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Abstract 
This paper presents a 65nm wireless image processing SoC for 
real-time computation-communication trade-off on resource-
constrained edge devices. The test-chip includes (1) an all-digital, 
near-memory, reconfigurable and programmable neural-network 
(NN) based systolic image processor at 1.05TOPS/W (peak), (2) a 
digitally-adaptive RF-DAC based transceiver with Tx energy-
efficiency of 768pJ/b and (3) a mixed-signal, time-based, actor-
critic neuro-controller with compute-in-memory (CIM) and in-
place weight updates that provides online learning and adaptation 
at 0.59pJ/MAC for efficiently controlling the computation,  
communication blocks separately as well as jointly. 

Introduction and Motivation 
The wide spread proliferation of smart sensors has led to hardware 
that enable edge intelligence (EI) with extreme energy-efficiencies. 
This decreases the volume of data that is transmitted to the cloud, 
thus reducing: (1) processing latency, (2) communication energy 
and (3) network congestion. However, this comes with an added 
cost of computation at the edge node [1-3] (Fig. 1(a)). The cost 
(energy/latency) of edge computation and the cost of 
communication to the cloud vary widely depending on operating 
conditions, that include (1) information content in the data, (2) 
algorithm selection, (3) channel conditions (noise, path-loss etc.), 
(4) network size, available bandwidth and (5) resources at the 
cloud, as shown in Fig. 1(b). We call the number of NN layers 
processed at the edge, processing-depth (PD). Increasing edge-
computation increases PD, but reduces the volume of data to be 
transmitted. This not only provides an opportunity to efficiently 
configure computation and communication blocks but also trade-
off between computation and communication in real-time to meet 
system targets.  

SoC Architecture and Circuit 
The system architecture, shown (Fig. 1 (c)), illustrates (1) an 
analytics engine with 9 processing elements (PEs) each with 8 
ALUs and 8KB of SRAM, (2) digitally controlled transceiver, (3) 
actor-critic neuro-controller and (4) peripheral circuits including 
frame-buffer, scan, interfaces, instruction/data cache. 
The chip features a 3 x 3 array of PEs with (1) retention-enabled, 
local 8KB SRAM (2) 8 programmable ALUs and (3) input 
buffers/controllers, as is shown in Fig. 2. It supports (1) fully 
connected (FC) layers, (2) weight-stationary CONV layers and (3) 
sparse networks. For sparse networks, the weights (w) and the 
indices (d) are stored in separate sub-banks. Control bits allow 
choice of NN model, optimal PD, and enables retention mode for 
un-accessed sub-banks. The energy-efficient and adaptive RF 
subsystem (Fig. 3), contains a reconfigurable RF-DAC based 
Inverse class-D PA with adaptive closed loop control on data rate 
(8 bits), and error correction coding (ECC – 1 bit control for [8,4] 
Hamming Code) and Output power (3 bits). Information about the 
channel and network conditions are received through a low-power 
OOK receiver with 2 stages of RF gain (~20 dB), an Envelope 
detector (ED) and 2 stages of BB VGA (~20-40 dB). The controls 
on data rate and ECC are employed in the digital baseband in the 
Tx, while the output power control (along with digital amplitude 
pulse-shaping) is performed using an on-chip tapped capacitor 
matching network (MN) with tunable capacitor banks for low MN 
loss and high back-off efficiency. The 4 LO phases are generated 
using an injection locked inverter based quadrature LO generator, 
which are fed to I and Q-paths (Fig. 3).  
The large control space across computation and communication is 
learnt using a low overhead (~5% power) actor-critic NN (AC-NN) 
controller (Fig. 4). The AC-NN takes both design targets and 
sensed variables as inputs and learns to optimally control the 
control knobs. These are listed in Fig. 1(b). The motivation for 
actor-critic NN on the edge is its real-time controllability as well 

as ability to model the SoC dynamics and environmental variables 
while providing an optimal policy through a single inference. The 
controller features (1) 4 10 x 10 memory sub-banks, and (2) a NN 
controller. The actor-critic NNs store 8b thermometer encoded 
data and enables time-based compute-in-memory (CIM). During 
inference, digital to time converters (DTCs) allow pulse width 
modulated word-lines (WLs) (input signals) to be turned on 
sequentially such that the falling edge of one row triggers the 
rising edge of the next. The partial products are accumulated on 
the BL as long as VBL is greater than a threshold (VL) to avoid read 
disturb. However, if the operands are large and VBL reaches VL 
then the process is stopped, the ADC converts to a 6b word, the 
BL pre-charged and the sequence restarts. The differential bitcell 
and ADC allows both positive and negative weights by 
discharging either BL (positive) or BL_bar (negative). The 
thermometer encoding of data enables a weight update to be a left 
or a right shift (sign of the update), and that the duration of shift 
process (magnitude of update) is controlled by the DTC (Fig. 4). 
The array can be read both row as well as column-wise providing 
a seamless design for transposing the weight matrix during back-
propagation. This also enables in-place online learning without 
requiring reads and write-backs (baseline designs).  

Measurement Results 
The measured power-performance of the processing engine (Fig. 
5) shows VMIN of 0.5 V and FMAX of 760 MHz. Peak arithmetic 
energy-efficiency of 1.05 TOPS/W (0.43 TOPS/W, 0.18 TOPS/W) 
is measured for CONV (FC, sparse) networks at 210 MHz (0.575 
V). The RF subsystem, shows a maximum Tx efficiency of 30.3% 
at -0.3 dBm, with back-off efficiencies of 19.2% (7.8%) at -6.5 (-
13.7dBm) with QPSK. At 1 Mbps, the Tx energy efficiency is 768 
pJ/bit with 1 V supply (-0.3 dBm output power. The measured 
energy-efficiency for the OOK Rx is 207 (124) pJ/bit at 1 (0.8) V 
supply, with a sensitivity of -72 dBm for a BER of 10-3 at 1 Mbps. 
An [8,4] Hamming Code on the Tx improves the sensitivity to -78 
dBm but halves the number of information bits. The measured 
performance of the neuro-controller is shown in Fig. 5. The CIM 
consumes a measured 305.2 pJ (training) and 156.8 pJ (inference) 
at 0.7V with less than 0.6lsb of non-linearity error. The peak 
measured energy efficiency is 0.59 pJ/MAC and 0.4 pJ for each 
weight update which are 2.2x and 4.75x lower than a digital 
counterparts (simulated). The full system is deployed and neuro-
controller is allowed to learn online from emulated signals from 
the cloud and energy meters. Then it is tested for varying noise 
power and network sizes and the system autonomously determines 
the optimal PD to minimize energy, latency or EDP. The online 
adaptation allows the system to learn and choose the CTRL 
parameters optimally. We test across various conditions of path-
loss, number of edge nodes (i.e., available bandwidth) and obtain 
a 2.44x (1.47x) improvement in average energy (latency) for a 
BER of 10-3 compared to the baseline cases while running a 
modified AlexNet that maps to the SoC. Benchmarking across 
other designs [1-6] show competitive figures-of-merit. The design 
presents a vertically integrated SoC featuring the first real-time 
NN based adaptation for computation, communication and their 
trade-offs in energy constrained systems. 
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Fig.4: NN-based Actor-Critic Controller: Thermometer-based CIM NN array for low-energy updates
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Fig.1: (a) Design Motivation (b), Sources of dynamic variations, and (c) the SoC architecture Fig.2: Computation: PE array and algorithm-driven re-configuration

Fig.5: Measured (a) power-performance, (b) energy/op for computation, (c-d) TX energy and BER w/ and w/o ECC, (e-f) Controller energy / op, (g) die-shot and chip 
characteristics, (f) system study for AlexNET architecture with dynamic environmental conditions and Benchmarking Table. 
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