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Editor’s notes:

Designing hardware accelerators for machine learning (ML) applications
is a well-researched problem. This article presents a tutorial regarding new
computing architectures, circuits techniques, and multiple promising device
technologies for in-memory computing targeting ML workloads.

—~Partha Pratim Pande, Washington State University

TODAY’S COMPUTING SYSTEMS and emerging work-
loads are heavily dependent on the capacity and
latency of memory banks, thanks to the increasing
performance gap between main memory and logic.
Decades of research and the majority of on-chip area
in modern integrated circuits (ICs) has been dedi-
cated to creating complex memory hierarchies to
negate this growing performance gap. Although this
design strategy works well for general-purpose com-
puting, recent trends in data analytics and artificial
intelligence have further exacerbated the long-stand-
ing memory bottleneck. Rather than fast single
threaded performance and unknown data-access
patterns, these applications require massively paral-
lel computation and fixed, known data-access pat-
terns. As a result, the clever caching hierarchy that
takes advantage of spatial and temporal data reuse
is overwhelmed by the vast amount of data required
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by new applications.
Because these elaborate
caching schemes have
been rendered practi-
cally useless owing to
the embarrassingly par-
allel nature of emerging
applications,
processors have failed to provide either the perfor-
mance or energy-efficiency that are demanded by
these workloads.

Consequently, we have seen a plethora of
high-quality software packages, such as TensorFlow
[1] and PyTorch [2], and hardware packages, such
as Google’s tensor processing unit (TPU) [3] and
Nvidia’s Volta, that vastly outperform previous top
of the line commercial general-purpose hardware.
Unfortunately, it is inevitable that these improve-
ments will again slow down and the hardware solu-
tions will be limited in performance by the memory
bottleneck. To make matters worse, the cost of mov-
ing data has become more expensive than operat-
ing on it [4], [5]. So not only has memory become
the fundamental bottleneck of computing, but both
reading and transporting the data throughout the

traditional

growing size of modern ICs has become more expen-
sive than the operation we seek to perform.

This has given rise to various areas of research to
mitigate the memory bottleneck, and tremendous
effort is being driven from the device to the architec-
tural levels. At the top of the computing hierarchy,
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Figure 1. Recent advances in machine learning
hardware spans over a large power-performance
design space. (Source: Dr. Jong-Hyeok Yoon,
Georgia Tech.)
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computer architects and compiler designers are
attempting to use the same CMOS technology, but use
advanced dataflow patterns and mapping strategies
so that the data movement is minimized and data
reuse is maximized. Several recent demonstrations in

machine learning hardware have made tremendous
advances in both performance and energy-efficiency,
and this is illustrated in Figure 1. Original works [6],
[7], created accelerators to match the architectures of
emerging deep neural networks (DNNs). Later works
[5], [8], [9] showed the primary opportunity for
improving the performance of these accelerators is
maximizing data reuse (or minimizing total data trans-
port). The initial demonstration of this technique was
Eyeriss [5] in 2016, but since then new strategies for
both reinforcement learning (RL) [10] and recurrent
neural networks (RNNs) [11] have also been demon-
strated in silicon. Furthermore designs using mixed
signal compute [12], [13] have also been demon-
strated using low and variable precision. Although
these designs feature data reuse and reduced power,
they make application specific design choices which
reduce their generality in a wide spectrum of applica-
tions. In Figure 2a and b, we show architectural differ-
ences between the TPU [3] and Eyeriss [5]. By placing
small caches inside of the processing elements (PEs),
Eyeriss is able to reuse feature maps and filter weights
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Figure 2. Four architectures used by machine learning accelerators. The memory used

to store weights and input data is colored in blue. (a) Systolic array used by the TPU [3].

(b) Systolic array with local cache for filters and feature maps to maximize data reuse used
by Chen et al. [5]. (c) SNN architecture with all weights stored local to neuro-synaptic core
used by Merolla et al. [19] and Davies et al. [20]. Each core stores weights for many neurons,
computing is shared among all neurons mapped to the core. (d) In-memory architecture
using RRAM. Computing and memory are combined so there is no memory transfer.
Analog-to-digital converters (ADCs) are still shared among inputs and outputs to the array.
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rather than reading and transporting them for each
output neuron. More recent works [14]-[17] are
attempting to exploit sparsity and compression in
both weights and activations of large networks. This
is particularly important in emerging models for natu-
ral language processing [18] where huge numbers of
parameters are used.

In a radically different approach spiking neural
network (SNN) chips like [19] and [20] attempt to
only read and modify weights using their respective
neuron. As a result, large amounts of static random
access memory (SRAM) and low precision weights
are required to keep all weights on chip without
having to fetch them from the main memory. This is
demonstrated in Figure 2c, where no global buffer is
used and the only transfer of data is directly between
cores. Because weights are only accessed by a sin-
gle core, compute units are not reused across the
various layers. This is not ideal from a performance
perspective because it means latency will be much
higher given that only a fraction of the compute units
are used for a given layer. The throughput can poten-
tially be recovered if all the layers are pipe-lined.
However, the biggest advantage of this dataflow
architecture is its ability to reduce global movement
of data. This design strategy is commonly referred to
as near memory computing, where the objective is
to physically place compute and memory together
rather than keep them separated by a high perfor-
mance memory controller. While this is a useful
technique and we can expect significant power sav-
ings, it will still face some of the fundamental tech-
nological limitations of CMOS.

It is critical to understand the role of embedded
nonvolatile memory (eNVM) on future comput-
ing platforms. Volatile memory solutions for on-die
integration are typically charge-based: SRAM and
embedded-DRAM (eDRAM). Both these technologies
consume zero standby power—in terms of leakage
(SRAM) or refresh (eDRAM) power. With the growing
need for larger and larger on-die memory for machine
learning applications, the total standby power con-
tinues to be a significant limitation in the energy effi-
ciency of SRAM- and eDRAM-based systems. Hence,
eNVM is expected to alleviate this challenge. Further-
more, the eNVM solutions that are currently being pur-
sued include noncharge-based physical states—such
as ion movement or spin polarization. These physical
phenomenon are often scalable to dimensions that
are smaller than what SRAM or eDRAM can enable.
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Consequently, eNVM technologies continue to gain
popularity as both a research vehicle as well as a solu-
tion at the end of the scaling roadmap.

Fortunately, for more than a decade there has
been a steady increasing effort in design, fabrica-
tion, and manufacturing of novel memory technol-
ogies that are logic process and voltage compatible,
while providing high density as well as target read
and write performance. These new devices have
exciting new propetties that have been long absent
in traditional charge based memory technologies.
The four such technologies that we discuss in this
article share the following properties [21]:

They are all eNVM solutions. They can be com-
pletely powered down without loss of data, and
hence consume virtually no leakage power.

All these technologies are process and (some-
what) voltage compatible with CMOS logic
processes, although more advances need to be
made on both fronts.

All these technologies store information through
change of resistance. This enables us to perform
compute in-memory (CIM) on the bitline (BL)
with breakthrough improvements in throughput
and energy-efficiency.

These properties have the potential to realize the
long awaited benefits of in-memory computing. In
addition to these propetties, new eNVM technologies
feature high density and often multilevel cells (MLCs)
where more than a single bit can be stored per cell. In
comparison, modem 6T SRAM can be as large as 150F?
while only offering a single bit of differential storage.
In-memory computing uses physical properties of the
devices to do computation without a dedicated com-
pute unit. Using Ohm’s law, where a voltage applied
across a device’s conductance results in a current, and
Kirchhoff’s current law (KCL) we can sum along the
columns of our memory crossbar to perform matrix
multiplication in O(1). These memory crossbars can
then abstracted into cores as shown in Figure 2d, where
system level approaches similar to systolic arrays [3] or
DNN accelerators [5] can be used.

If successful, in-memory computing promises to
solve many of the engineering challenges that the
modern memory hierarchy faces with regards to data
transport. In recent years, new emerging devices
have made huge milestones on their way to commer-
cial viability. High density macros have been fabri-
cated [22], and used in the implementation of highly
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efficient neural networks [23]-[25]. However, these
new emerging memories face many challenges of
their own preventing them from widespread com-
mercial use. In this article, we will examine some
of these challenges and provide an overview of the
recent developments both from technology as well
as circuits and systems perspectives.

System needs for memory-centric
neural network workloads

The demand for in-memory computing is ever
growing as the state-of-the-art designs for computer
vision, natural language processing, and RL continue
to have larger models with more computation and
performance that require months of training time
on clusters of custom accelerators. At the same time
advances in microrobotics require smaller area foot-
prints and power budgets. These different workloads
require the same thing: energy-efficient computing.
As these applications begin to outpace the computers
we have to perform these tasks, we will need to look
at fundamentally different approaches of computing.

At the start of the current surge in deep learning,
AlexNet [26] was trained and implemented using
a pair of GTX 580 graphics processing units (GPUs)
and custom CUDA code. Soon after larger and larger
models requiring more hardware became the new
state of the art, as VGG [27] and ResNet [28] required
multiple GPUs to train in a reasonable amount of
time. Today there is an abundance of deep learning
frameworks and hardware designed for machine
learning readily available. These tools and hardware
have propelled deep learning research, making it far
more practical to design and test large deep learning
models. Despite these efforts, state of the art models
in natural language processing, computer vision, and
RL require massive amounts of memory and compu-
tation that can no longer be run on consumer grade
hardware. For example, OpenAl has used RL to beat
professional players at Atari, GO, and most recently
StarCraft 2 [29]. Jouppi et al. [3] claim that training
an agent requires 44 days of training with 32 third-gen-
eration TPUs. Training such a model is extremely
expensive and impossible for anyone without access
to enormous compute power. While inference for this
model can be run on a typical GPU, newer models in
NLP [30] and computer vision [31] require 4 billion
and 1 billion parameters, respectively.

At the same time, the interest in machine learning
in mobile and edge platforms is constantly increasing

and hardware accelerators and software frameworks
are being developed specifically for these platforms.
While great progress is being made to run small mod-
els on resource and power constrained hardware,
CMOS limitations and the von Neumann bottleneck
will limit the capability of edge hardware.

Overview of emerging nonvolatile
memory

There are many propetties to evaluate when consid-
ering new emerging devices for in-memory computing.
Of course we expect these devices to be nonvolatile
with good retention as well as having a resistive state
that can be used for in-memory computing. Besides
these qualities we also must consider read and write
times, read and write energy, read and write voltage,
endurance, area, and the number of distinguishable
states per cell. We present an exhaustive overview of
these metrics for in-memory computing in Table 1. We
focus our attention to the four leading candidates for
in-memory computing and compare them to the cur-
rent standard used in commercial products: SRAM,
DRAM, and Flash. In their current state, none of the
emerging devices display all desired characteristics.
In a different review article, Yu and Chen [21] and Yu
[32] identify the ideal characteristics for these devices.

We group these properties into four major areas:
1) density; 2) read performance; 3) write perfor-
mance; and 4) reliability. The importance of the
device properties is very application-specific. For
example, as we discuss later this in work, the write
performance and write endurance of these devices
are less important if the devices are used in a net-
work only performing inference. However, in a net-
work that is being trained, high write energy can be
the primary source of energy consumption, and it
can be a significant system challenge.

- Density: The density of these NVM technologies is
the product of the number of cells per unit area
and the number distinguishable states per cell.The
density of eNVM is on the order of 10F?, whereas
SRAM is over 150£2.3D integration of eNVM on the
back end of line (BEOL) process is under inves-
tigation; where the density can be pushed even
further. However, some of the constraints in BEOL
processing, most importantly the low temperature
requirements, continue to be challenging.

Read performance: Read performance for CIM
constitutes memory access, memory transport,
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Table 1. Device characteristics of mainstream and emerging memory technologies.
Memor Ref Density Read Write Reliability
y Area Bit Voltage Time Energy Voltage Time Energy Retention Endurance
SRAM [21] | 150 F? 1 1 Ins 1fJ 1 Ins 1fJ . 1016
DRAM [21] | 6 FZ 1 1 10ns 10£7 1 10ns 10£7 64ms 1016
Flash [21] 10 F? 2 10 50ns 10pJ 10 1ms InJ 10y 10°
[21] | 50 F? 1 1.5 10ns 1pJ 1.5 10ns 100£7 10y 1015
[33] 75 F? 1 1.2 2.8ns 0.7pJ 1.8 20ns 4.5p] . .
MRAM
[34] | 0.358um?2 1 12 30ns 14.6pJ 12 30ns 17.4pJ
[35] - 1 1.2 3.3ns 0.3pJ 1.2 3ns 0.6pJ - .
[21] | 30 F? 2 <1 10ns 1pJ 3 50ns 10pJ 10y 108
PCM ;36] | - 2 <1 <10ns 0.1pJ 3 100ns 10pJ 10y 105
[37]1 | 50 F? 2 <1 <10ns 0.5pJ 3.3 300ns 30pJ 10y 108
211 | 12 F2 2 <1 10ns 1pJ 3 10ns 10pJ 10y 108
[38] 100nm? 1 <1 10ns 10£J 15 10ns 100£J 10y 107
RRAM [39] . 1 <0.5 Sns 1pJ <1 10us 1nJ . .
[40] . 2.3 0.2 23ns 1.76pJ 3 50ns 10.1pJ 10y .
[21] | 40 F? 2 3 10ns 1f] 3 10ns 100£) 10y 106
. [41] . 1 <4.5 <25ns . . <500ns . 10y 10°
FeFET-RAM [42] . 1 0.68 3ns 0.28pJ 0.4 0.55ns 4.82p] . .
[43] 2.7pum? 1 1.64 15.5p 0.8 0.55ns 15.0pJ
All parameters taken from demonstrations in original research works.When a parameter is not reported or cannot be computed the table
index is left blank.

and multiply-and-accumulate (MAC) operations.
It is even more important when only inference
is being performed as all power dissipation will
come from reads.

- Write performance: As we will discuss later, write
performance is more important when training
crossbar arrays since they will be updated very fre-
quently and most of the times the write energy for
eNVM devices is much higher than read energy. It
is quite intuitive to understand that memory solu-
tions that are inherently nonvolatile will require
higher write energy to change states. Often, the
devices require high write voltage as well (2-5V)
and they are harder to integrate on the logic pro-
cess. However, compared to eFLASH where write
voltages are often 20V and higher,the current gen-
eration of eNVM require significantly lower write
voltages and demonstrate scaling paths for voltage
and process compatibility with logic.

« Reliability: Most devices have retention on par
with commercial flash processes. However, the
endurance of these devices varies greatly As we
will discuss later, endurance is important when
implementing training since the devices will be
updated frequently.

Resistive random access memory

Resistive random access memory (RRAM) (often
called ReRAM) is a filamentary device that switches
between a high resistance state (HRS) and low resist-
ance state (LRS) based on the direction of current
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applied across the two terminals. The HRS and LRS in
RRAM are achieved by forming and destroying a fil-
ament inside the insulator material of the device. By
creating and destroying this filament we can lower
and raise the resistance of the device by orders of
magnitude. The transition from HRS to LRS is called
the set process where the device allows more cur-
rent to flow emulating a digital “1.” The transition
from LRS to HRS is called the reset process where
the device is less conductive and results in less cur-
rent across the terminals. Since a read and write
operation both apply voltage on the two terminals,
the read voltage must be much lower to not alter the
state of the device and perform a destructive read.
In the 1TIR (1 transistor and 1 resistor) structure, the
read voltage is controlled by using a small voltage on
the gate of the transistor.

Although there are different types of RRAM, the
most successful is metal-oxide RRAM [44]. It has
been used in the implementation of a commercial
RRAM macro [45] as well as in a trainable neural net-
work [25]. The alternative, conductive bridge RAM
(CBRAM), offers a higher HRS to LRS ratio, but has
worse endurance and retention. For this article, we
will focus on metal-oxide RRAM. The device structure
of metal-oxide RRAM simple, comprising a top metal
electrode, a bottom metal electrode, and a transition
metal oxide (TMO) layer in-between as shown in
Figure 3. RRAM initially starts in a pristine state and
most devices must undergo formation prior to being
used as intended. During formation, an initial large
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Figure 3. (a) Fabricated device. (b) RRAM after
forming and device in the LRS. The conducting
filament is formed and will be used to toggle between
the LRS and the HRS. (c) RRAM after being reset into
the HRS. The tip of the filament is reoxidized which
increases the resistance of the cell. (Source: Matthew
West, Georgia Tech.)

voltage is required to create an electric field capable
of knocking oxygen atoms out of the insulator’s lattice
and creating vacancies that make up the conductive
filament leading to the LRS. The formation process
only needs to be done once taking the device from its
initial pristine state which has a resistance larger than
the HRS of the device post formation.

After formation, it is assumed that the conductive
filament is created with sufficient oxygen vacancies
in the insulator such that the large formation volt-
age will not be required again. From the formed
LRS state, the device can switch back to an HRS
state during the reset process by recombining the
oxygen atoms with the vacancies making up the
conductive filament. Once the filament is ruptured
its resistance will increase, however, the distance of
the ruptured filament can cause cycle-to-cycle and
device-to-device variation because of the inconsist-
ent location where the filament is ruptured. The way
the device is reset depends on the materials used as
the insulator. The device can be reset as a unipolar
or bipolar switch. A unipolar device is reset based
on the magnitude of the pulse applied across the
device. A bipolar device is reset based on the polar-
ity of the applied voltage. Most device fabricated at
large scale use the HfOx RRAM which is a bipolar
switching device. However, there are advantages to
using a unipolar device since it only requires a diode
as a selector rather than a transistor.

44

Although used primarily as a binary device,
some work has been shown to demonstrate multi-
bit or even analog state in RRAM. As many as five
states have been demonstrated using HfOx RRAM
[46]. If binary encoding is used for multiple bits,
then additional CMOS circuitry is needed for add
and shift logic. However, achieving multiple states
is difficult due to the abrupt switching behavior,
low on/off ratio, and device-to-device and cycle-
to-cycle variation. Some techniques have been
explored to achieve multiple states in the device.
Different pulse and programming schemes can be
used to better control the exponential behavior of
set resistance states [47]. Another technique [48]
has demonstrated analog control of the RRAM
using the slower reset behavior.

Phase change random access memory

Modern phase-change memory (PCM) devices
enjoy relative maturity and have been explored
for several decades. Early work by Ovshinsky [49]
demonstrated the ability of phase-change materials
to store data, and a subsequent discovery by Yam-
ada et al. [50] demonstrated a class of materials the
stored state of which could be overwritten many
times and switched quickly enough for storage
devices based on these materials to be competitive
with the then-dominant memory technologies. Phase
change materials have since become the critical
component in optical storage media, with an addi-
tional research interest in these materials for use in
new types of electronic storage devices having been
revitalized [51].

PCM consists of memory devices that take advan-
tage of the ability of certain materials to repeatably
transition between a crystalline phase and an amor-
phous phase. For a material to be useful in typical
PCM applications this transition should be accompa-
nied by a marked change in at least one measurable
quantity. Memory systems constructed from these
materials typically leverage either a large contrast
in reflectivity, as in the case of optical storage, or in
resistivity, as in the case of the electrically operated
phase-change random access memory (PCRAM),
where contrast here refers to a change in the meas-
ured quantity as observed in the crystalline material
versus that observed in the amorphous material
[51]-[54]. This section will proceed to discuss resis-
tive PCRAM and will pay particular attention to the
Ge,SbyTes (GST) chalcogenide material that finds
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extensive use in PCRAM, e.g., [36], [55], and [56].
A discussion of material and device properties in the
context of memory applications will be followed by
a brief survey of quantifiable PCM parameters.

PCRAM devices are made up of a layer of glass
chalcogenide material,
GST, sandwiched between two electrodes, as shown
in Figure 4. These electrodes may be used to write
or read the cell state. Crystalline GST is more con-
ductive than amorphous GST, and the conversion
of the volume of GST within the cell between these
phases causes a resistance change that is typically at
least one or two decades [53], [57]. State switching
is accomplished via joule heating by passing current
through the cell, while readout is typically done by
placing a small voltage across the device and meas-
uring current [58]. This is shown in Figure 4. The
two phase-transition write processes, the crystalliza-
tion-driven SET toward lower cell resistance and the
melt/quench RESET toward higher resistance, will
now be discussed in more detail.

Crystallization of amorphous GST is a tempera-
ture-dependent process [59], [60]. Crystal growth
velocity first increases exponentially with tempera-
ture until a relatively hot transition point at which
the relationship between crystal growth and temper-
ature slows down, with growth velocity eventually
reaching a peak and then decreasing with further
increases in temperature. Therefore, Joule heating to
an intermediate temperature (=400 °C) leads to rapid
growth in the volume of crystalline material in a given
cell and tends to reduce the net resistance between
the two contacts, giving rise to a SET operation that
consists of a prolonged current pulse with limited
magnitude. Heating past the rapid crystallization
temperature eventually results in melting of the GST
material at *600 °C. Thus, a RESET operation involves
a large-magnitude current pulse followed by a quick
quench, to solidify the material in an amorphous
state, which is accomplished by a sharp trailing edge.
The relatively high-temperature transition point at
which the GST crystal growth rate ceases to increase
exponentially helps to resolve the dilemma that arises
from the conflicting requirements for a PCM material,
i.e., that it must crystallize quickly when desired but
must crystallize only very slowly, and in the ideal case
not at all, when not intentionally heated.

Without an additional mechanism, the voltage
required to produce sufficient Joule heating to achieve
rapid crystallization from the high-resistance cell state

hereafter assumed to be
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Figure 4. (a) Typical “mushroom cell” PCM layout,

showing top electrode (TE), GST, and bottom

electrode (BE). Proportions follow TEM images of

a recent device demonstrated in [36]. (b) State-
transition diagram showing the PCM cell in the
RESET state, with the BE plugged by high-resistivity
amorphous material, and in the SET state, with the
volume of GST material switched to the conductive
crystalline phase. Partial-set, bottom-middle, is
typical of MLC while partial-reset, top-middle, is less

feasible.

would be problematically large. However, PCM mate-
rials exhibit a threshold-switching behavior defined by
a dramatic increase in current flow through the amor-
phous-state material under a sufficiently strong electric
field [49], [61]. This switching is a high-field effect dis-
tinct from the previously mentioned phase-mediated
memory switching. As threshold switching is induced
by field strength the voltage at which switching occurs
is nonstationary and depends at least on the thickness
of the amorphous layer [62]. Notable is that this effect
has a non-negligible temporal component, exhibiting
both a delay time, between application of the switching
voltage and the large current increase, and a recovery
time, between the cessation of voltage application and
the corresponding increase in resistivity, both on the
order of tens of nanoseconds [63]—-[65]. When biased
subthreshold, the amorphous resistance still depends
on field strength and cells are in an approximately lin-
ear [V region only for applied voltages of up to about
300 mV, above which the IV dependence becomes
exponential [66].

After cessation of Joule heating an additional
transient effect leads to a slower power-law increase
in offstate resistance which is accompanied by
a similar increase in threshold voltage [63], [67].
This so-called resistance drift may be explained
by the time-dependent structural relaxation of the
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amorphous-state material [68]. A more complete
elaboration on the time and temperature depend-
ence of the amorphous phase resistance may be
found in [69] or [70]. In a non-CIM application with
two-state (binary) PCM cells this drift is less impor-
tant as it tends to broaden the interstate gap. An asso-
ciated property of GST-based devices is the presence
of a 1/f noise current which is nearly two orders of
magnitude greater in the amorphous state as com-
pared to the crystalline state [71].

Having laid out the key physical properties of PCM,
we proceed to discuss how these properties practi-
cally impact PCM devices. Crystallization occurs over
time, during which the cell is held at an intermediate
temperature. Recall that the melt and quench proce-
dure can be very fast, and in fact the falling edge must
be very fast to prevent recrystallization. This means
the SET operation traditionally requires hundreds of
nanoseconds and is much slower than the RESET
operation which can occur in tens of nanoseconds.
This long SET operation also means the write time
dwarfs the read time. Furthermore, the required Joule
heating means that the write operations are ener-
getically costly. This is again in contrast to the read
operation, which must occur at just a few hundreds of
millivolts to avoid threshold switching and remain in
the linear operating region of the cell.

Recompense for the difficulty of writes is that
the written states are nominally of high quality with
a substantial on/off ratio of at least 100x in meas-
ured devices [36]. A consequence of this is that it
becomes feasible to program cells to intermediate
states between the fully on and fully off conditions,
leading to increased storage density through MLCs
[58], [72]. Both MLCs and CIM (via current summing
across multiple cells) imply a nonbinary range of
output states and thus depend on precise control of
cell resistance, which is not trivial for two reasons.
First, there are many degrees of separation between
the input variable during programming (i.e., current
or voltage) and the output (which is finally meas-
ured as resistance). Second, there are the previ-
ously discussed resistance drift and 1/f noise in the
amorphous material, which become problematic for
applications that depend on the discernibility of sev-
eral intermediate states despite being mostly benign
with respect to the binary memory application.

The first challenge may be approached by using
feedback-based write algorithms. In these schemes,
a SET is accomplished with a train of write pulses,

where the properties (such as amplitude, width, and
trailing edge length) of each subsequent write pulse
are modulated based on a resistance measurement
that is made after the previous pulse [58], [72]-[74].
Feedback cannot be taken during the write pulse itself
due to threshold switching, and there must be some
delay after the write, prior to the low-voltage read, to
ensure that normal resistance has resumed. The time
for each cycle of a write algorithm is therefore deter-
mined by the delay and recovery time of threshold
switching on top of the minimum pulse time to heat
the material and cause some phase transition.

The second challenge, which may be summa-
rized as the poor resistive accuracy of the amorphous
material, does not present application-agnostic cir-
cuit-level solutions. As mentioned, the effect of this
poor accuracy on purely binary memory is expected
to be minimal, and indeed more in-depth noise anal-
ysis shows that the 1/f noise component has only a
slight impact on RESET-state readout relative to other
sources of error [75]. In the context of MLC, these
problems may be understood as components of a
broader issue, namely the decoupling of the meas-
ured quantity (cell resistance) from the underlying
stored state (relative volumes of crystalline and amor-
phous material). This has motivated the development
of alternative cell-state metrics that, relative to the low-
field resistivity metric, more directly audit the amount
of amorphous material in a cell by measuring with
higher subthreshold fields [76], [77]. Cell readout
under these schemes implies a voltage bias that varies
with cell state meaning they cannot directly be used
in current-accumulative CIM applications.

In light of technological accuracy limitations,
applications that are inherently error-tolerant or that
rely on CIM only for low-precision components of a
computing task are ideal candidates for acceleration
via CIM with PCM. Recently presented examples of
such robust applications include compressed sensing
[78] (in which the linear algebraic operations associ-
ated with both compression and recovery of signals
may be accelerated with approximate in-memory
compute with PCM) and the solving of linear equa-
tions using deliberate mixed-precision techniques
[79]. Note that in the first example the error due to
the inaccuracy of the PCM is accepted, since some
error in the reconstructed signal (an image) is toler-
able, while in the second example a high-precision
computing unit complements the CIM system in an
iterative refinement scheme so that the resultant error
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is only that of the high-precision unit. An alternative
approach is to attempt to mirror biological synapses
by leveraging the analog (i.e., continuous) nature of
the increases and decreases in resistance that can
be accomplished in a PCM cell [80]. Continuous
crystallization is also exploited in [81]. A more basic
approach is to select a lower precision version of the
computing task and hide any remaining error behind
the built-in robustness of that task, as is the case with
binary neural networks (BNNs) as suggested in [36].

Spin torque transfer magnetic random
access memory

A more mature technology for resistive memo-
ries is the spin transfer torque-based RAM. The Spin
torque transfer magnetic random access memory
(STT-MRAM) or MRAM bitcell consists of one access
transistor and one magnetic tunnel junction (MTJ)
where a single bit of information is stored. An MTJ is
formed with two ferromagnetic CoFeB-based layers
and one insulating layer (MgO) in between [82]. One
ferromagnetic layer is called a fixed layer because its
magnetic moment is fixed to one direction. The other
ferromagnetic layer is called a free layer since the
direction of magnetic moment can be changed based
on the direction of current flowing across the MTJ.

Figure 5 describes how the direction of magnetic
moment in the free layer changes based on the cur-
rent across the MTJ. Figure 5 shows how the direction
of magnetic moment in the free layer changes from
(a) antiparallel to parallel and (b) parallel to antipar-
allel direction compared to the direction of magnetic
moment in a fixed layer. Since the fixed layer acts
as a spin polarizer, the spin polarized electrons that
pass the fixed layer exerts the torque on the magnetic
moment in the free layer and causes a flip in the direc-
tion of the magnetic moment in the fixed layer as
shown in Figure 5a. When the current flows from the
fixed layer to the free layer as shown in Figure 5b, the
electrons with opposite spin are reflected back from
the fixed layer and exerts a torque that changes the
direction of the magnetic moment of the free layer to
an antiparallel direction with respect to the magnetic
moment in the fixed layer. The alignment of the mag-
netic moment in the fixed and free layers determine
the resistance across the MTJ. When the magnetic
moments in the two layers are antiparallel to each
other, the resistance across MTJ is high.

A low resistance is achieved when both the mag-
netic moments are parallel to each other. The high/
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Figure 5. Direction of magnetic moment in free layer

changes from (a) antiparallel to parallel (b)

parallel to

antiparallel to the direction of magnetic moment of
fixed layer. The arrow in the freeffixed layer indicates

the direction of magnetic moment.

low resistance is mapped to 1/0. The bias conditions
applied for the write and read operations are shown
in Figure 6. As shown in Figure 6a, the write opera-
tion is bidirectional. In the case of writing a 1, the BL
and the source line are set to supply voltage (VDD)
and ground (GND) and the write current flows from
the fixed layer to the free layer of the MTJ. The bias-
ing condition for writing a 0 is the opposite and is
shown in Figure 6a. In the case of read operations,
the wordline is asserted to VREAD, and the BL and
the source line are set to VDD and GND, respectively.
This causes a weak current to flow across the MTJ
and the resistance state is sensed using either a con-
stant current scheme or a BL discharge scheme [83].
As the technology continues to mature and move
from research to manufacturing, larger arrays and
systems are being demonstrated.

Ferroelectric field effect transistor-based
random access memory

Ferroelec