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Editor’s notes:
Designing hardware accelerators for machine learning (ML) applications 
is a well-researched problem. This article presents a tutorial regarding new 
computing architectures, circuits techniques, and multiple promising device 
technologies for in-memory computing targeting ML workloads.

—Partha Pratim Pande, Washington State University

Today’s computing systems and emerging work-
loads are heavily dependent on the capacity and 
latency of memory banks, thanks to the increasing 
performance gap between main memory and logic. 
Decades of research and the majority of on-chip area 
in modern integrated circuits (ICs) has been dedi-
cated to creating complex memory hierarchies to 
negate this growing performance gap. Although this 
design strategy works well for general-purpose com-
puting, recent trends in data analytics and artificial 
intelligence have further exacerbated the long-stand-
ing memory bottleneck. Rather than fast single 
threaded performance and unknown data-access 
patterns, these applications require massively paral-
lel computation and fixed, known data-access pat-
terns. As a result, the clever caching hierarchy that 
takes advantage of spatial and temporal data reuse 
is overwhelmed by the vast amount of data required 
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by new applications. 
Because these elaborate 
caching schemes have 
been rendered practi-
cally useless owing to 
the embarrassingly par-
allel nature of emerging 
applications, traditional 

processors have failed to provide either the perfor-
mance or energy-efficiency that are demanded by 
these workloads.

Consequently, we have seen a plethora of 
high-quality software packages, such as TensorFlow 
[1] and PyTorch [2], and hardware packages, such 
as Google’s tensor processing unit (TPU) [3] and 
Nvidia’s Volta, that vastly outperform previous top 
of the line commercial general-purpose hardware. 
Unfortunately, it is inevitable that these improve-
ments will again slow down and the hardware solu-
tions will be limited in performance by the memory 
bottleneck. To make matters worse, the cost of mov-
ing data has become more expensive than operat-
ing on it [4], [5]. So not only has memory become 
the fundamental bottleneck of computing, but both 
reading and transporting the data throughout the 
growing size of modern ICs has become more expen-
sive than the operation we seek to perform.

This has given rise to various areas of research to 
mitigate the memory bottleneck, and tremendous 
effort is being driven from the device to the architec-
tural levels. At the top of the computing hierarchy, 
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computer architects and compiler designers are 
attempting to use the same CMOS technology, but use 
advanced dataflow patterns and mapping strategies 
so that the data movement is minimized and data 
reuse is maximized. Several recent demonstrations in 

machine learning hardware have made tremendous 
advances in both performance and energy-efficiency, 
and this is illustrated in Figure 1. Original works [6], 
[7], created accelerators to match the architectures of 
emerging deep neural networks (DNNs). Later works 
[5], [8], [9] showed the primary opportunity for 
improving the performance of these accelerators is 
maximizing data reuse (or minimizing total data trans-
port). The initial demonstration of this technique was 
Eyeriss [5] in 2016, but since then new strategies for 
both reinforcement learning (RL) [10] and recurrent 
neural networks (RNNs) [11] have also been demon-
strated in silicon. Furthermore designs using mixed 
signal compute [12], [13] have also been demon-
strated using low and variable precision. Although 
these designs feature data reuse and reduced power, 
they make application specific design choices which 
reduce their generality in a wide spectrum of applica-
tions. In Figure 2a and b, we show architectural differ-
ences between the TPU [3] and Eyeriss [5]. By placing 
small caches inside of the processing elements (PEs), 
Eyeriss is able to reuse feature maps and filter weights 

Figure 2. Four architectures used by machine learning accelerators. The memory used 
to store weights and input data is colored in blue. (a) Systolic array used by the TPU [3]. 
(b) Systolic array with local cache for filters and feature maps to maximize data reuse used 
by Chen et al. [5]. (c) SNN architecture with all weights stored local to neuro-synaptic core 
used by Merolla et al. [19] and Davies et al. [20]. Each core stores weights for many neurons, 
computing is shared among all neurons mapped to the core. (d) In-memory architecture 
using RRAM. Computing and memory are combined so there is no memory transfer.  
Analog-to-digital converters (ADCs) are still shared among inputs and outputs to the array.

Figure 1. Recent advances in machine learning 
hardware spans over a large power-performance 
design space. (Source: Dr. Jong-Hyeok Yoon, 
Georgia Tech.)
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rather than reading and transporting them for each 
output neuron. More recent works [14]–[17] are 
attempting to exploit sparsity and compression in 
both weights and activations of large networks. This 
is particularly important in emerging models for natu-
ral language processing [18] where huge numbers of 
parameters are used.

In a radically different approach spiking neural 
network (SNN) chips like [19] and [20] attempt to 
only read and modify weights using their respective 
neuron. As a result, large amounts of static random 
access memory (SRAM) and low precision weights 
are required to keep all weights on chip without 
having to fetch them from the main memory. This is 
demonstrated in Figure 2c, where no global buffer is 
used and the only transfer of data is directly between 
cores. Because weights are only accessed by a sin-
gle core, compute units are not reused across the 
various layers. This is not ideal from a performance 
perspective because it means latency will be much 
higher given that only a fraction of the compute units 
are used for a given layer. The throughput can poten-
tially be recovered if all the layers are pipe-lined. 
However, the biggest advantage of this dataflow 
architecture is its ability to reduce global movement 
of data. This design strategy is commonly referred to 
as near memory computing, where the objective is 
to physically place compute and memory together 
rather than keep them separated by a high perfor-
mance memory controller. While this is a useful 
technique and we can expect significant power sav-
ings, it will still face some of the fundamental tech-
nological limitations of CMOS.

It is critical to understand the role of embedded 
nonvolatile memory (eNVM) on future comput-
ing platforms. Volatile memory solutions for on-die 
integration are typically charge-based: SRAM and 
embedded-DRAM (eDRAM). Both these technologies 
consume zero standby power—in terms of leakage 
(SRAM) or refresh (eDRAM) power. With the growing 
need for larger and larger on-die memory for machine 
learning applications, the total standby power con-
tinues to be a significant limitation in the energy effi-
ciency of SRAM- and eDRAM-based systems. Hence, 
eNVM is expected to alleviate this challenge. Further-
more, the eNVM solutions that are currently being pur-
sued include noncharge-based physical states—such 
as ion movement or spin polarization. These physical 
phenomenon are often scalable to dimensions that 
are smaller than what SRAM or eDRAM can enable. 

Consequently, eNVM technologies continue to gain 
popularity as both a research vehicle as well as a solu-
tion at the end of the scaling roadmap.

Fortunately, for more than a decade there has 
been a steady increasing effort in design, fabrica-
tion, and manufacturing of novel memory technol-
ogies that are logic process and voltage compatible, 
while providing high density as well as target read 
and write performance. These new devices have 
exciting new properties that have been long absent 
in traditional charge based memory technologies. 
The four such technologies that we discuss in this 
article share the following properties [21]:

•	 They are all eNVM solutions. They can be com-
pletely powered down without loss of data, and 
hence consume virtually no leakage power.

•	 All these technologies are process and (some-
what) voltage compatible with CMOS logic 
processes, although more advances need to be 
made on both fronts.

•	 All these technologies store information through 
change of resistance. This enables us to perform 
compute in-memory (CIM) on the bitline (BL) 
with breakthrough improvements in throughput 
and energy-efficiency.

These properties have the potential to realize the 
long awaited benefits of in-memory computing. In 
addition to these properties, new eNVM technologies 
feature high density and often multilevel cells (MLCs) 
where more than a single bit can be stored per cell. In 
comparison, modern 6T SRAM can be as large as 150F2 

while only offering a single bit of differential storage. 
In-memory computing uses physical properties of the 
devices to do computation without a dedicated com-
pute unit. Using Ohm’s law, where a voltage applied 
across a device’s conductance results in a current, and 
Kirchhoff’s current law (KCL) we can sum along the 
columns of our memory crossbar to perform matrix 
multiplication in O(1). These memory crossbars can 
then abstracted into cores as shown in Figure 2d, where 
system level approaches similar to systolic arrays [3] or 
DNN accelerators [5] can be used.

If successful, in-memory computing promises to 
solve many of the engineering challenges that the 
modern memory hierarchy faces with regards to data 
transport. In recent years, new emerging devices 
have made huge milestones on their way to commer-
cial viability. High density macros have been fabri-
cated [22], and used in the implementation of highly 
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efficient neural networks [23]–[25]. However, these 
new emerging memories face many challenges of 
their own preventing them from widespread com-
mercial use. In this article, we will examine some 
of these challenges and provide an overview of the 
recent developments both from technology as well 
as circuits and systems perspectives.

System needs for memory-centric 
neural network workloads

The demand for in-memory computing is ever 
growing as the state-of-the-art designs for computer 
vision, natural language processing, and RL continue 
to have larger models with more computation and 
performance that require months of training time 
on clusters of custom accelerators. At the same time 
advances in microrobotics require smaller area foot-
prints and power budgets. These different workloads 
require the same thing: energy-efficient computing. 
As these applications begin to outpace the computers 
we have to perform these tasks, we will need to look 
at fundamentally different approaches of computing.

At the start of the current surge in deep learning, 
AlexNet [26] was trained and implemented using 
a pair of GTX 580 graphics processing units (GPUs) 
and custom CUDA code. Soon after larger and larger 
models requiring more hardware became the new 
state of the art, as VGG [27] and ResNet [28] required 
multiple GPUs to train in a reasonable amount of 
time. Today there is an abundance of deep learning 
frameworks and hardware designed for machine 
learning readily available. These tools and hardware 
have propelled deep learning research, making it far 
more practical to design and test large deep learning 
models. Despite these efforts, state of the art models 
in natural language processing, computer vision, and 
RL require massive amounts of memory and compu-
tation that can no longer be run on consumer grade 
hardware. For example, OpenAI has used RL to beat 
professional players at Atari, GO, and most recently 
StarCraft 2 [29]. Jouppi et al. [3] claim that training 
an agent requires 44 days of training with 32 third-gen-
eration TPUs. Training such a model is extremely 
expensive and impossible for anyone without access 
to enormous compute power. While inference for this 
model can be run on a typical GPU, newer models in 
NLP [30] and computer vision [31] require 4 billion 
and 1 billion parameters, respectively.

At the same time, the interest in machine learning 
in mobile and edge platforms is constantly increasing 

and hardware accelerators and software frameworks 
are being developed specifically for these platforms. 
While great progress is being made to run small mod-
els on resource and power constrained hardware, 
CMOS limitations and the von Neumann bottleneck 
will limit the capability of edge hardware.

Overview of emerging nonvolatile 
memory

There are many properties to evaluate when consid-
ering new emerging devices for in-memory computing. 
Of course we expect these devices to be nonvolatile 
with good retention as well as having a resistive state 
that can be used for in-memory computing. Besides 
these qualities we also must consider read and write 
times, read and write energy, read and write voltage, 
endurance, area, and the number of distinguishable 
states per cell. We present an exhaustive overview of 
these metrics for in-memory computing in Table 1. We 
focus our attention to the four leading candidates for 
in-memory computing and compare them to the cur-
rent standard used in commercial products: SRAM, 
DRAM, and Flash. In their current state, none of the 
emerging devices display all desired characteristics. 
In a different review article, Yu and Chen [21] and Yu 
[32] identify the ideal characteristics for these devices.

We group these properties into four major areas: 
1) density; 2) read performance; 3) write perfor-
mance; and 4) reliability. The importance of the 
device properties is very application-specific. For 
example, as we discuss later this in work, the write 
performance and write endurance of these devices 
are less important if the devices are used in a net-
work only performing inference. However, in a net-
work that is being trained, high write energy can be 
the primary source of energy consumption, and it 
can be a significant system challenge.

•	 Density: The density of these NVM technologies is 
the product of the number of cells per unit area 
and the number distinguishable states per cell. The 
density of eNVM is on the order of 10F 2, whereas 
SRAM is over 150F 2. 3D integration of eNVM on the 
back end of line (BEOL) process is under inves-
tigation; where the density can be pushed even 
further. However, some of the constraints in BEOL 
processing, most importantly the low temperature 
requirements, continue to be challenging.

•	 Read performance: Read performance for CIM 
constitutes memory access, memory transport, 
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and multiply-and-accumulate (MAC) operations. 
It is even more important when only inference 
is being performed as all power dissipation will 
come from reads.

•	 Write performance: As we will discuss later, write 
performance is more important when training 
crossbar arrays since they will be updated very fre-
quently and most of the times the write energy for 
eNVM devices is much higher than read energy. It 
is quite intuitive to understand that memory solu-
tions that are inherently nonvolatile will require 
higher write energy to change states. Often, the 
devices require high write voltage as well (2–5 V) 
and they are harder to integrate on the logic pro-
cess. However, compared to eFLASH where write 
voltages are often 20 V and higher, the current gen-
eration of eNVM require significantly lower write 
voltages and demonstrate scaling paths for voltage 
and process compatibility with logic.

•	 Reliability: Most devices have retention on par 
with commercial flash processes. However, the 
endurance of these devices varies greatly. As we 
will discuss later, endurance is important when 
implementing training since the devices will be 
updated frequently.

Resistive random access memory
Resistive random access memory (RRAM) (often 

called ReRAM) is a filamentary device that switches 
between a high resistance state (HRS) and low resist-
ance state (LRS) based on the direction of current 

applied across the two terminals. The HRS and LRS in 
RRAM are achieved by forming and destroying a fil-
ament inside the insulator material of the device. By 
creating and destroying this filament we can lower 
and raise the resistance of the device by orders of 
magnitude. The transition from HRS to LRS is called 
the set process where the device allows more cur-
rent to flow emulating a digital “1.” The transition 
from LRS to HRS is called the reset process where 
the device is less conductive and results in less cur-
rent across the terminals. Since a read and write 
operation both apply voltage on the two terminals, 
the read voltage must be much lower to not alter the 
state of the device and perform a destructive read. 
In the 1T1R (1 transistor and 1 resistor) structure, the 
read voltage is controlled by using a small voltage on 
the gate of the transistor.

Although there are different types of RRAM, the 
most successful is metal-oxide RRAM [44]. It has 
been used in the implementation of a commercial 
RRAM macro [45] as well as in a trainable neural net-
work [25]. The alternative, conductive bridge RAM 
(CBRAM), offers a higher HRS to LRS ratio, but has 
worse endurance and retention. For this article, we 
will focus on metal-oxide RRAM. The device structure 
of metal-oxide RRAM simple, comprising a top metal 
electrode, a bottom metal electrode, and a transition 
metal oxide (TMO) layer in-between as shown in 
Figure 3. RRAM initially starts in a pristine state and 
most devices must undergo formation prior to being 
used as intended. During formation, an initial large 

 
Table 1. Device characteristics of mainstream and emerging memory technologies.

All parameters taken from demonstrations in original research works. When a parameter is not reported or cannot be computed the table 
index is left blank.
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voltage is required to create an electric field capable 
of knocking oxygen atoms out of the insulator’s lattice 
and creating vacancies that make up the conductive 
filament leading to the LRS. The formation process 
only needs to be done once taking the device from its 
initial pristine state which has a resistance larger than 
the HRS of the device post formation.

After formation, it is assumed that the conductive 
filament is created with sufficient oxygen vacancies 
in the insulator such that the large formation volt-
age will not be required again. From the formed 
LRS state, the device can switch back to an HRS 
state during the reset process by recombining the 
oxygen atoms with the vacancies making up the 
conductive filament. Once the filament is ruptured 
its resistance will increase, however, the distance of 
the ruptured filament can cause cycle-to-cycle and 
device-to-device variation because of the inconsist-
ent location where the filament is ruptured. The way 
the device is reset depends on the materials used as 
the insulator. The device can be reset as a unipolar 
or bipolar switch. A unipolar device is reset based 
on the magnitude of the pulse applied across the 
device. A bipolar device is reset based on the polar-
ity of the applied voltage. Most device fabricated at 
large scale use the HfOx RRAM which is a bipolar 
switching device. However, there are advantages to 
using a unipolar device since it only requires a diode 
as a selector rather than a transistor.

Although used primarily as a binary device, 
some work has been shown to demonstrate multi-
bit or even analog state in RRAM. As many as five 
states have been demonstrated using HfOx RRAM 
[46]. If binary encoding is used for multiple bits, 
then additional CMOS circuitry is needed for add 
and shift logic. However, achieving multiple states 
is difficult due to the abrupt switching behavior, 
low on/off ratio, and device-to-device and cycle-
to-cycle variation. Some techniques have been 
explored to achieve multiple states in the device. 
Different pulse and programming schemes can be 
used to better control the exponential behavior of 
set resistance states [47]. Another technique [48] 
has demonstrated analog control of the RRAM 
using the slower reset behavior.

Phase change random access memory
Modern phase-change memory (PCM) devices 

enjoy relative maturity and have been explored 
for several decades. Early work by Ovshinsky [49] 
demonstrated the ability of phase-change materials 
to store data, and a subsequent discovery by Yam-
ada et al. [50] demonstrated a class of materials the 
stored state of which could be overwritten many 
times and switched quickly enough for storage 
devices based on these materials to be competitive 
with the then-dominant memory technologies. Phase 
change materials have since become the critical 
component in optical storage media, with an addi-
tional research interest in these materials for use in 
new types of electronic storage devices having been 
revitalized [51].

PCM consists of memory devices that take advan-
tage of the ability of certain materials to repeatably 
transition between a crystalline phase and an amor-
phous phase. For a material to be useful in typical 
PCM applications this transition should be accompa-
nied by a marked change in at least one measurable 
quantity. Memory systems constructed from these 
materials typically leverage either a large contrast 
in reflectivity, as in the case of optical storage, or in 
resistivity, as in the case of the electrically operated 
phase-change random access memory (PCRAM), 
where contrast here refers to a change in the meas-
ured quantity as observed in the crystalline material 
versus that observed in the amorphous material 
[51]–[54]. This section will proceed to discuss resis-
tive PCRAM and will pay particular attention to the 
Ge2Sb2Te5 (GST) chalcogenide material that finds 

Figure 3. (a) Fabricated device. (b) RRAM after 
forming and device in the LRS. The conducting 
filament is formed and will be used to toggle between 
the LRS and the HRS. (c) RRAM after being reset into 
the HRS. The tip of the filament is reoxidized which 
increases the resistance of the cell. (Source: Matthew 
West, Georgia Tech.)
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extensive use in PCRAM, e.g., [36], [55], and [56]. 
A discussion of material and device properties in the 
context of memory applications will be followed by 
a brief survey of quantifiable PCM parameters.

PCRAM devices are made up of a layer of glass 
chalcogenide material, hereafter assumed to be 
GST, sandwiched between two electrodes, as shown 
in Figure 4. These electrodes may be used to write 
or read the cell state. Crystalline GST is more con-
ductive than amorphous GST, and the conversion 
of the volume of GST within the cell between these 
phases causes a resistance change that is typically at 
least one or two decades [53], [57]. State switching 
is accomplished via joule heating by passing current 
through the cell, while readout is typically done by 
placing a small voltage across the device and meas-
uring current [58]. This is shown in Figure 4. The 
two phase-transition write processes, the crystalliza-
tion-driven SET toward lower cell resistance and the 
melt/quench RESET toward higher resistance, will 
now be discussed in more detail.

Crystallization of amorphous GST is a tempera-
ture-dependent process [59], [60]. Crystal growth 
velocity first increases exponentially with tempera-
ture until a relatively hot transition point at which 
the relationship between crystal growth and temper-
ature slows down, with growth velocity eventually 
reaching a peak and then decreasing with further 
increases in temperature. Therefore, Joule heating to 
an intermediate temperature (≈400 °C) leads to rapid 
growth in the volume of crystalline material in a given 
cell and tends to reduce the net resistance between 
the two contacts, giving rise to a SET operation that 
consists of a prolonged current pulse with limited 
magnitude. Heating past the rapid crystallization 
temperature eventually results in melting of the GST 
material at ≈600 °C. Thus, a RESET operation involves 
a large-magnitude current pulse followed by a quick 
quench, to solidify the material in an amorphous 
state, which is accomplished by a sharp trailing edge. 
The relatively high-temperature transition point at 
which the GST crystal growth rate ceases to increase 
exponentially helps to resolve the dilemma that arises 
from the conflicting requirements for a PCM material, 
i.e., that it must crystallize quickly when desired but 
must crystallize only very slowly, and in the ideal case 
not at all, when not intentionally heated.

Without an additional mechanism, the voltage 
required to produce sufficient Joule heating to achieve 
rapid crystallization from the high-resistance cell state 

would be problematically large. However, PCM mate-
rials exhibit a threshold-switching behavior defined by 
a dramatic increase in current flow through the amor-
phous-state material under a sufficiently strong electric 
field [49], [61]. This switching is a high-field effect dis-
tinct from the previously mentioned phase-mediated 
memory switching. As threshold switching is induced 
by field strength the voltage at which switching occurs 
is nonstationary and depends at least on the thickness 
of the amorphous layer [62]. Notable is that this effect 
has a non-negligible temporal component, exhibiting 
both a delay time, between application of the switching 
voltage and the large current increase, and a recovery 
time, between the cessation of voltage application and 
the corresponding increase in resistivity, both on the 
order of tens of nanoseconds [63]–[65]. When biased 
subthreshold, the amorphous resistance still depends 
on field strength and cells are in an approximately lin-
ear IV region only for applied voltages of up to about 
300 mV, above which the IV dependence becomes 
exponential [66].

After cessation of Joule heating an additional 
transient effect leads to a slower power-law increase 
in off-state resistance which is accompanied by 
a similar increase in threshold voltage [63], [67]. 
This so-called resistance drift may be explained 
by the time-dependent structural relaxation of the 

Figure 4. (a) Typical “mushroom cell” PCM layout, 
showing top electrode (TE), GST, and bottom 
electrode (BE). Proportions follow TEM images of 
a recent device demonstrated in [36]. (b) State-
transition diagram showing the PCM cell in the 
RESET state, with the BE plugged by high-resistivity 
amorphous material, and in the SET state, with the 
volume of GST material switched to the conductive 
crystalline phase. Partial-set, bottom-middle, is 
typical of MLC while partial-reset, top-middle, is less 
feasible.
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amorphous-state material [68]. A more complete 
elaboration on the time and temperature depend-
ence of the amorphous phase resistance may be 
found in [69] or [70]. In a non-CIM application with 
two-state (binary) PCM cells this drift is less impor-
tant as it tends to broaden the interstate gap. An asso-
ciated property of GST-based devices is the presence 
of a 1/f noise current which is nearly two orders of 
magnitude greater in the amorphous state as com-
pared to the crystalline state [71].

Having laid out the key physical properties of PCM, 
we proceed to discuss how these properties practi-
cally impact PCM devices. Crystallization occurs over 
time, during which the cell is held at an intermediate 
temperature. Recall that the melt and quench proce-
dure can be very fast, and in fact the falling edge must 
be very fast to prevent recrystallization. This means 
the SET operation traditionally requires hundreds of 
nanoseconds and is much slower than the RESET 
operation which can occur in tens of nanoseconds. 
This long SET operation also means the write time 
dwarfs the read time. Furthermore, the required Joule 
heating means that the write operations are ener-
getically costly. This is again in contrast to the read 
operation, which must occur at just a few hundreds of 
millivolts to avoid threshold switching and remain in 
the linear operating region of the cell.

Recompense for the difficulty of writes is that 
the written states are nominally of high quality with 
a substantial on/off ratio of at least 100× in meas-
ured devices [36]. A consequence of this is that it 
becomes feasible to program cells to intermediate 
states between the fully on and fully off conditions, 
leading to increased storage density through MLCs 
[58], [72]. Both MLCs and CIM (via current summing 
across multiple cells) imply a nonbinary range of 
output states and thus depend on precise control of 
cell resistance, which is not trivial for two reasons. 
First, there are many degrees of separation between 
the input variable during programming (i.e., current 
or voltage) and the output (which is finally meas-
ured as resistance). Second, there are the previ-
ously discussed resistance drift and 1/f noise in the 
amorphous material, which become problematic for 
applications that depend on the discernibility of sev-
eral intermediate states despite being mostly benign 
with respect to the binary memory application.

The first challenge may be approached by using 
feedback-based write algorithms. In these schemes, 
a SET is accomplished with a train of write pulses, 

where the properties (such as amplitude, width, and 
trailing edge length) of each subsequent write pulse 
are modulated based on a resistance measurement 
that is made after the previous pulse [58], [72]–[74]. 
Feedback cannot be taken during the write pulse itself 
due to threshold switching, and there must be some 
delay after the write, prior to the low-voltage read, to 
ensure that normal resistance has resumed. The time 
for each cycle of a write algorithm is therefore deter-
mined by the delay and recovery time of threshold 
switching on top of the minimum pulse time to heat 
the material and cause some phase transition.

The second challenge, which may be summa-
rized as the poor resistive accuracy of the amorphous 
material, does not present application-agnostic cir-
cuit-level solutions. As mentioned, the effect of this 
poor accuracy on purely binary memory is expected 
to be minimal, and indeed more in-depth noise anal-
ysis shows that the 1/f noise component has only a 
slight impact on RESET-state readout relative to other 
sources of error [75]. In the context of MLC, these 
problems may be understood as components of a 
broader issue, namely the decoupling of the meas-
ured quantity (cell resistance) from the underlying 
stored state (relative volumes of crystalline and amor-
phous material). This has motivated the development 
of alternative cell-state metrics that, relative to the low-
field resistivity metric, more directly audit the amount 
of amorphous material in a cell by measuring with 
higher subthreshold fields [76], [77]. Cell readout 
under these schemes implies a voltage bias that varies 
with cell state meaning they cannot directly be used 
in current-accumulative CIM applications.

In light of technological accuracy limitations, 
applications that are inherently error-tolerant or that 
rely on CIM only for low-precision components of a 
computing task are ideal candidates for acceleration 
via CIM with PCM. Recently presented examples of 
such robust applications include compressed sensing 
[78] (in which the linear algebraic operations associ-
ated with both compression and recovery of signals 
may be accelerated with approximate in-memory 
compute with PCM) and the solving of linear equa-
tions using deliberate mixed-precision techniques 
[79]. Note that in the first example the error due to 
the inaccuracy of the PCM is accepted, since some 
error in the reconstructed signal (an image) is toler-
able, while in the second example a high-precision 
computing unit complements the CIM system in an 
iterative refinement scheme so that the resultant error 
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is only that of the high-precision unit. An alternative 
approach is to attempt to mirror biological synapses 
by leveraging the analog (i.e., continuous) nature of 
the increases and decreases in resistance that can 
be accomplished in a PCM cell [80]. Continuous 
crystallization is also exploited in [81]. A more basic 
approach is to select a lower precision version of the 
computing task and hide any remaining error behind 
the built-in robustness of that task, as is the case with 
binary neural networks (BNNs) as suggested in [36].

Spin torque transfer magnetic random 
access memory

A more mature technology for resistive memo-
ries is the spin transfer torque-based RAM. The Spin 
torque transfer magnetic random access memory 
(STT-MRAM) or MRAM bitcell consists of one access 
transistor and one magnetic tunnel junction (MTJ) 
where a single bit of information is stored. An MTJ is 
formed with two ferromagnetic CoFeB-based layers 
and one insulating layer (MgO) in between [82]. One 
ferromagnetic layer is called a fixed layer because its 
magnetic moment is fixed to one direction. The other 
ferromagnetic layer is called a free layer since the 
direction of magnetic moment can be changed based 
on the direction of current flowing across the MTJ.

Figure 5 describes how the direction of magnetic 
moment in the free layer changes based on the cur-
rent across the MTJ. Figure 5 shows how the direction 
of magnetic moment in the free layer changes from 
(a) antiparallel to parallel and (b) parallel to antipar-
allel direction compared to the direction of magnetic 
moment in a fixed layer. Since the fixed layer acts 
as a spin polarizer, the spin polarized electrons that 
pass the fixed layer exerts the torque on the magnetic 
moment in the free layer and causes a flip in the direc-
tion of the magnetic moment in the fixed layer as 
shown in Figure 5a. When the current flows from the 
fixed layer to the free layer as shown in Figure 5b, the 
electrons with opposite spin are reflected back from 
the fixed layer and exerts a torque that changes the 
direction of the magnetic moment of the free layer to 
an antiparallel direction with respect to the magnetic 
moment in the fixed layer. The alignment of the mag-
netic moment in the fixed and free layers determine 
the resistance across the MTJ. When the magnetic 
moments in the two layers are antiparallel to each 
other, the resistance across MTJ is high.

A low resistance is achieved when both the mag-
netic moments are parallel to each other. The high/

low resistance is mapped to 1/0. The bias conditions 
applied for the write and read operations are shown 
in Figure 6. As shown in Figure 6a, the write opera-
tion is bidirectional. In the case of writing a 1, the BL 
and the source line are set to supply voltage (VDD) 

and ground (GND) and the write current flows from 
the fixed layer to the free layer of the MTJ. The bias-
ing condition for writing a 0 is the opposite and is 
shown in Figure 6a. In the case of read operations, 
the wordline is asserted to VREAD, and the BL and 
the source line are set to VDD and GND, respectively. 
This causes a weak current to flow across the MTJ 
and the resistance state is sensed using either a con-
stant current scheme or a BL discharge scheme [83]. 
As the technology continues to mature and move 
from research to manufacturing, larger arrays and 
systems are being demonstrated.

Ferroelectric field effect transistor-based 
random access memory

Ferroelectric FET (FeFET) is a nanoelectronic 
device composed of a traditional MOSFET or FinFET 
and an additional special layer of ferroelectric (FE) 
material, which is integrated into the stack of gate 

Figure 5. Direction of magnetic moment in free layer 
changes from (a) antiparallel to parallel (b) parallel to 
antiparallel to the direction of magnetic moment of 
fixed layer. The arrow in the free/fixed layer indicates 
the direction of magnetic moment.

Figure 6. STT-MRAM cell schematic of (a) write and 
(b) read operation.
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terminal [84]. Figure 7a illustrates the 3D structure of 
a FeFET built on FinFET. The FE materials are usually 
lead zirconium titanate (PZT) [85] or hafnium zirco-
nium oxide (HZO) [86]. The latter one is compatible 
with CMOS process while the former one does not. 
Note that the spontaneous polarization of the FE layer 
is reversible under a certain electric field applied in the 
correct direction. The polarization depends on the cur-
rent electric field and its history, resulted in a hystere-
sis loop. Such a feature of FE layer induces a FeFET to 
switch “on” at a high voltage and “off” at a low applied 
gate voltage (Figure 7b and c). It is nontrivial to clarify 
the definition of “FeFET” here since the FeFET is not 
the only device that stack FE layer on the gate of a FET 
and such a semiconductor structure can also operate 
in different operating modes. For example, a negative 
capacitance FET (NCFET) with the same structure 
operates in “steer switching mode” and usually aims 
at eliminating hysteresis for faster switching [87]. Here, 
we emphasize that an FeFET exhibits the property of 
hysteresis that can be utilized in different applications. 
FeFET has been explored in multiple application lev-
els of computing systems, such as components of tra-
ditional analog circuits [87], digital circuits [88]–[90], 
nonvolatile memories [42], [91], and FPGA [92], [93].

Recently, FeFET has been considered as an 
emerging device used as a memory structure (FeFET 
RAM) particularly for machine learning hardware 
and neuromorphic computing. It was applied to the 
accelerator architectures of both digital and analog 
neural networks [94], [95]. In these works, FeFETs 
are utilized to design synaptic crossbar arrays such as 

RRAM crossbar structure. RRAM-based architectures 
are troubled with high write energy and sneak paths. 
The three-terminal structure of FeFET provides better 
write and read power consumption [94]. Write oper-
ations consume power only when FE layer capaci-
tance VG gets charged, which is much lower than the 
crossbar of RRAMs. For the accelerator of a binary 
convolutional neural network (CNN), the cell of an 
FeFET crossbar array consists of two FeFETs and two 
access transistors. It performs the XNOR operation 
between the input bit and the weight bit stored in the 
two FeFETs. Such a design of FeFET-based crossbar 
exhibit power reduction of both read and write oper-
ations when compared to the same designs based on 
RRAM and CMOS [94]. In addition to acceleration of 
BNN, FeFET-based nonvolatile analog memories are 
a promising solution to the future accelerator of DNN 
with analog weights. An FeFET synaptic weight is 
capable of achieving multibit operation by leveraging 
the partial polarization switching dynamics of multid-
omain FE HfxZr1 − xO2 thin films [95].

Furthermore, FeFET has been recently explored in 
SNNs, another neuromorphic computing paradigm 
that is more biomimetic than DNN. In these scenar-
ios, FeFETs are adopted in the circuits of bioinspired 
neuron model, instead of synapses. A spiking neuron 
with excitatory and inhibitory interfaces can be imple-
mented with a relaxation oscillator based on FeFET 
[96]. The proposed circuits employ the hysteresis of 
an FeFET and a traditional NMOS transistor to peri-
odically charge and discharge a load capacitor and 
generate spikes of voltage. Such a two-transistor com-
pact design of silicon neuron is capable of modeling 
multiple neural dynamics that have been observed in 
cortical and thalamic neurons when fed with excita-
tory and inhibitory synaptic inputs [97]. These various 
neural dynamics are demonstrated to be useful in a 
FeFET-based SNN that solves optimization problems 
[98]. Due to the flexible neural dynamics provided by 
FeFET-based spiking neuron it also has the potential 
to become a promising circuits design for other appli-
cations in neuromorphic engineering, such as neural 
interfaces and biohybrid neural circuits [99], [100].

Overview of in-memory computing

Matrix multiplication in eNVM crossbar arrays
Modern deep learning techniques such as CNNs 

and RNNs contain a workload of almost entirely 
matrix multiplication ( )y Wx=

   [101]. In traditional 

Figure 7. (a) 3D structure of FeFET, (b) “on” and “off” 
states of FeFET with different threshold voltages, 
corresponding to the polarity states of FE layer shown 
in (c), and (c) hysteresis in terms of polarity and gate 
voltage.
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von Neumann machines, both the feature data ( )x  
and matrix weights (W ) are transported from the 
main memory to the compute units, where the MAC 
operations are performed, and after which, the results 
( )y  are transported and written back into main mem-
ory. For this procedure, prior work has shown that 
the energy cost of reading and transporting data from 
memory to logic greatly outweighs the cost of the 
MAC [4], [5], thus motivating in-memory computing.

In-memory computing seeks to perform the MAC 
operation in a crossbar structure using Ohm’s law and 
the nonvolatile conductance state provided by ReRAM 
or other emerging memories. Using this technique, 
each weight of the matrix (Wij) is programmed as a 
conductance to a cell in the crossbar and each value 
of the vector ( )ix  is converted to voltage and applied to 
the rows of the memory crossbar. By Ohm’s law, the 
current through each cell is proportional to the prod-
uct of the programmed conductance (Wij) and applied 
voltage ( )ix . By KCL, the resulting currents summed 
along the columns of the crossbar are proportional to 
the product of the matrix and vector, ( )y . Under this 
procedure, the only data transport required for matrix 
multiplication is the feature vector ( )x  and result ( )y . 
Therefore, in-memory computing is positioned in such 
a way that it eliminates the majority of data transfer and 
thus the energy cost of DNNs.

Analog versus digital in-memory computing
The motivation for eNVM has come from multi-

ple directions, and as a result, two different mod-
els for the memories have emerged: 1) digital and 
2) analog. These memories were originally intended 
to be used as a digital, low latency, and energy-effi-
cient alternative to existing nonvolatile memory in 
the traditional memory hierarchy. Later on, HP labs 
created a metal-oxide RRAM and claimed it had 
memristive properties [102]. They intended to use 
this device as an analog memory that could serve as 
a synapse or weight in neural networks.

There are several tradeoffs between the two 
models. The main tradeoff is performance versus 
feasibility. On the one hand, the analog model has 
numerous performance advantages over the digital 
model. In the ideal case, the analog model can store 
any positive, continuous value between its on and 
off resistance states. Such a device could be used to 
store high precision values without needing several 
devices to represent a single weight. Given that tra-
ditional neural networks contain both positive and 

negative weights, two cells are required to represent 
a single weight since the conductance state of eNVM 
cannot be signed. The value of the weight is repre-
sented as the difference of the conductance of two 
cells as shown in Figure 8. Naturally, this enables 
very high density, but also has implications for both 
power and performance.

However, due to device-to-device variance, cycle-
to-cycle variance, and limited on–off resistance ratio 
using the eNVM as an analog memory has proven dif-
ficult. Hence most implementations today focus on 
digital implementations using write–verify circuitry. 
Recent work [36] has demonstrated PCRAM devices 
with a resistance standard deviation of 3.5% and 
on-to-off ratio of >102 using this technique. With such 
a device, it is plausible to enable MLC. An important 
distinction between MLC and analog memory is that 
while an MLC has multiple states, it still requires ADC 
to distinguish the states.

Shafiee et al. [103] encode weights in a offset 
format so that negative weights can be represented. 
Given that the devices can perform only multiply 
and accumulation in the crossbar, there is no way 
to naturally represent a negative value. Therefore, a 
bias is applied to all weights before being written to 
the crossbar, and then subtracted after the rows are 
read. Since many rows are turned on and accumu-
lated along the same column, the bias is subtracted 
from the final result for each row that was turned on. 
For example: in a signed 8-bit 2’s complement for-
mat, -128 would be written to the crossbar as 0. After 
being read out during compute-in memory, the bias 
of 128 would be subtracted.

Figure 8. 1T1R circuit with a differential pair for 
signed weights.
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Peripherals for in-memory computing
CIM architectures promise to achieve certain 

advantages over traditional architectures in effi-
ciency and throughput by replacing digital addition 
with an analog-domain alternative. This implies 
that the binary bitcell readouts typical of traditional 
memory macros become multiple-bit readouts in 
CIM arrays, and the sense-amps typical of traditional 
memory accordingly become ADCs in CIM architec-
tures. Furthermore, certain technology candidates 
for CIM require specific bias points for read and/or 
unusually large power for write. Meeting these added 
requirements without sacrificing the performance 

benefits promised by CIM will require novel periph-
eral circuitry. This section will provide an introduc-
tion to the readout peripheral design space for CIM 
by detailing a representative set of requirements and 
proposing how they may be satisfied. We focus on 
readout circuitry up to the ADC, omitting a detailed 
discussion of both write circuitry and ADC compo-
sition since the former is intimately dependent on 
choice of memory technology and the latter repre-
sents a massive variety of design choices.

The functional components involved in readout 
for CIM are shown in Figure 9, a new figure which 
expands on and has been inspired by the work of 
Close et al. [104], Kwon et al. [105], and Athmana-
than et al. [106]. We propose that the readout pro-
cess may be thought of as consisting of three stages.

•	 A selection stage during which the cells are acti-
vated via a change in wordline state.

•	 A biasing stage during which the selected cells 
are forced into the correct operating region, so 
that they produce some readable analog value.

•	 A conversion stage during which the analog value 
is captured into a digital reading.

The selection stage is accomplished via a buffer 
chain subject to two functional requirements: it must 
be sized to drive the wordline capacitance within a 
required time-frame, and may additionally be required 
to provide voltage conversion or protection between 
the core logic synchronizing the computation and the 
gate voltage of the cell selector devices. The degrees 
of freedom for wordline driver implementation 
include the choice of voltage level-shifting scheme, 
[107]–[112], and the choice of stage-over-stage sizing 
in the buffer chain [113]. The tradeoff space is speed, 
typically accomplished with a many-stage buffer and 
converter design (closer to e-scaling), against power 
and area. Broadly, these design constraints for CIM 
wordline drivers match those of the well-explored 
wordline driver design spaces for traditional memory 
technologies, including DRAM [108], SRAM [107], 
[109]–[111], and Flash [112]. The wordline driver is 
modeled by component (b) in Figure 9.

As shown in Table 1, typical implementations 
of Flash, STT-MRAM, PCM, RRAM, and FeFET-RAM 
require high voltage and potentially significant current 
during write. This encourages a low selector device 
channel resistance which may be accomplished by 
driving the gates of these selector devices far above typ-
ical core logic voltages. For the buffer to survive these 

Figure 9. Readout peripherals for a resistive CIM array 
shown as a block diagram of individual functional 
units. Examples of the functional makeup of each 
unit are shown inside each block, although the 
actual implementations will vary based on system 
requirements. (a) Column (that is, a group sharing a 
BL) of resistive memory cells with access devices. 
(b) Wordline driver with level-shifting. (c) Biasing/BL-
driving circuit formatted as a voltage regulator. (d) High-
Vt pass transistors that may be necessary to protect 
the BL driver from write pulses. (e) Bias current used to 
improve the stability of the voltage regulator in (c) and 
linearize the current sense device used to implement. 
(f) Current-sensing effective resistance. Note that some 
designs will use the gate of the regulator’s pass device 
shown in (c) as the measurement point for a voltage 
representing memory cell current.
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operating conditions at minimum the output devices 
must be able to handle these higher voltages. Typi-
cally, this will mean the minimum channel length of 
these transistors must be increased, which will in turn 
significantly increase the gate area, and capacitance, 
of transistors sized to rapidly charge the wordline 
[112]. Alternatives include cascoded output devices 
that each only see a portion of the high voltage or a 
series of moderate voltage step-ups. Any of these will 
result in increased area and energy usage. Some other 
technological requirements, e.g., for an especially low 
gate voltage during read to avoid read-disturb, do not 
risk buffer transistor breakdown and are therefore sig-
nificantly easier to accommodate.

Having selected cells, the next task is to bias the 
cells into an appropriate operating region so that 
their stored state, typically resistance, may be meas-
ured. This is shown in Figure 9c. While other biasing 
schemes are possible, the most straightforward and 
typical technique is to apply a specific voltage across 
the selected cells, converting cell resistance to cur-
rent [105]. If the state of each cell is expressed as a 
conductance, the resultant current due to this voltage 
will be proportional to the sum of the cell states. Con-
stant-voltage biasing therefore directly implements 
current summing. The circuitry involved in applying 
a constant-voltage bias across memory cells is similar 
to that involved in typical voltage regulator designs, 
with a few additional requirements: the biasing cir-
cuit must be able to tolerate high voltage at the BL 
(if required for write), tolerate widely variable load 
resistance, and sense the output current.

The first of these additional requirements paral-
lels the voltage-tolerance requirement of the word-
line driver. However, the BL driver does not swing 
across the full output voltage range but instead holds 
voltage nearly fixed while scaling current delivery to 
match the load. Additionally, the parasitic BL capac-
itance, which typically looks into the memory cell 
(modeled as a variable resistor) may be lower than 
the wordline capacitance, which typically looks 
into the gate of a fairly high-current transistor. These 
factors combine to mean that adding series chan-
nel resistance via a protection pass transistor can 
tolerate high voltage on the BL and can be turned 
off during write, can be less deleterious to bias-
ing speed and efficiency. This pass device may be 
inserted between the output of the voltage regulator 
and the BL. Additionally, if significant cell current 
may be expected to pass from the regulator to the BL 

through the pass device, a separate low-current “volt-
age-sense” pass device may be used for the voltage 
feedback component of BL voltage regulation. This 
structure is shown in Figure 9d.

The widely variable load resistance results from 
a design goal of resistive memory. Resistive mem-
ory cells should exhibit a high on/off ratio, meaning 
that their stored state should have a high dynamic 
range to maximally separate each nominal state and 
reduce error. This has the potential to create two 
issues. Practically, the voltage regulator that biases 
the cells will likely incorporate negative feedback 
to establish a precise BL voltage, and may there-
fore require compensation. This compensation may 
occur at the output for high performance, and the 
location of this output pole in frequency will be 
sensitive to the small-signal impedance at the out-
put of the regulator. In order-of-magnitude terms, as 
an example, if ten binary memory cells each swing 
100× from off-state to on-state, the load impedance 
seen at the output of the regulator will swing 1000×, 
i.e., 60 dB. Compensating for the highest-impedance 
extreme will therefore be likely to hinder perfor-
mance at the lowest-impedance extreme, which is 
exactly where a quick response is required as the 
load will be demanding the most current when most 
cells are on-state. Conversely, under-compensating 
to achieve a quick response for the largest load-
dump may cause stability issues when few cells are 
on. The other issue is simply that reliably sensing 
current across several decades can be challenging.

Both of these issues may be addressed by introduc-
ing a current-bias circuit, component (e) in Figure 9, 
to establish a minimum output current above what 
would be set by the memory device alone [105]. This 
bias current can be set to place the expected current 
range that will be read across a linear region of the 
current-sensing device, if needed. The bias circuit 
may be expected to decrease output impedance 
first of all simply by increasing the minimum current 
through the output device of the voltage regulator. 
Additionally, the bias circuit may itself be designed to 
have a low small-signal input impedance to directly 
limit output impedance of the regulator.

The remaining challenge to discuss in the con-
text of the bias circuit is current sensing, component 
(f) of Figure 9. The canonical technique for sensing 
current is to add a low-value effective resistance in 
series with the load then amplify the voltage drop 
across this effective resistance. Typical pure-CMOS 
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implementations have accomplished current sensing 
via the control-side of a current mirror or cascoded cur-
rent mirror, that is, with a diode-connected transistor 
[104]–[106]. In particular, if this current-sense transis-
tor is cascoded (or source-degenerated), the voltage 
headroom required by the sense device added to that 
required by the output device of the voltage regula-
tor can be significant. In power-sensitive designs, this 
may preclude more efficient schemes that would first 
reduce the core voltage using a capacitive or induc-
tive converter before finally setting the BL bias with 
a linear regulator. Alternatively, adding several series 
devices between the regulator’s output transistor and 
the rail may reduce the effective transconductance 
of this transistor, requiring its size to be increased to 
recover gain and improve regulation. These factors 
may motivate a simpler scheme where the gate volt-
age of this output transistor is itself used as the cur-
rent-sense metric.

The final step, analog to digital conversion, is 
application-specific. The maximum useful resolu-
tion is established by the minimum of the precision 
of the memory devices (inversely proportional to 
their variance) and the expected number of distinct 
output states to be measured. It may be that the cur-
rent handling of core devices in a technology lim-
its the maximum number of on-state devices (at a 
given minimum bias voltage) to a small number so 
that only this small number of distinct states needs 
to be measurable, or alternatively it may be that 
the variance of the current conducted by the mem-
ory devices limits the number of devices that may 
be measured before variance may be expected to 
cause unacceptably frequent errors.

Circuit-level ADC limitations are due to power 
and area restrictions. Area usage is a critical factor 
in CIM because memory arrays can be very dense 
while precise peripherals can be bulky. In a typi-
cal design, peripherals will be pitch-matched along 
both axes. While wordline drive circuitry can be 
very simple, the BL components will quickly exceed 
the pitch of a single column of memory cells. This 
limits the ADC and BL driver complexity that is suit-
able for a scalable design. While we will not fully 
explore the available options for ADCs, consider 
that the special requirements for ADCs for CIM are 
that they have a high throughput at a relatively low 
bit depth (3- to 6-bit designs are typical) and that 
their complexity and efficiency is managed so that 

throughput may be increased by tiling many of 
them adjacent to the array.

Low precision peripheral designs
As we will discuss in the “CIM-based accelerator 

architecture” section, it is possible to reduce the 
complexity of peripheral circuits by reducing the bit 
precision used in both the input features and weights 
of the network. While this does come at a cost in 
application performance, several works have shown 
that this is minimal for less complex applications. 
As a result, these works can achieve significantly 
higher throughput and lower energy per operation 
[13]. However, it should be noted that for larger and 
more complex problems, higher precision is often 
required to achieve respectable results.

One such approach is to use a BNN where only 
1-bit words and activations are needed [114], [115]. 
Originally used in FPGAs to take advantage of their 
configurability and offset the area and power over-
head, BNNs have also been shown to work with 
RRAM in both simulation [116] and experiment 
[23]. When using a binary activation function, a 
1-bit word-line driver and sense amplifier can be 
used rather than an ADC [117]. This design forgoes 
using multiple states in the device and avoids the 
additional circuit overhead. To activate many rows 
at a time, these networks can change the threshold 
of their sense amplifier to implement a binary acti-
vation function which quantizes all activations to 0 
and 1. Although this implementation is appealing 
from a circuit perspective it suffers greatly when 
scaling the data sets to more complex problems 
[115]. Rastegari et al. [115] showed 9% perfor-
mance degradation on ImageNet when going from 
full precision weights to binary weights. In addition 
to accuracy, BNNs struggle with training, as they are 
trained using full precision weights only to be quan-
tized during inference.

SNNs have also been used to bypass the periph-
eral circuit overhead of ADCs [24]. Since SNNs only 
output spikes rather than conventional multibit digi-
tal values, an analog circuit can be used to integrate 
the current through PCM memory and fire a spike 
when it has passed a threshold. Though this tech-
nique is similar to BNNs, it makes use of the time 
domain by integrating over time and slowly reducing 
the state value of the neuron over time similar to the 
behavior of leaky-integrate and fire neuron model. 
Like the BNN, however, SNNs have issues with both 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore.  Restrictions apply. 



53January/February 2021

accuracy and training preventing them from seeing 
large-scale use.

In Figure 10, we show both ends of the complexity 
spectrum ranging from DACs and ADCs to word-line 
drivers and sense amplifiers. In the past, many opti-
mistic designs used multilevel inputs, high precision 
designs, and MLCs. However, such designs have 
proved to be difficult given cell-to-cell variance and 
select transistor source degradation. This gave rise to 
simpler designs using just word line drivers and sense 
amplifiers with single state cells, but as we discussed 
these designs have had difficulty in scaling to larger 
problems. As a result, most recent CIM designs utilize 
word-line drivers and ADCs [103]. This configuration 
is popular because it allows multiple rows to be read 
at the same time, and avoids the source degradation 
problem that occurs when using multilevel inputs.

Zero skipping
There are two common techniques for perform-

ing CIM. The first technique, which we refer to as 
baseline, is simply to read as many rows as the ADC 
precision allows (e.g., for a 3-bit ADC, we read eight 
rows simultaneously). The next technique is com-
monly called zero skipping [118]–[120], where only 
rows with “1”s are read. Zero-skipping performs faster 
than the baseline technique because for most cases 
it will process more total rows per cycle. In Figure 11, 
we provide an example case for zero-skipping where 
eight total rows are read using a 2-bit ADC. Baseline 
(11A) requires two cycles since it targets four con-
secutive rows at a time. Zero-skipping (11B) is able 
to finish all eight rows in a single cycle because we 
only consider the “1”s in the input vector.

There are few reasons not to perform zero skip-
ping, unless there is limited input data bandwidth or 
the eNVM has high variance and accumulated too 
many errors. A recent work [120] has exploited this 
technique along with compression to achieve upward 
of 10× performance improvement. They illustrate that 
in most DNNs used today, activation sparsity is well 
above 50%. In fact, the larger the size of the neural net-
work model the higher activation sparsity is observed.

Impact of variance in in-memory computing
At the device level, the fundamental performance 

bottleneck is a function of the device-to-device var-
iance and the on-to-off ratio of each cell. These two 
properties define the number of distinguishable 
states that can be accurately read from a column 

of the crossbar. If more states are read than can be 
accurately distinguished, then errors in the operation 
will occur following the distribution of the device-to-
device variance. Since these errors compromise the 

Figure 10. Two different peripheral circuit 
configurations for neural networks for compute in 
memory. (a) DACs and ADCs are used for multibit 
activations and reading higher precision. (b) 1-bit 
wordline drivers and sense amplifiers can be used to 
implement BNN and minimize area and power.

Figure 11. Simplified breakdown of ADC reads in 
baseline and zero-skipping with 2-bit ADC precision. 
(a) Baseline targets four consecutive rows at a time 
since the 2-bit ADCs are capable of distinguishing four 
states. (b) Zero skipping targets the next four rows 
where the word-line is enabled. This way we can read 
more rows and not overflow our ADC.
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accuracy of the operation, the performance can no 
longer be compared to that of a bit-accurate CMOS 
implementation. Interestingly, in many data-inten-
sive applications, particularly in neural networks, 
limited amounts of variance can be tolerated.

Modern eNVM technologies, such as PCRAM and 
RRAM, suffer considerably from device-to-device var-
iance. State-of-the-art devices [36] have been demon-
strated with a resistance standard deviation of 3.5%, 
on-to-off ratio of >102, logic process and voltage com-
patibility, and high density. That said, analyses focused 
on solely device variability have revealed that the 
intrinsic and cell-to-cell variability can result in stand-
ard deviation that range from 5% to 50% depending 
on the write effort and the final stored resistance state 
[121], [122]. While lower nominal variability has been 
achieved in limited experimental research, real-world 
factors such as device drift and degeneration along 
with limited write-energy budget mean that well-con-
trolled variance is rarely guaranteed and often practi-
cally impossible. The latter implies a precision/power 
tradeoff design-space that encourages algorithmic solu-
tions to the variance issue.

In Figure 12, we demonstrate how, given enough 
variance, a CIM operation will result in an error. We 
show three cases: 5%, 10%, and 20% variance in the 
resistance of the memory state. This figure depicts the 
resultant variance expressed as the cumulative distri-
bution of the computing error, when seven on-state 
cells are being read (the maximum allowed by a 3-bit 
ADC) and when 15 on-state cells are read (the maxi-
mum for a 4-bit ADC). Recent work [123] has shown 

several techniques on how the impact of device level 
variance can be reduced at the system level by con-
trolling the operating speed based on the variance of 
the devices and importance of the particular oper-
ation. In 8-bit matrix multiplication, an error when 
computing the product of the most significant bits is 
214 times more costly than an error for the least sig-
nificant bits. Therefore, when operating on the most 
significant bit the number of rows being read should 
be reduced to minimize error at the system level.

Implementation of neural networks

Vector operations in DNN accelerators
So far, we have discussed the various mem-

ory technologies and circuit design techniques to 
implement CIM engines. Despite matrix multiplica-
tion being the bulk of the workload, there are other 
essential operations to implement in a DNN acceler-
ator. Fortunately, these operations represent a small 
portion of the workload since they operate directly 
on input and output vectors rather than perform-
ing matrix transformations on the data. There are 
several examples of this in CNNs, LSTMs [124], and 
transformer networks [125]. In all cases, these ele-
ment-wise vector operations are performed post-ma-
trix multiplication and thus have at least twice the 
bit-precision of the matrix operations.

In a CNN, the most common vector-wise opera-
tions are element-wise addition and comparison for 
bias and ReLU [126]. ReLU is particularly popular 
given that it typically yields the highest accuracy and 
also has the simplest operation. Other popular acti-
vation functions like sigmoid and tanh require expo-
nential functions and division which require more 
complex CMOS logic. In low precision logic these 
can be implemented as lookup tables, however, in 
higher precision accelerators expensive ALUs are 
required. Many CNN accelerators [11] create special 
cores for processing these nonlinear activation func-
tions and applying biases. A similar approach can 
be used for CIM accelerators, where eNVM arrays 
process the matrix operations and these vector oper-
ations are performed in special logic units.

For training deep CNNs, batch normalization [127] 
has become an integral component of all very DNNs. 
Prior to batch normalization and the use of residual 
[28] and dense [128] connections, very DNNs suf-
fered from the vanishing and exploding gradient prob-
lems. Batch normalization normalizes the outputs of 

Figure 12. CDF of error in calculating MAC as a 
function of normalized cell current under parametric 
variation.
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intermediate layers and applies a bias and scaling 
parameter to each output. This adds additional com-
plexity to the necessary ALU operations required 
because performing multiplication and division are 
more challenging than addition and comparison. 
However, this can be avoided in all inference-only 
accelerators since the normalization, bias, and scal-
ing parameters can be folded together [129].

Another popular neural network architecture for 
extracting patterns in sequences and time is the RNN. 
The most popular form of the RNN is a long short-term 
memory (LSTM). eNVM is especially interesting for 
implementing LSTMs since they are constructed from 
large fully connected layers and thus have far more 
parameters and greater dependence on memory 
bandwidth. Recent work [130] has demonstrated an 
RRAM-based RNN accelerator. They create a special 
function unit (SFU) for the many vector operations 
of RNNs to complement the PE used for matrix multi-
plication. Although CMOS logic is used to implement 
the SFUs, the number of vector operations is far fewer 
than matrix operations, and therefore does not negate 
the performance benefit from using RRAM.

Weight and activation quantization
Neural networks are most commonly trained in 

high precision 32-bit floating point operations. Exist-
ing infrastructure in BLAS [131] and GPUs enabled 
sufficient performance. However, new research 
trends seek to use lower precision weights and acti-
vations to achieve the same results. Naturally, this 
has big implications in terms of memory capacity, 
data transport, and computation as the complexity 
of all three scales with the precision of the operands. 
Given the performance advantages, popular tools 
like TensorFlow and PyTorch have created packages 
dedicated to quantized arithmetic.

Originally, a “binarized” neural network [132] was 
shown to yield good results for small data sets. This 
network was trained with full precision weights, but 
during inference these weights could be stored as just 
0 and 1. Later work has shown that this technique did 
not scale well to more challenging data sets [129], 
[133], [134], but lower precision weights and activa-
tions (8-bit) could still be used on large data sets like 
ImageNet [135]. There are different types of quantiza-
tion, namely post training quantization and training 
aware quantization [129]. Post training quantization 
uses statistics from the weights and activations dis-
tributions to quantize a pretrained model. Training 

aware quantization trains a quantized model by quan-
tizing full precision weights during the forward pass of 
backpropagation, and proceeding to train the model 
as if it were not quantized.

Most works in traditional CMOS accelerators [3] 
focus on 8-bit integer weights and activations for 
inference since it yields a nice balance between per-
formance and accuracy. In [129] and [134], a small 
accuracy degradation can be observed when transi-
tioning from full precision to 8-bit arithmetic. As the 
precision is lowered beyond 8 bits, a much larger 
accuracy degradation occurs. For training higher 
precision is often used [136], however, recent work 
has shown that it is possible to use 8-bit precision to 
train networks as well [136]–[138].

CIM array level simulators
eNVM have many new properties that make it diffi-

cult to determine their utility in creating machine learn-
ing accelerators. Of course it is better to have lower read 
energy and latency, but understanding how important 
these properties are at the system level is challeng-
ing. This problem is particularly important in device 
engineering so research effort is allocated to the most 
important device properties. For example, in the design 
of a system with low ADC precision (2-bit) device vari-
ance and on-to-off ratio have a much lower impact on 
accuracy and performance than a system with high pre-
cision ADCs. It is these types of scenarios that simula-
tors seek to evaluate to both guide device level research 
and provide accurate power, performance, and area 
estimations for CIM system level designs.

The design and implementation of these simula-
tors is a research challenge in itself. Typical circuit 
simulations like SPICE are notoriously slow for even 
small designs. At the same time, modeling all these 
properties while evaluating the memories in a higher 
level system is not only computationally demand-
ing, but rarely explored until recently. Large neural 
networks are already extremely computationally 
demanding although they only perform matrix multi-
plications with optimized BLAS libraries on dedicated 
hardware. Simulating the same networks with circuit 
and device level components is even more computa-
tionally challenging. Several works [139]–[142] have 
made promising initial progress on this problem.

An early work, NVSim [139], was not developed 
specifically for DNNs. Since they avoid the computa-
tional complexity of a DNN accelerator, they are able 
to focus on lower level details that allow for a more 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore.  Restrictions apply. 



56 IEEE Design&Test

Tutorial

accurate comparison with flash for server workloads. 
More recent works [140]–[142] have extended the 
idea, but for evaluating DNNs. These simulators use 
object-oriented models of circuit components and 
devices to accurately model power, variance, delay, 
and other properties that must be modeled to give 
circuit level approximations.

Recent works, such as NeuroSim [140], explore 
the simulation tradeoff space choosing the important 
characteristics to model. Given the notoriously slow 
simulation time of accurate SPICE models, tradeoffs 
have to be made if a realistic DNN will be simulated. 
However, accurate estimations for area and power 
can be achieved by abstracting temporal variation 
and considering fixed energy and delay parameters 
for all array level components and global intercon-
nects. RxNN [142] gives special attention to nonide-
alities of emerging devices and peripheral circuits as 
these will be fundamental performance bottlenecks 
in any realistic design. In both simulation tools, all 
devices from this article can be evaluated with both 
optimistic and pessimistic parameters. Power and 
performance breakdowns can be gathered across cir-
cuit level components to identify the largest sources 
of power to motivate and guide future research effort.

Network on chip for CIM accelerators
Although CIM seeks to minimize data transport, it 

is nonetheless an important aspect of implementing a 
CIM-based DNN accelerator. Fortunately, CIM-based 
architectures are similar to CMOS- and SRAM-based 
designs and thus make use existing research pro-
gress in network on chip (NoC), routers, and inter-
connects. Despite these similarities, there are some 
differences that require special attention. Given that 
CIM accelerators offer the advantage of high density 
and low power, low overhead NoC designs, such 
as those mentioned in [143], are of special interest. 
Furthermore, since CIM accelerators typically run at 
lower clock frequency and struggle with computa-
tional efficiency [103], special routing policies [144] 
will likely be required if eNVM CIM systems are to be 
used in real-time embedded systems.

Recent work [145] has proposed a new data flow 
based on prior work in CMOS-based CNN accelerators 
[5], [9]. This work implements a new weight mapping 
strategy for minimizing data movement in CIM DNN 
accelerators. As we discuss further in the “CIM-based 
accelerator architecture” section, eNVM PEs are not 
typically reprogrammed and hence each compute unit 

is not capable of performing each operation in a DNN. 
Therefore, the mapping of weights to compute units is 
a new challenge that was avoided in CMOS- and SRAM- 
based designs. Using this data flow and mapping strat-
egy, the authors demonstrate improvements in power, 
performance, and memory efficiency.

Since all of the eNVM candidates are both pro-
cess and voltage compatible with CMOS, we expect 
future research in interconnects to be coupled with 
CIM research. Emerging technology such as optical 
interconnects [146] or wireless NoCs [147] can be 
directly applied to CIM to further reduce the cost of 
data transport. Although these technologies need fur-
ther research and development before mainstream 
adoption, they promise to reduce power and improve 
throughput over traditional interconnects, particularly 
for global routing layers. The combination of CIM and 
new interconnect technologies has the potential to 
drastically reduce power in DNN accelerators by both 
reducing the cost of data transport and eliminating a 
large fraction of the total data movement required.

CIM-based accelerator architecture
In previous sections, we describe the different 

components that go into creating a standalone 
CIM PE. By encapsulating the array, ADCs, and shift 
and add logic, a matrix multiplication engine can 
be created. Using these arrays as building blocks, 
prior work has implemented CNNs where a group 
of arrays implement a larger matrix multiplication. 
In Figure 13, we illustrate this idea, showing how a 
group of arrays is tiled together to form a PE and then 
used in a larger systolic array that can perform matrix 
operations. In most designs so far [103], [145], [148], 
the most common crossbar choice is 128 × 128 
where 8 bit weights and activations are used. There-
fore, each array can perform a 128 × 16 dot product 
on its own requiring only the 128-byte input vector. 
These arrays can easily be pieced together to form 
larger matrices. For example, a 1024 × 1024 matrix 
can be formed by a 8 × 64 grid of 128 × 128 arrays.

This has important implications as modern DNNs 
such as CNNs and RNNs contain a workload of 
almost entirely matrix multiplication [101]. Despite 
performing more complex operations, the core oper-
ations of CNNs and RNNs are converted into matrix 
multiplication. In Figure 14, we further depict how 
these arrays can be pieced together to form a larger 
matrix that forms the kernel of a CNN. In this exam-
ple, both input feature maps and filters are vectorized 
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with the filters forming the columns of a matrix. The 
vectorized feature maps are input to the crossbar to 
perform matrix multiplication, where the results are 
output feature maps for this layer in a CNN.

Given the high density of these PEs, hundreds or 
thousands of them can be tiled in the same area used 
by modern ICs. Although similar in concept, CIM-
based DNN accelerators have numerous differences 
from traditional CMOS-based designs that introduce 
challenges in maximizing performance. First off, 
a CIM-based PE has fixed weights that cannot be 
reprogrammed due to the high energy cost of writing 
eNVM. Traditional CMOS-based PEs are generalized 
compute units that can operate on any input data, 
since they do not contain fixed weights. Thus, the 
fundamental issue in CIM-based accelerators is array 
utilization [149]. Several works have addressed this 
issue introducing ideas such as weight duplication, 
weight partitioning, and layer pipe-lining.

Layer pipelining
In traditional CMOS accelerators, PEs can be used 

for all layers of the network. CIM arrays are not as 
flexible because the weights should not be repro-
grammed between layers because of high write 
energy. Thus, each array in the CIM accelerator 
should be used for a single layer. It is possible to split 
layers across these PEs for larger arrays; however, for 
typical 128 × 128 arrays it is impossible to split many 
layers across a single array effectively [145].

To combat this issue, pipe-lining the layers of the 
DNN has been proposed [103], [150]. In these works 
images are pipelined through the network to keep all 
arrays fed. Although this compromises single example 
latency, the total throughput of the array is the same 
as if all arrays were used for a single layer. However, 
pipe-lining faces performance issues when some lay-
ers perform faster than others. In this case, the max-
imum throughput of the network is constrained to 
the slowest layer, hence it is important that arrays are 
allocated uniformly so that performance is optimized.

Weight duplication
Weight duplication [103], [150] is used to max-

imize throughput in large-scale CIM accelerators 
where the amount of on-chip memory exceeds the 
number of weights in the model. In [145], 24,960 
arrays are used for a total on-chip memory capacity of 
nearly 104 MB (2b cells) for weights alone, while only 
using an area of 250 mm2. In comparison, the TPU [3] 

which occupies over 300 mm2 only has 24 MB of on 
chip SRAM that is used for both weights and activa-
tions. Using this enormous on-chip memory capacity, 
they not only fit ResNet [28] but duplicate shallow lay-
ers up to 32× so that all arrays are fully utilized.

When weights are duplicated, the input data are 
divided equally among each group duplicate array 
so they can process in parallel. In a convolutional 
layer, the input patches can be sent to each dupli-
cate in an alternating fashion as the accelerator 
strides across the image. We further illustrate this 
idea in Figure 15. In this example, we show two 
duplicates each receiving alternating input patches. 
Each duplicate performs the convolution and sends 
the resulting output feature map to its designated 
location in main memory.

Weight mapping and partitioning
Traditional digital accelerators [14] utilize arrays 

of PEs to perform MAC operations and accumulate 

Figure 13. Typical in-memory computing array 
architecture featuring dual word line drivers, ADCs, 
shift and add units, and an adder tree.

Figure 14. Typical 3 × 3 × 128 × 128 filter used in 
layer 10 from ResNet18 converted into a matrix and 
mapped to 128 × 128 eNVM arrays. This filter requires 
72 128 × 128 arrays to store in a 9 × 8 grid.
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partial sums. For each operation, input and weight 
data are read in through cache or main memory. Due 
to the low density SRAM caches that are used, data 
reuse is key to minimize the number of main mem-
ory accesses performed. As a result, many data flow 
architectures have been proposed that maximize 
both spatial and temporal reuse and consequently, 
minimize data transport. Despite these efforts, data 
transport still consumes a large fraction of the total 
energy consumption.

In-memory computing offers an elegant solution to 
this problem with high density, nonvolatile memory 
that performs the MAC operation using the physical 
properties of the cell and crossbar. The challenge 
in-memory computing faces is not with weight trans-
port, but rather with weight placement. To maximize 
throughput, weights must be distributed in a way 
that allows each CIM PE to be operating at all times 

to maximize throughput. One example of an optimal 
weight mapping and data flow was demonstrated in 
[145]. Using redundant weights and clever mapping 
strategies, they maximize throughput of a large-scale 
CIM accelerator.

D. Weight rotation
Another interesting technique to improve array 

utilization is weight rotation [151]. Given that ADCs 
make up most of the power consumption and area 
for small form factor eNVM PEs. Thus, rather than 
pipe-lining a CNN to make full use of the arrays, 
[151] redefine the challenge to making full use of 
the ADCs. To do this, every PE is allocated an array 
programmed with a portion of the weights from 
each layer. Then all arrays in a PE are connected 
to shared ADCs through multiplexers. In this way, 
arrays can be rotated based on the current layer 
and maximize use of the ADCs in each PE. This 
technique results in a small area footprint and large 
on-chip capacity, however, maximum throughput 
is reduced.

E. CIM-based architecture level designs
Numerous exhaustive CIM designs have been 

done with excellent power and performance eval-
uations. These works [103], [145], [148] consider 
both computational and energy efficiency meas-
ured as TOP/mm2 and TOP/W, respectively. The 
key metric for evaluating DNN accelerators has 
been TOP/W, however, for CIM-based designs com-
putational efficiency (TOP/mm2) is particularly 
important. This is because current eNVM technol-
ogy struggles to compete with CMOS-based designs 
in computational efficiency. CMOS designs have 
far less on-chip memory and can use this additional 
area for many low area PEs, increasing the compu-
tational efficiency. However, the lack of on-chip 
memory allows eNVM CIM designs to be far more 
energy-efficient.

In Table 2, we compare several large-scale designs 
in terms of storage, area, normalized TOP/mm2, and 
normalized TOP/W. The different designs used differ-
ent parameters which greatly impact performance. 
For this comparison, we scaled all designs to 8-bit 
inputs and 8-bit weights with 2 bits per NVM cell. In 
each of these designs the primary bottleneck in both 
performance and energy efficiency is the ADC. The 
ADC accounts for the majority of power and area, but 
their performance set the bottleneck for each design.

Figure 15. Convolutional layer mapped to a CIM array. 
Both input feature maps and filters are vectorized 
with the filters forming the columns of a matrix. The 
vectorized feature maps are input to the crossbar to 
perform matrix multiplication, where the results are 
output feature maps for this layer in a CNN.

 
Table 2. Comparison of architectural designs.
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ISAAC [103] and PRIME [150] were the origi-
nal exhaustive architecture-level simulations for 
CIM DNN accelerators. Both made large strides in 
mapping the design DNNs to CIM arrays utilizing 
layer pipe-lining and weight duplication. PipeLayer 
[148] maximized computational efficiency for train-
ing DNNs using a clever strategy in computing the 
gradients. AtomLayer maximized on-chip memory 
and minimized area using weight rotation achiev-
ing 83.69 MB in just 6.9 mm2. Sparse ReRAM engine 
[120] took advantage of sparsity in both the feature 
inputs and the weights to greatly improve the com-
putational and energy efficiency of ISAAC. Peng et 
al. [145] created a new weight mapping strategy and 
data flow to minimize data transport throughout the 
chip. This strategy is comparable to CMOS-based 
designs like those mentioned in [5] and [152].

Training CIM neural networks
Implementation of neural networks feature two 

distinct challenges: 1) inference and 2) training. 
Inference consists of just the forward pass or eval-
uation of the neural network model that we have 
discussed so far. Training is a more complex pro-
cedure that updates the weights in the network to 
optimize a loss function and improve performance. 
To train a network, we must perform inference and 
two more additional steps: 1) gradient calculation 
and 2) weight update.

After inference is performed on data samples 
and the network has made a prediction, the error 
is computed using the prediction and the label to 
compute the gradients for all weights in the net-
work. These gradients represent the error of each 
weight with respect to the global loss function. Tra-
ditionally, backpropagation [153] is used to com-
pute these gradients. Backpropagation computes 
the partial error of each weight in the network via 
the chain rule. Once acquired, these gradients are 
then applied to the network iteratively in the weight 
update phase.

The gradient calculation and weight update com-
ponents of training present challenges to CIM that 
has been mostly avoided thus far. In particular, the 
additional complexity of transposable memory and 
the large number of write operations has motivated 
the use of off-chip learning. In the following sections, 
we outline challenges and current solutions for each 
of these steps.

Forward propagation (inference)
The forward pass computation of the neu-

ral network required to make a prediction is the 
inference phase. This features matrix multiplica-
tion, convolution, and the element-wise vector 
functions we discussed in the “Implementation 
of neural networks” section. Often times, models 
have already been trained offline and are ready 
to be deployed. For these applications our NVM 
will be programmed once and then not modified 
during the duration of the application. Under this 
assumption, we need perform only the forward 
pass of the neural network and do not consider 
the many complexities that come with training 
such as the cost of write energy or transposable 
memory. Mathematically, the feed forward com-
putation can be written as

( ),y W x a f y= ⋅ =1 1 1 1 � (1)

( ),y W a a f y= ⋅ =2 2 1 2 2 � (2)

( ),n n n n ny W a a f y
−

= ⋅ =1 � (3)

where x is the feature vector and Wi is the weight 
matrix connecting layer i  – 1 to layer i (y0 = x). The 
dot product of x and Wi yields yi, and applying the 
nonlinear activation function f results in the activa-
tion at neuron i, ai.

Backpropagation
To train state-of-the-art DNNs on chip, we rely on 

backpropagation or some variant which computes 
gradients of the weights with respect to a loss func-
tion. Backpropagation computes this gradient at 
each layer, starting from the last layer and propa-
gating backward one layer at a time. This technique 
efficiently reuses computation, since the gradients 
of layers early in the network are functions of gra-
dients from layers deeper in the network. The error 
at the last layer of the network, n, is the classifica-
tion error e. BP computes the error at each hidden 
layer l, δal, by transposing the weight matrices W 
and multiplying by the gradient of the activation 
function. These layerwise computations for BP can 
be written as

=nda e � (4)
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where  is the element-wise multiplication operator. 
In (5) and (6), the transpose of matrices W2 and W1 
are used to compute the error at the hidden layers of 
the network.

Therefore, to compute the error at each of the 
hidden layers in our network, we use the transposed 
weights in the previous layer to backpropagate the 
error to the current layer. In CIM crossbars, this 
is a significant problem that can be solved by two 
methods.

•	 Read conductance values from the crossbar, 
and perform the multiplication in CMOS 
peripherals.

•	 Transposed matrix multiplication in the crossbar.

Reading the weights out requires that we spend 
significant time reading each weight one at a time, or 
a row at a time described by Li et al. [25]. Once com-
plete, we must then perform the matrix multiplication 
in CMOS. This method limits the advantages of using 
in-memory computing because we revert to a von 
Neumann computing architecture in the backward 
direction.

Using additional circuitry, it is possible to trans-
pose the weight matrix so that the backward pass 
can be computed in memory [154], [155]. Trans-
posing the weight matrix requires significant circuit 
overhead which increases area, power, and design 
complexity. The 2T1R synapse circuit is shown in 
a crossbar array in Figure 16. The circuit elements 
highlighted in red represent the portion of the cir-
cuit for the transposed read and matrix multiplica-
tion. This additional circuity comes at a significant 
overhead in area and design complexity. Additional 
select transistors, wordline drivers, BL drivers, and 
ADCs are required to read the transposed data. 
Such a design greatly reduces inference computa-
tional efficiency since this overhead is not needed 
in the forward direction.

Network update
Once we have computed the gradients using 

backpropagation, we must apply the gradients to 
the network. The error with respect to each weight 
is computed as the outer product of input values 
and error: a e⋅ . This results in a matrix, δ W , that we 
must apply to our crossbar. To update an eNVM cell, 
we must apply a positive voltage to “set” the device 
(lower resistance) or negative voltage to “reset” 
(increase resistance).

There are different ways to apply the error update 
to the crossbar. For digital CIM, the most common 
approach is to compute δW in CMOS and then write 
each row one at a time. Like computing the back-
ward pass, this limits the advantages of using CIM 
because we need to move the two vectors a e⋅  and a e⋅  to 
CMOS logic and then perform N M MAC operations. 
After which, we have to transport a matrix with the 
dimensions of the size of vectors a e⋅  and a e⋅  back from 
logic to the array. This technique not only struggles 
from data movement, but also in storing the gradient 
of the matrix in SRAM. While we have high density 
eNVM on chip to store weight matrices, there will not 
be sufficient SRAM to store a large gradient. Another 
technique [156] showed that the eNVM arrays can be 
reprogrammed with the error gradients so that weight 
gradients could be computed with CIM. However, this 
method requires significant data transfer and high 
power writing of eNVM.

For analog CIM, there exists an extremely efficient 
method for performing the weight update that has 
been proposed in [24], [157], and [158]. To update 
the eNVM network we perform outer product of a e⋅  

Figure 16. 2T1R circuit for transposed matrix 
multiplication. The transpose logic is shown in red. 
The 2T1R configuration requires additional select 
transistor, wordline, BL, and ADC.
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and a e⋅  with time and the results are integrated by the 
eNVM. If we apply pulses proportional to the input 
values on the word lines, and pulses proportional to 
the errors on the columns then the time overlap of 
the two is proportional to the product. In Figure 17, 
we demonstrate an example where WL is asserted for 
40% of the period and BL is asserted for 80% of its 
period. The resulting voltage across the cell is roughly 
32% of the period. It is necessary that the period of 

BL is several times shorter than WL, otherwise a min 
function is performed rather than multiplication.

Alternatives to backpropagation
Given the difficulty of training eNVM on chip, 

most works train the model off chip and simply per-
form inference on the eNVM CIM accelerator. The 
difficulty of training on chip comes primarily from 
the gradient calculation phase in training. In both 
CMOS- and eNVM-based designs, gradient calcula-
tion using backpropagation requires excessive data 
transport and doubles the number of computations 
required by a training example. For eNVM-based 
designs, backpropagation also requires additional 
hardware for training that reduces inference perfor-
mance per unit area.

An interesting alternative to backpropagation 
inspired from biological perspective was proposed 
in [159]. Feedback alignment (FA) uses fixed ran-
dom feedback weights to propagate the errors back 
through the layers of a DNN rather than using the 
actual network weights to compute the partial error. 
Consequently, the weights in the shallow layers of 
the network no longer need information of the 
weights of all the deeper layers. Building on top of 
this, Nøkland [160] proposes direct FA (DFA), where 
it was shown that the feedback to shallow layers 
need not be propagated through all the layers. DFA 
showed that instead, a random matrix can be used 
to compute the error at each layer. Such a matrix 
can be randomly initialized with size N C, where N 
is the number of hidden neurons at a hidden layer, 
and C is the number of classes (or outputs) in the 
network. This matrix is used to create a linear projec-
tion of the error for each hidden neuron.

Decoupling the forward and backward weights 
makes DFA a suitable algorithm for training net-
works that rely on in-memory computing. The 
advantage of in-memory computing is that in the 
forward pass, the weights do not need to be read 
out and brought to compute. Similarly, with DFA 

we no longer need to read weights out during the 
backward pass. Instead a random feedback matrix 
can be used to compute the error and update the 
network independent of the forward weights. Using 
these techniques, several works [158], [161]–[164] 
have achieved lower hardware complexity and 
improved performance.

Compensating for large write latency of eNVM
All the eNVM technologies that we have dis-

cussed so far promise high density, short read 
latency, no leakage power and voltage/process 
scalability with scaled processor logic. However, 
all these technologies require high write energy 
and typically have higher write latency. For edge 
devices where only inference is performed, the 
write latency is not critical. But in systems with real-
time performance requirement, such as real-time 
RL in drones, robots, and UAVs, it is challenging to 
maintain high speed while being able to write into 
the eNVM. To address this challenge, Yoon et al. 
[165] recently proposed a method of transfer learn-
ing with real-time RL over a small portion of the 
model weights. In a typical application of drones, 
it has been shown that the initial model weight can 
be trained off-line using a simulation environment 
and the weights of the shallow layers are trans-
ferred to the eNVM. Next the drone is deployed in 
a real environment and the last few layers of the 
network, which are stored on an on-die SRAM, are 
updated in real-time. It has been shown that such 
a system performs at almost identical performance 

Figure 17. Waveform showing pulsed-based 
multiplication of positive and negative voltages 
applied to eNVM array. Wordline (WL) and Bitline (BL) 
are the two inputs. The result of multiplication is VR.
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with more than 70% decrease in system energy and 
latency compared to end-to-end learning [165].

Discussions and outlook
From enabling intelligent microrobotics to train-

ing massive neural networks, both the applications 
and progress of research in artificial intelligence 
are bounded by the tools we have to design with. 
CMOS has carried us so far, but ultimately we must 
find alternatives that better suit the massively paral-
lel and data intensive needs to artificial intelligence 
and machine learning. In-memory computing is a 
competitive design choice, where there is minimal 
overhead in transporting data. Increased research 
effort from both the industry and the academia as 
well as consistent breakthroughs in device quality 
make emerging nonvolatile memories a promising 
technological advancement.� 
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