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Learning to walk – i.e., learning locomotion under performance 
and energy constraints continues to be a challenge in legged 
robotics.  Methods such as stochastic gradient, deep reinforcement 
learning (RL) have been explored for bipeds, quadrupeds and 
hexapods. These techniques are computationally intensive and 
often prohibitive for edge applications. These methods rely on 
complex sensors and pre-processing of data, which further 
increases energy and latency. Recent advances in spiking neural 
networks (SNNs) promise significant reduction in computing 
owing to the sparse firing of neuros and has been shown to 
integrate reinforcement learning mechanisms with biologically 
observed spike time dependent plasticity (STDP). However, 
training a legged robot to walk by learning the synchronization 
patterns of central pattern generators (CPG) in an SNN 
framework has not been shown. This can marry the efficiency of 
SNNs with synchronized locomotion of CPG based systems – 
providing breakthrough end-to-end learning in mobile robotics. In 
this paper, we propose a reinforcement based stochastic weight 
update technique for training a spiking CPG. The whole system is 
implemented on a lightweight raspberry pi platform with 
integrated sensors, thus opening up exciting new possibilities.  

Index Terms— Central pattern generator, spiking neural 
Netwrks, Spike time dependent plasticity, Stochastic 
Reinforcement based STDP, robotic locomotion 
 

I. INTRODUCTION 
Locomotion of animals emerge from the biomechanical 
interaction between the environment and the body controlled by 
the nervous systems [1]. Locomotion of invertebrate and 
vertebrates with limbs is generated by Central pattern 
generators (CPGs), which are biological neural circuits that 
produce rhythmic outputs [2][3]. CPG-inspired control systems 
have been widely applied to the locomotion of legged robots 
and exoskeletal prosthetic systems [4-6]. Compared to a 
traditional centralized control that calculates the activity of each 
leg independently, a distributed CPG-based de-centralized 
approach can locally control each joint through a combination 
of local and global network dynamics. Thus, it decreases the 
dimensionality of the control signal and reduce the time delays 
in motor control loop. Researchers also discovered that CPG 
not only gives rise to complex rhythmic patterns for locomotion 
and seamless gait transition but also receives modulation from 
higher regions in the brain. Inspired by these findings in 
neurosciences, we develop an end-to-end autonomous system 
where sensory inputs can directly interface with CPG to not 
only provide a means of adaptive locomotion and gait; but also 
enable the agent to walk or run without any prior knowledge or 
model-based experience replay.  

 
Besides enabling functional end-to-end learning, we also 
consider the energy consumption of such autonomous systems. 
This is particularly important for micro-robots for real-world  
tasks in energy-constrained environments. Recent advances in 
spiking neural networks (SNN) and neuromorphic computing 
hardware has tremendously improved the energy-efficiency of 
cognitive tasks thus bridging the gap between hardware and 
wetware [7][8].  
 

 
Fig. 1.  (a) Closed loop locomotion system schematic. Hexapod robot moving 
in the environment sends visual and gyros sensor signals to the raspberry pi 
processing unit to decide which legs to move during the next time instance (b) 
Gait learning with time. Black boxes indicate that the neuron spikes at that time 
instance. Initially the CPG neurons spikes randomly making the robot to lose 
balance which is corrected over time with the robot learning the correct gait 
 

In prior work, a CPG based on digital implementation of 
phase patterns has been proposed and implemented on an FPGA 
[5]. However, the generated patterns are pre-programmed, to 
enable known walking patterns. Evolutionary algorithm-based 
approaches are also proposed for gait learning of hexapod 
robots [9], but the neural CPG is not discussed or related to 
control. [10-11] show reinforcement learning formulation in the 
context of SNNs. However, most of these works focus on image 
processing or task planning of wheeled robots. To the best of 
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our knowledge, SNN based CPG with autonomous learning 
ability has not been explored yet.. 

In this work, we demonstrate an end-to-end spiking neural 
network carrying out online processing of sensory information 
to generate gait learning in hexapod robots. Gyro sensor and 
camera provide the sensory inputs that are converted into 
reward signals reinforcing or depressing the weights to 
stochastically evolve the network to learn the tripod gait for 
locomotion. Thus we demonstrate a system where a legged 
robot learns to walk autonomously through interactions with the 
environment and by collecting data from its gyroscopic and 
camera sensors.        

II. PROPOSED SYSTEM 

A. Network Architecture 

 
 

Fig. 2.  Schematic of the neural connectivity within the network. The box forms 
the CPG driven by the input neuron and balance driven neuron. Win, WGyro and 
WCPG represent the weight matrices corresponding to the all-o-all connection. 
Only a few connections are shown in the figure due to space constraint 
 

The proposed CPG network consists of six leaky-integrate 
and fire (LIF) spiking neurons, each driving one leg of the 
hexapod robot shown in Fig. 1. In this work, we used a digital 
discretized version of LIF model [5]. The update of variables 
occurs at discrete time steps t. The membrane voltage of LIF 
neurons take the injection current I from spikes of other neuron 
and simultaneously decay with a leaky constant �. When the 
membrane potential V reaches a spiking threshold, a spike is 
issued and V is reset to the resting potential (zero in our case). 
Thus, we have the discrete equation of membrane voltage: 

[ ][ 1] V tV t I
α

+ = +                            (1) 

The neurons are fully connected to each other with additive 
synapses. The CPG is driven by an input neuron with periodic 
input causing the CPG to fire and another neuron which fires 
only when the robots loses balance while walking. This neuron 
is a gyro sensor driven neuron referred as NGyro. The CPG 
neurons have a refractory period of two time units. The 
compactness of the network enables its implementation on the 
Raspberry Pi board without any external infrastructural support.    

B. Algorithm 
Fig. 3 shows the pseudo-code for the algorithm. The weights 

are randomly initialized. Equations in step 7 and 8 show the 
voltage calculation for the LIF neurons where � is the leak rate. 

The voltages of all the LIF neurons in the CPG are calculated 
by calculating the current coming into each neuron from the 
input neuron, gyro sensor driven neuron and other CPG 
neurons. The current is assumed to be equal to the weight of the 
synapse if the pre-neuron has spiked and zero otherwise as 
shown in the equation of step 7. An output neuron fires when 
the voltage exceeds a predefined spiking threshold. At any time 
instance, the number of neurons firing result in movement of 
the corresponding legs in the forward direction.  

For every time instance, visual and gyro inputs are received 
before and after the movement is completed. During the 
movement of the leg, gyro sensor reading provides information 
about the balance and at the completion of the movement the 
visual information from the camera conveys whether a forward 
movement has occurred. If the balance is lost, the gyro driven 
neuron fires in the next time instance and the moved leg is taken 
back to the initial position. If the balance is not lost the 
movement of the leg is completed making the body to move 
forward. The balance and movement are then fed into the 
reward calculation equation. The detailed experimental design 
for the weight updating is explained in the next section. 
 

 
Fig. 3.  Pseudo-code for the algorithm. For every time instance, the membrane 
voltages of neurons are updated to determine the neural spiking at the current 
time instance. After the corresponding legs are moved, the gyro sensor reading 
and visual sensor reading is updated to generate the reward signal for weight 
updates 

III. EXPERIMENTAL SETUP 

A.  Reward Calculation 
The reward combines both visual and gyro sensor inputs. The 

gyro sensor reward is partitioned into three categories as shown 
in Fig. 4. In the first case the robot moves less than three legs 
losing its balance and not moving forward. This results in a 
small positive reward to encourage more neurons to fire in the 
next time instance. The other case is when four or more neurons 
in the CPG fire making the corresponding legs to be raised, 
which results the robot losing balance and gives a small 
negative reward to make sure that the weights are depressed and 
fewer number of neurons fire in the next iteration. The final case 
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is when the correct three legs are raised, and the robot maintains 
its balance even when the legs are lifted up in the air. A high 
positive reward is given now to make sure the action is repeated.  
    The other component of the reward comes from the visual 
input. We use the scan line based odometry method from [13] 
because of its low computational cost. If the balance is 
maintained because no leg is raised, it gives an erroneous 
positive reward to the system. This error can be fixed by using 
a binary decision algorithm taking difference between the 
images before and after the movement to distinguish whether 
the forward movement has occurred or not. A positive reward 
accompanies the forward movement and lack of any movement 
is penalized. This allows the robot to simultaneously learn how 
to balance itself while moving forward. It is important to ensure 
that the negative reward is not very high in magnitude, 
particularly in the first few iterations so that the network has 
enough time to explore and learn. A linear correction is applied 
to the movement-based reward making it steeper as the 
algorithm progresses. Therefore, the total reward at time 
instance t is given by 
 

[ ]
1

total gyro visual
tReward t Reward Reward
T
� �

= + � �
� �

 (2) 

 

 
Fig. 4.  Pseudo-code for calculating the reward corresponding to gyro sensor 
reading. If the balance is maintained high positive reward is given. If the 
balance is lost, the reward is given such that the cumulative weights evolve 3 
legs at a time 

B. Synaptic Weight Updating 
Combining synaptic reinforcement with reward function has 

been utilized previously [14] speculating dopamine release as 
the biological parallel of reward signals. The weights are 
updated only for synapses connected to the CPG neurons firing 
at the current time instance. If neuron i spikes at time step t, 
then for all pre-synaptic neurons spiking at time step t-1, the 
change of weight is calculated as given below 

[ ] [ ] [ ]1ij ij totalW t W t Reward tθη+ = +           (3) 

where � is the learning rate and (0,1)randomη = is the 
stochastic term. The learning rate has to be chosen carefully to 
maximize the convergence rate of learning process. 

C. Hardware Development 
The system described above is implemented in hardware for 

verification of the correct gait pattern in an office environment 
shown in Fig. 1. We use an Adeept RaspClaws Hexapod Robot 
as the locomotion platform. It is equipped with a  Gy-521 MPU-
6050 MPU6050 gyro sensor Module and a pi camera to provide 
balance and visual input to a Raspberry pi 3 Model B+ 
processing unit. The quad-core processor of Raspberry Pi 
operates at 1.5GHz frequency. The schematic of connections 
and block diagram of the operations is shown in Fig. 5.  

 
 
Fig. 5.  Block diagram of the system of computation. Sensory inputs are 
processed on the Raspberry Pi board and the movement signals are generated 
and send out to the hexapod. 

IV.  RESULTS AND DISCUSSION 

A. System Simulation 
Fig. 6 shows the simulation results of an example of learning 

process along the time. The robot starts its action with no 
movement and gradually begin to oscillate between moving 2 
and 4 legs alternatively. When it finally enters the target gait 
(the tripod gait shown in Fig. 1), thereby earning a high reward, 
and the weights saturate thus sustaining the gait. Fig. 6(b) 
shows the total accumulated reward over time. The reward was 
initially negative before the correct gait is found. After that, it 
rapidly increases. 

 
Fig. 6. The number of moving legs (a) and reward accumulated (b) during the 
learning process. 
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B. Demonstration 
We apply the proposed method to an Adeept hexpod robot 

with the hardware configuration depicted in section III.C. In the 
first experimental demonstration (demo-1)1, the learning 
process converged to the target gait pattern at the 66th cycle 
(4:10). We also note (demo 2) that the learning process 
converges to an unwanted alternative gait pattern at the 7th 
cycle (0:18). This gait pattern is a local minimum during the 
learning process. The hexapod can move also forward with this 
gait, but it is less efficient when compared to the bio-mimetic 
target gait. The occasional tremor of servos is caused by 
instantaneous drops in the current supply.  

C. Parameter Selection 
In order to identify the best learning rate, we simulated 100 

iterations of the algorithm with different random seeds for 
different learning rates. This is shown in Fig. 7. Fig. 7(a) shows 
the percentage of simulations converging to the correct tripod 
gait. The results show that the convergence percentage remains 
similar over a range of learning rates. We choose 0.1 as the 
learning rate as it shows the lowest number of non-convergent 
cases. The non-convergent cases do not mean that no 
locomotion takes place. These cases correspond to an 
inefficient final gait, where the hexapod makes frequent turns 
and does not move forward in every step. Fig. 7(b) shows the 
convergence time for the iterations that converge to the desired 
gait. The median convergence time is 207 iterations for learning 
rate of 0.1. Fig. 7(c) shows the weight maps of synapses 
forming the connections between the CPG neurons before and 
after the completion of the learning. For the convergence to the 
global minima of tripod gait, the initially random weights 
between the neurons evolve into a pattern such that neurons 
1,3,5 drive neurons 2,4,6 and vice versa. 
 

D. Comparison with the Prior Work 
The simple two-layer spiking network used in this network is 

expected to show high reduction in energy required in learning 
as opposed to conventional approaches involving artificial 
neural networks. We calculate the total number of spikes issued 
by the CPG in the course of learning to estimate the energy 
spent in learning. The median of total number of spikes issued 
is 503. If these dynamics were implemented in a specialized 
SNN processor, such as Intel’s Loihi platform (1.7 nJ/spike 
[14]), then the total energy consumption in the learning process 
will be 855.1 nJ. Along with the low energy consumption, this 
work also shows that online SNN training can enable a hexapod 
to learn how to walk by a simple reward mechanism. (Table. 1) 

V. CONCLUSION 
    We design a closed-loop end-to-end online training of central 
pattern generator based on a bio-plausible spiking neural 
network. We have applied the proposed neuromorphic CPG to 
a hexapod robot and achieve autonomous online reinforcement 
learning of biomimetic walking gaits in an energy efficient 
manner. This online learning system is implemented on a 
resource-constrained embedded system. The learning process 
                                                           

Demo-1: https://youtu.be/1HqeISAkAs4 
Demo-2: https://youtu.be/ypW0V23gEj0 

converges to the desired bio-observed tripod in 70% of the 
cases while in other cases it converges to suboptimal gaits that 
can still enable the locomotion. 
 

 
Fig. 7(a) Distribution of convergence time with learning rate. Median 
convergence time is 207-time instances. (b) Percentage of simulations 
converging to bio-observed tripod gait is independent of the learning rate. 
Simulations not converging to tripod gait are trapped in local minima that still 
enabling the locomotion is shown in demo 2. (c) Weight matrices of the CPG 
connections before and after the training. With the convergence to the global 
minima exhibiting tripod gait as shown in video demo - 1. In this configuration 
the neurons form a group of 3 reinforcing each other. In the other case the 
weights evolve into a configuration with inefficient walking gait still ensuring 
locomotion as shown in demo - 2  
 

Table. I Benchmarking Comparison to previous SNN CPG approaches 

Ref Training 
Approach 

Sensory 
Feedback 

Online 
/Offline 

[16] Linear 
Programming None Offline 

[17] Grammar 
Evolution None Offline 

[18] Reward + 
STDP 

Olfactory + 
visual Offline 

This 
Work 

Stochastic RL 
 Balance + visual Online 
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