quantify improvements in power-performance layer-by-layer

on widely accepted MLPerf benchamrks.

II. HIGH ION/IOFF 2T2MTJ BITCELL AND PIM ARRAY

PIMs accelerate the most ubiquitous mathematical op-

eration in machine learning applications, the matrix-vector

multiplication. Many novel memories, e.g. resistive RAM

(RRAM) and phase change memory (PCM) have been pro-

posed as the bitcell solutions due to their non-volatile, analog

nature. However, none of these memories have been shown

to be embeddable in a logic manufacturing process (both

in terms of the process as well as the operating voltages),

which is critical to build a machine learning processor with

its requirement of myriad high performance digital parts.

Magnetic Tunnel Junction (MTJ) based Spin Transfer Torque

(STT) Magnetic RAM (MRAM) bitcell is a logic embeddable

non-volatile memory [1] that has hithertho been ignored for

PIM applications due to its binary storage and low Ion/Ioff

ratio. To overcome the digital nature of MTJs, bitsliced

digital voltage signals are used to represent the input and

output feature maps. Multiple input activations are fed and

weighted by the bitcell conductances thereby performing

MVMs simultaneously in parallel. Resultant currents on the

bitline are accumulated as partial sums for an entire subarray

in one clock cycle. To add the generated currents from

multiple MVMs in parallel, the requirements for the bitcells

are stringent. The bitcells require high Ion/Ioff ratio as well

as very low variation in conductances. RRAM and PCM

memories have modestly high Ion/Ioff ratios but very high

conductance variability [2]. STT MRAM is embeddable in

a logic process and exhibits low conductance variation but

also very low Ion/Ioff ratios. To solve the problem of the

low Ion/Ioff ratio, we propose a novel cross-coupled 2T2MTJ

STT MRAM bitcell in which the Ioff is determined by the

leakage of the transistor rather than the low conductance

level of the MTJ, leading to on/off ratios of > 104 instead

of < 3. The 2T-2MTJ bitcell is is shown in Fig 1. A

logical 1(0) is implemented by setting the MTJ to high

resistance state Rap(Rp) and MT J to the low resistance

state Rp(Rap). The cross-coupled 2T-2MTJ bitcell enables

significant advantages when the inputs are a logical 1 due

to current to BL being limited by the off state resistance of

the transistor, which is typically several orders of magnitude

larger than Rap as shown in Fig 2. Therefore, an array of

2T-2MTJ bitcells generates an output current on the BL

that is significantly smaller than the equivalent 1T-1MTJ

array enabling significant improvements in area, power and

performance as compared to an 1T-1MTJ solution [3]. The

write scheme for an array comprised of 2T-2MTJ bit cells

is described in Fig. 2. The 2T-2MTJ structure is indeed 2x

in area at the bitcell level. However, the total array size

(bitcell + periphery) is reduced as compared to the 1T1M

implementation. This counter-intuitive fact transpires due to

a significantly smaller MUX in the periphery of the 2T-2MTJ

2020 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)

978-1-7281-4922-620$31.00 c©2020 IEEE 36

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:50:33 UTC from IEEE Xplore. Restrictions apply.

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

1.E+03

0.0 0.2 0.4 0.6 0.8 1.0

C
u
rr

en
t

(u
A

)

Read Voltage (V)

Ion and Ioff for 1T-1MTJ and 2T-
2MTJ Bit Cells

1T1MTJ Ion
1T1MTJ Ioff
2T2MTJ Ion
2T2MTJ Ioff

��� ���

��

��

�� ��

� 	�

���

��

��

�

1T-1MTJ bit cell 2T-2MTJ bit cell

Fig. 1. (left) Transient Ion and Io f f for 1T1MTJ and 2T2MTJ bitcells clearly
shows the On/Off Ratio improvement as a function of Vread . (right) Bitcell
diagram

Selected Row Other Rows

Write Down �� �� �� �� �� ��

��� �� �� 	 	 � ��

��� �� �� 	 	 �� �

Selected Column Other Columns

Write Up �� �� �� �� �� ��

��� � �� �� �� 	 	

��� �� � �� �� 	 	

Fig. 2. Write scheme for the 2T-2MTJ bit cell. The direction of the write (up
or down) corresponds to whether the current is running from the word lines
to the bit lines (down) or from the bit lines to the word lines (up). The write
must take place in two separate steps – row-by-row and column-by-column

structure. The 3 to 4 orders of magnitude lower currents

produced by the 2T-2MTJ structure Fig. 1 reduces the MUX

dominated total area significantly Fig. 3. A more detailed

version of the comparison w.r.t. 1T-1MTJ and other structures

has been submitted for publication at ISCAS 2020 [3]. [4]

describes a bitcell that is for TCAM arrays. However, the

difference with our proposal is that the reference bitcell have

the MTJ resistors connected to the drain of the transistors

only. The key to our proposal is the cross-coupling at the

gate which leads to the 3 to 4 orders of magnitude current

reduction as the off state is governed by the transistor instead

of the very high MTJ Ro f f . The peripheral circuitry

especially the analog-to-digital (ADC) converter plays a big

role in PIM based architectures. The ADC consumes much

of the area and power and depends on the ADC bit precision

which in turn affects the inference accuracy of the problem

at hand eg CIFAR or ImageNet. Our modular optimizer can

be used to choose the bit precision of ADCs to explore the

PPA design space. As a baseline case, we use 6-bit ADC

precision in conjunction with hardware aware retraining,

that has been shown to be sufficient for most demanding

ML problems [5]. The energy and area of the bitcell and

peripherals are tabulated in Fig 3 based on 32nm node [6], [7]

for consistent benchmarking wrt ScaleSim. Both negative and

positive weights are encoded in our approach with multiple

columns, typically 8, sharing one ADC.

III. XBAROPT SCHEMATIC AND MAPPING

The schematic block diagram of XbarOpt accelerator can

be seen in Fig. 4. eMRAM is used to stored the layer outputs

before they can be fed into the next layer as inputs for

processing. Input register is responsible of storing interme-

diate input activations to be fed into the Xbar arrays as

inputs. Each xbar array unit (XA) has a DAC and Sample

and Hold unit in it. ADC is used the convert the analog

outputs from the xbar arrays and the partial sums for each

Fig. 3. Energy and area breakdown for bitcell array and peripherals

XA XA XA

XA XA XA

XA XA XA

Input Register (IR)

ADC

Output
Register
(OR)Shift and Add

eMRAM

D
A
C

Sample +
Hold

Fig. 4. XbarOpt Schematic Diagram

bit-sliced input activation is shifted and added and stored

in the Output registers (OR). The idea behind XbarOpt is to

allocate resources when it comes to Xbar arrays, hence it can

be seen that xbar arrays are clustered together as opposed

to tile-based division used in [8]. Ongoing work includes

modelling these tile-based clusters into XbarOpt. A set of

xbar arrays are assigned to each layer in the DNN topology.

The number of rows is determined by the filter size of the

layer, while the number of columns are determined by the

number of filters of the layer, number of bits mapped per cell

of the STT MRAM and the precision of the filter weights.

The input activation are fed as rows to these xbar arrays

and the output are collected from the bottom computing the

partial sum, which is then shifted and added to the partial

sum of the next input activation bit. The partial sum of each

output value is stored in an Output Buffer. Once the final

output is generated it is stored back in the eMRAM, which

can then be used as inputs to the next layer. Based on how and

when this output data is used for processing in the next layer,

different pipelining schemes exist. In unpipelined (unpipe)

scheme, the processing of the next layer isn’t started until

the entire output of the previous layer has been generated.

The purpose of introducing this scheme is to have a fair

comparison with a digitally implemented accelerator in the

results section. In inter layer pipelined scheme (Pipe), the

processing of the next layer begins as soon as we have enough

output values generated from the previous layer [8]. This

depends on the filter size and the stride length of the next

layer. This scheme, however, is prone to delays when the

stride length of the previous layer is greater than 1. This

introduces delays in the pipeline, which trickles down to the

last layer. This delay can be overcome by making use of

intra-layer pipelining generating more than one output value

per cycle (Pipe+ scheme). For example if the stride length of

next layer is 2, the current layer needs to generate 2 outputs

per time instant to overcome the pipeline delays caused by the

lack of sufficient data. This means that we need to double

the xbar arrays assigned to current layer, which results in

and increased requirement of the xbar array (and hence the

37

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:50:33 UTC from IEEE Xplore. Restrictions apply.

Input Layer i

Output Layer i
Input Layer (i+1)

Start processing layer i All outputs of layer i generated
Begin processing layer (i+1) at this point

��� ��� ����

Begin processing
layer i

Begin processing
layer (i+1)

Continue processing
layer (i+1)

��� ��� ���

Unpipe Pipe+

Fig. 5. Intra layer pipelining (pipe+)
�	
 ����
� �������
� ���� � � � � �
�� ��� �� �� �� �� ��
�� ��� �� �� �� �� ��
�� ��� �� �� �� �� ��
�� ��� �� �� �� �� ��
�� ��� �� �� �� �� ��
�� ��� �� �� �� �� ��
��� ��� �� �� �� �� ��
��� ��� �� �� �� �� ���
��� ��� ��� ��� ��� ��� ���
��� ��� ��� ��� ��� ��� ���

�	
 ����
� �
�������� �������
� �
�� �� �������� �������� ��������
� �
�� �� �������� �������� ��������
� �
�� �� �������� �������� ��������
� �
�� �� �������� �������� ��������
� �
�� �� �������� �������� ��������
� �
�� �� �������� �������� ��������
� �
�� �� �������� �������� ��������
� ���� �� �������� �������� ��������
�� �
�� �� �������� �������� ��������
�� �
�� �� �������� �������� ��������
�� �
�� �� �������� �������� ��������

Fig. 6. Example CSV trace file generated by XbarOpt

requirement of a larger compute unit area). This increase in

the number of xbar arrays depends on the network topology

and generally is only a fraction of the total number of xbar

arrays assigned to the network. Fig 5 visualizes these three

pipelining schemes.

IV. RESULTS

A python based simulator of the proposed system architec-

ture is designed and used in conjunction with hardware gen-

erated numbers. Prior work in the xbar arrays [9]–[13] lack a

complete system architecture design and characterization of

CNNs. The idea behind this simulation is to provide a full-

stack understanding of the 2T2MTJ crossbar accelerator by

exploring the design space for the required performance met-

rics. This simulation takes in the network topology, crossbar

configuration file and a mapping file, while outputting layer-

wise and system level performance metrics. The simulation

goes through different phases and in each phase generates

one or more comma-separated (CSV) files. Sample CSV trace

files generated by XbarOpt can be seen in Fig. 6. The design

space includes various modelling variables such as crossbar

array dimensions, 2T2MTJ modelling parameters (such as

bits-per-cell, area etc), memory sizes, access bandwidths,

selection from the various available logical-to-physical array

mappings, activation precision bits, digital-to-analog (DAC)

resolution of the input, analog-to-digital (ADC) precision,

inter-layer-pipelining etc.

A. XbarOpt vs Digitally-implemented Accelerator

We compare the performance of XbarOpt with a digitally-

implemented accelerator simulator. A systolic array accel-

erator based on ScaleSim [14] was used to draw the com-

parison which is more optimized than CPU and GPU for

these MLPerf tasks. In order to have a fair comparison, the

dimension of the systolic array used for each of the network

was determined individually such that the area occupied by

the compute units for XbarOpt and ScaleSim was same. Four

different neural networks (AlphaGoZero, AlexNet, ResNet50

and Neural Collaborative Filtering) were used as workloads

to both these accelerator simulators. ScaleSim is compared to

both unpipe and pipe version of XbarOpt. Fig. 7 summarizes

the improvement results achieved by XbarOpt over ScaleSim

for the following improvement performance metrics:

1

10

100

AlphaGoZero AlexNet ResNet50 NCF

Latency and Energy Improvement ScaleSim vs XbarOpt

Unpipe/Pipe
ScaleSim/Unpipe
ScaleSim/Pipe
Energy

Fig. 7. Average improvement in using XbarOpt over ScaleSim for different
performance metrics (log scale)

TABLE I
PERFORMANCE PARAMETERS IMPROVEMENT FOR XBAROPT W.R.T

SCALESIM

Network Name Energy Latency Power GOPS/Watt
AlphaGoZero 3.4231 12.249 0.346 2.88

AlexNet 6.1197 31.720 0.242 4.12

ResNet50 2.8628 4.8 1.379 0.72

NCF 9.6595 255.948 0.037 26.4

• Total energy per inference

• Latency between ScaleSim and XbarOptunpipe
• Latency between ScaleSim and XbarOptpipe
• Latency between XbarOptpipe and XbarOptunpipe

The more the number of layers in a network, the greater

the advantage from pipelining. Moreover, since there is

no data re-use for fully connected layers as there is for

convolutional layer, fully connected layers can’t be pipelined

in the manner discussed above. It can be seen from the

figure that the latency improvement between XbarOptpipe
and XbarOptunpipe is maximum for ResNet50, while it is

minimum (=1) for NCF which consists of all fully connected

layers and hence no room for pipelining improvement. The

larger the percentage of fully connected layers (or more

number of filters, in general) in the network, the better

the resource allocation. Hence the latency improvement

between ScaleSim and XbarOptunpipe is largest for NCF,

and smallest for ResNet50. The improvement between the

latency of ScaleSim and XbarOptpipe depends both on the

number of layers in the network and ratio of fully connected

layer weights to the total weights of the network. Hence

it is largest for NCF. The energy improvement depends on

various factors, the most significant one being the xbar array

utilization. Using a larger xbar array for a smaller layer will

result in unnecessary energy loss. AlexNet has the best xbar

array utilization and hence the best energy improvement.

Table I reports the improvement in per inference energy,

time, consumed power and required GOPS per watt for the

workloads compared to ScaleSim.

B. Exploring the design space

In this section we present the result of varying XbarOpt pa-

rameters and analyzing the effects on the AlexNet workload.

These parameters include Xbar Array dimensions, eMRAM

read/write bandwidth, pipeline techniques, ADC bit precision

and 2T2MTJ vs ReRAM based xbar arrays

The results have been plotted in Fig 10. Increasing the

Xbar array dimensions in general help in reducing the total

inference energy for medium sized filters. For workloads

where the filter size is small, using larger xbar arrays will

yield in poor array utilization and unnecessary energy loss.

38

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:50:33 UTC from IEEE Xplore. Restrictions apply.

1

10

100

�	
�� �	
� �	
�! �	
�" �	
�# �
� �
 �
! �	��$

AlexNet

��%%

�%�%%

�%%�%%

�	

�

����

	

��

����

	

�

��$�
���

���

	
�

��$�
���

����
��

��$�
���

����
� �	��

$

AlphaGoZero

0.1

1.0

10.0

100.0

����&
����

���

	
��&
����

&���

	����
&���

����

	����
&���

����
	���

��
	���

�
	���

�!
��
�

����

� ����$

NCF

1

10

100
��

��
�

��
��
�

��
�

��
��
�

��

��
��
�

��
!

��
��
�

�
��
��
��
 �
��

��
��
��
 �
�

��
��
��
 �
�!

��
��
��
 �
��

��
��
��
 �
�

��
��
��
 �
�!

��
��
��

!�
��

��
��
��

!�
�

��
��
��

!�
�!

��
��
��

!�
��
��
��
!�
��

��
��
��
!�
�

��
��
��
!�
�!

��
��
��
!�
��

��
��
��
!�
�

��
��
��
!�
�!

��
��
��
!�
��

��
��
��
!�
�

��
��
��
!�
�!

��
��
��

"�
��

��
��
��

"�
�

��
��
��

"�
�!

��
��
��

"�
��
��
��
"�
��

��
��
��
"�
�

��
��
��
"�
�!

��
��
��
"�
��

��
��
��
"�
�

��
��
��
"�
�!

��
��
��
"�
��

��
��
��
"�
�

��
��
��
"�
�!

��
��
��
"

��

��
��
��
"

�

��
��
��
"

�!

��
��
��
"�
��

��
��
��
"�
�

��
��
��
"�
�!

��
��
��

#�
��

��
��
��

#�
�

��
��
��

#�
�!

��
��
��

#�
��
��
��
#�
��

��
��
��
#�
�

��
��
��
#�
�!

��
��
��
#�
��

��
��
��
#�
�

��
��
��
#�
�!
�
'

��
��
$

ResNet50

0.1

1.0

10.0

100.0

1000.0

10000.0

��
��
�

��
 �
��

��
 �
�

��
 �
�!

��
 �

��
 �
��

��
 �
�

��
 �
�!

��
 �
��

��
 �
�

��
 �
�!

��
!�
��

��
!�
�

��
!�
�!

��
!�

��
!�
��

��
!�
�

��
!�
�!

��
!�
��

��
!�
�

��
!�
�!

��
!�
��

��
!�
�

��
!�
�!

��
"�
��

��
"�
�

��
"�
�!

��
"�

��
"�
��

��
"�
�

��
"�
�!

��
"�
��

��
"�
�

��
"�
�!

��
"�
��

��
"�
�

��
"�
�!

��
"

��

��
"

�

��
"

�!

��
"�
��

��
"�
�

��
"�
�!

��
#�
��

��
#�
�

��
#�
�!

��
#�

��
#�
��

��
#�
�

��
#�
�!

��
#�
��

��
#�
�

��
#�
�!
�
'

��
��
$

0.1

1.0

10.0

100.0

1000.0

10000.0

100000.0

����� ���� ����! ����" ����# ��� �� ��! ����$

0.1

1.0

10.0

100.0

1000.0

��
��

�

���
��
��

�

���
��
�

��
$�

�

��
���

��

��
$�

�

��
�
�

�

��
$�

�

��
�
�

��
��$

1.0

10.0

100.0

1000.0

10000.0

100000.0

	

��
&�
��
���
�

	

��
&�
���

&
���

	�
��
�&
��
��
���

	�
��
�&
��
���
��

	�
��

�
�

	�
��

�

	�
��

�
!

��

���
��

�

��
��$

E
n
er

gy
 I

m
p
ro

v
em

en
t

L
a
te

n
cy

Im
p
ro

v
em

en
t

Fig. 8. Layer-wise energy and latency improvement across all four workloads (log scale)

39.52
%

1.86%

58.6
22%

17.68%

0.40%

81.92%

ResNet50

28.4
8%

0.99
%

70.5
3%

48.2
6%

1.79%

49.9
4%

AlexNet

26.46
%%

0.77
%

72.7
7%

7.97%
0.70%

91.33
%%

AlphaGoZero

85.58%

0.57%

13.84%

93.17%

1.59%
5.24%

NCF

S
ca

le
S
im

X
b
a
rO

p
t

Compute

SRAM

DRAM

Compute

IR

eMRAM

Fig. 9. Energy breakdown for different workloads on ScaleSim and XbarOpt

0

5000

10000

15000

20000

25000

30000

0

0.02

0.04

0.06

0.08

0.1

0.12

32 64 128 256
eMRAM Bandwidth

Energy & Latency vs eMRAM BW for 2T2MTJ
based XbarOpt

Energy Latency

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

25612864
Xbar Square Array Size

Energy vs Xbar size for 2T2MTJ based
XbarOpt

Energy

0

10000

20000

30000

40000

50000

Unpipe Pipe Pipe+
Pipelining Scheme

Latency vs pipeline type for 2T2MTJ based
XbarOpt

eMRAM cyc = 10
eMRAM cyc = 5
eMRAM cyc = 3
eMRAM cyc = 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

64 128 256
Xbar Array Size

Energy vs ADC bit precision vs Xbar array
size for 2T2MTJ based XbarOpt

6 bits ADC

4 bits ADC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

25612864
Xbar Array Size

Comparison between 2T2MTJ and ReRAM
based XbarOpt

Area ratio

Energy ratio

0

1

2

3

4

5

1 3 5 10
eMRAM write cycles

Latency improvement of pipe+ over unpipe
for 2T2MTJ based XbarOpt

pipe+/unpipe

pipe+/pipe

Fig. 10. Parameter sweep over AlexNet workload

Since AlexNet has comparatively larger filter size, increasing

the xbar array dimensions yields in a lower total inference

energy. eMRAM modelling has been taken into account in

terms of its bandwidth and write cycles. We observed that

increasing the eMRAM bandwidth overcomes the eMRAM

access delays and results in a lower latency. The total energy

per inference, however, depends on the per access energy of

eMRAM for a given bandwidth. CACTI [15] based numbers

were used to generate the per access read and write energies.

It can be seen that the energy advantage by increasing the

eMRAM BW tapers off after a certain point. eMRAM suffers

with low write latency. XbarOpt models the write latency

of eMRAM by dictating the number of cycles required to

write. For lower write cycles, the increase in the total latency

per inference is similar. The latency increases when the

write cycles increases beyond a certain value. This value is

determined by the input bit slicing and precision. In these

results the input were decomposed into 8 slices of 1 bit

each. Hence it takes 8 cycles for the xbar array to generate

one partial sum. During that time eMRAM is not invoked

and can consume cycles to write previous partial sum. As

soon as the eMRAM write cycles increases beyond 8, the

total inference latency starts increasing (Fig 10). The total

inference latency for these three pipelining schemes w.r.t

to the eMRAM write cycles can be seen in Fig 10. The

figure also shows the latency improvement of pipe+ scheme

over the unpipelined scheme as the eMRAM write cycles

are varied. The pipe+ scheme yields about 2-4 times less

latency as compared to other pipelining schemes with only

an extra compute area overhead of 4%. With the increase of

the eMRAM write cycles, the latency improvement decreases

since pipe+ is already tightly coupled and takes full advan-

tage of parallelism, increasing the number of write cycles

have a greater impact on the latency of pipe+ scheme than

that of unpipe scheme. The last row of the figure plots the

results of varying the ADC bit precision and compares the

performance of the proposed 2T2MTJ Xbar design with an

ReRAM based design. Increasing the ADC bit precision has

a larger impact for smaller xbar arrays as compared to larger

ones. For smaller xbar array sizes, the ADC dominates the

total energy of the xbar array and hence a larger impact.

Comparing 2T2MTJ based xbar arrays with that of ReRAM,

2T2MTJ based xbar array only yields in a 1.1 to 1.4 times

inference energy as that of an ideal ReRAM based xbar array

design, with an added advantage that it can be fabricated.

V. CONCLUSION

Optimizations and innovations at all levels of hierarchy

are needed to produce a PIM based system that can provide

very high performance within an acceptable power budget

especially at the edge. We outline such a hierarchical and

modular simulator that is used 1. to evaluate system impacts

of two novel concepts at two different layers of hierarchy,

a novel logic embeddable 2T2MTJ bitcell and an ultra-

pipelined mapping scheme 2. to modularly analyze critical

parameters across the stack for highest power-performance

and finally 3. to compare the PIM system to a digital cus-

tom ASIC framework and quantify improvements in power-

performance.

39

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:50:33 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. K. Lee, Y. Song, J. Kim, S. Oh, B.-J. Bae, S. Lee, J. Lee, U. Pi,
B. Seo, H. Jung et al., “Embedded stt-mram in 28-nm fdsoi logic
process for industrial mcu/iot application,” in 2018 IEEE Symposium
on VLSI Technology. IEEE, 2018, pp. 181–182.

[2] Z. Jiang, Y. Wu, S. Yu, L. Yang, K. Song, Z. Karim, and H.-S. P. Wong,
“A compact model for metal–oxide resistive random access memory
with experiment verification,” IEEE Transactions on Electron Devices,
vol. 63, no. 5, pp. 1884–1892, 2016.

[3] Y. L. et al, “A variation robust dnn inference engine based on stt-mram
with parallel read-out.”

[4] H. Noguchi, K. Kushida, K. Ikegami, K. Abe, E. Kitagawa, S. Kashi-
wada, C. Kamata, A. Kawasumi, H. Hara, and S. Fujita, “A 250-
mhz 256b-i/o 1-mb stt-mram with advanced perpendicular mtj based
dual cell for nonvolatile magnetic caches to reduce active power of
processors,” in 2013 Symposium on VLSI Technology. IEEE, 2013,
pp. C108–C109.

[5] K. R. A. R. Shubham Jain, Abhronil Sengupta, “Rxnn: A framework
for evaluating deep neural networks on resistive crossbars,” arXiv
preprint arXiv:1809.00072, 2019.

[6] X. Peng, R. Liu, and S. Yu, “Optimizing weight mapping and data
flow for convolutional neural networks on rram based processing-
in-memory architecture,” in 2019 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2019, pp. 1–5.

[7] “https://github.com/neurosim/dnn neurosim v1.0.”
[8] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-

chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–
26, 2016.

[9] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. C. Adam, K. K.
Likharev, and D. B. Strukov, “Training and operation of an integrated
neuromorphic network based on metal-oxide memristors,” Nature, vol.
521, no. 7550, p. 61, 2015.

[10] Y. Kim, Y. Zhang, and P. Li, “A digital neuromorphic vlsi architecture
with memristor crossbar synaptic array for machine learning,” in 2012
IEEE International SOC Conference. IEEE, 2012, pp. 328–333.

[11] X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang,
H. Jiang, M. Barnell, Q. Wu et al., “Reno: A high-efficient recon-
figurable neuromorphic computing accelerator design,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2015, pp. 1–6.

[12] C. Yakopcic and T. M. Taha, “Energy efficient perceptron pattern
recognition using segmented memristor crossbar arrays,” in The 2013
International Joint Conference on Neural Networks (IJCNN). IEEE,
2013, pp. 1–8.

[13] T. M. Taha, R. Hasan, C. Yakopcic, and M. R. McLean, “Exploring the
design space of specialized multicore neural processors,” in The 2013
International Joint Conference on Neural Networks (IJCNN). IEEE,
2013, pp. 1–8.

[14] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “Scale-sim: Systolic cnn accelerator,” arXiv preprint
arXiv:1811.02883, 2018.

[15] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
nuca organizations and wiring alternatives for large caches with cacti
6.0,” in Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 2007, pp.
3–14.

40

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:50:33 UTC from IEEE Xplore. Restrictions apply.

