
392168-2356/20©2020 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCJanuary/February 2021

Editor’s notes:
Designing hardware accelerators for machine learning (ML) applications
is a well-researched problem. This article presents a tutorial regarding new
computing architectures, circuits techniques, and multiple promising device
technologies for in-memory computing targeting ML workloads.

—Partha Pratim Pande, Washington State University

Today’s computing systems and emerging work-
loads are heavily dependent on the capacity and
latency of memory banks, thanks to the increasing
performance gap between main memory and logic.
Decades of research and the majority of on-chip area
in modern integrated circuits (ICs) has been dedi-
cated to creating complex memory hierarchies to
negate this growing performance gap. Although this
design strategy works well for general-purpose com-
puting, recent trends in data analytics and artificial
intelligence have further exacerbated the long-stand-
ing memory bottleneck. Rather than fast single
threaded performance and unknown data-access
patterns, these applications require massively paral-
lel computation and fixed, known data-access pat-
terns. As a result, the clever caching hierarchy that
takes advantage of spatial and temporal data reuse
is overwhelmed by the vast amount of data required

Merged Logic and
Memory Fabrics for
Accelerating Machine
Learning Workloads
Brian Crafton, Samuel Spetalnick, Yan Fang,
and Arijit Raychowdhury
Georgia Institute of Technology

Digital Object Identifier 10.1109/MDAT.2020.3016587
Date of publication: 14 August 2020; date of current version:
10 March 2021.

by new applications.
Because these elaborate
caching schemes have
been rendered practi-
cally useless owing to
the embarrassingly par-
allel nature of emerging
applications, traditional

processors have failed to provide either the perfor-
mance or energy-efficiency that are demanded by
these workloads.

Consequently, we have seen a plethora of
high-quality software packages, such as TensorFlow
[1] and PyTorch [2], and hardware packages, such
as Google’s tensor processing unit (TPU) [3] and
Nvidia’s Volta, that vastly outperform previous top
of the line commercial general-purpose hardware.
Unfortunately, it is inevitable that these improve-
ments will again slow down and the hardware solu-
tions will be limited in performance by the memory
bottleneck. To make matters worse, the cost of mov-
ing data has become more expensive than operat-
ing on it [4], [5]. So not only has memory become
the fundamental bottleneck of computing, but both
reading and transporting the data throughout the
growing size of modern ICs has become more expen-
sive than the operation we seek to perform.

This has given rise to various areas of research to
mitigate the memory bottleneck, and tremendous
effort is being driven from the device to the architec-
tural levels. At the top of the computing hierarchy,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

40 IEEE Design&Test

Tutorial

computer architects and compiler designers are
attempting to use the same CMOS technology, but use
advanced dataflow patterns and mapping strategies
so that the data movement is minimized and data
reuse is maximized. Several recent demonstrations in

machine learning hardware have made tremendous
advances in both performance and energy-efficiency,
and this is illustrated in Figure 1. Original works [6],
[7], created accelerators to match the architectures of
emerging deep neural networks (DNNs). Later works
[5], [8], [9] showed the primary opportunity for
improving the performance of these accelerators is
maximizing data reuse (or minimizing total data trans-
port). The initial demonstration of this technique was
Eyeriss [5] in 2016, but since then new strategies for
both reinforcement learning (RL) [10] and recurrent
neural networks (RNNs) [11] have also been demon-
strated in silicon. Furthermore designs using mixed
signal compute [12], [13] have also been demon-
strated using low and variable precision. Although
these designs feature data reuse and reduced power,
they make application specific design choices which
reduce their generality in a wide spectrum of applica-
tions. In Figure 2a and b, we show architectural differ-
ences between the TPU [3] and Eyeriss [5]. By placing
small caches inside of the processing elements (PEs),
Eyeriss is able to reuse feature maps and filter weights

Figure 2. Four architectures used by machine learning accelerators. The memory used
to store weights and input data is colored in blue. (a) Systolic array used by the TPU [3].
(b) Systolic array with local cache for filters and feature maps to maximize data reuse used
by Chen et al. [5]. (c) SNN architecture with all weights stored local to neuro-synaptic core
used by Merolla et al. [19] and Davies et al. [20]. Each core stores weights for many neurons,
computing is shared among all neurons mapped to the core. (d) In-memory architecture
using RRAM. Computing and memory are combined so there is no memory transfer.
Analog-to-digital converters (ADCs) are still shared among inputs and outputs to the array.

Figure 1. Recent advances in machine learning
hardware spans over a large power-performance
design space. (Source: Dr. Jong-Hyeok Yoon,
Georgia Tech.)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

41January/February 2021

rather than reading and transporting them for each
output neuron. More recent works [14]–[17] are
attempting to exploit sparsity and compression in
both weights and activations of large networks. This
is particularly important in emerging models for natu-
ral language processing [18] where huge numbers of
parameters are used.

In a radically different approach spiking neural
network (SNN) chips like [19] and [20] attempt to
only read and modify weights using their respective
neuron. As a result, large amounts of static random
access memory (SRAM) and low precision weights
are required to keep all weights on chip without
having to fetch them from the main memory. This is
demonstrated in Figure 2c, where no global buffer is
used and the only transfer of data is directly between
cores. Because weights are only accessed by a sin-
gle core, compute units are not reused across the
various layers. This is not ideal from a performance
perspective because it means latency will be much
higher given that only a fraction of the compute units
are used for a given layer. The throughput can poten-
tially be recovered if all the layers are pipe-lined.
However, the biggest advantage of this dataflow
architecture is its ability to reduce global movement
of data. This design strategy is commonly referred to
as near memory computing, where the objective is
to physically place compute and memory together
rather than keep them separated by a high perfor-
mance memory controller. While this is a useful
technique and we can expect significant power sav-
ings, it will still face some of the fundamental tech-
nological limitations of CMOS.

It is critical to understand the role of embedded
nonvolatile memory (eNVM) on future comput-
ing platforms. Volatile memory solutions for on-die
integration are typically charge-based: SRAM and
embedded-DRAM (eDRAM). Both these technologies
consume zero standby power—in terms of leakage
(SRAM) or refresh (eDRAM) power. With the growing
need for larger and larger on-die memory for machine
learning applications, the total standby power con-
tinues to be a significant limitation in the energy effi-
ciency of SRAM- and eDRAM-based systems. Hence,
eNVM is expected to alleviate this challenge. Further-
more, the eNVM solutions that are currently being pur-
sued include noncharge-based physical states—such
as ion movement or spin polarization. These physical
phenomenon are often scalable to dimensions that
are smaller than what SRAM or eDRAM can enable.

Consequently, eNVM technologies continue to gain
popularity as both a research vehicle as well as a solu-
tion at the end of the scaling roadmap.

Fortunately, for more than a decade there has
been a steady increasing effort in design, fabrica-
tion, and manufacturing of novel memory technol-
ogies that are logic process and voltage compatible,
while providing high density as well as target read
and write performance. These new devices have
exciting new properties that have been long absent
in traditional charge based memory technologies.
The four such technologies that we discuss in this
article share the following properties [21]:

•	 They are all eNVM solutions. They can be com-
pletely powered down without loss of data, and
hence consume virtually no leakage power.

•	 All these technologies are process and (some-
what) voltage compatible with CMOS logic
processes, although more advances need to be
made on both fronts.

•	 All these technologies store information through
change of resistance. This enables us to perform
compute in-memory (CIM) on the bitline (BL)
with breakthrough improvements in throughput
and energy-efficiency.

These properties have the potential to realize the
long awaited benefits of in-memory computing. In
addition to these properties, new eNVM technologies
feature high density and often multilevel cells (MLCs)
where more than a single bit can be stored per cell. In
comparison, modern 6T SRAM can be as large as 150F2

while only offering a single bit of differential storage.
In-memory computing uses physical properties of the
devices to do computation without a dedicated com-
pute unit. Using Ohm’s law, where a voltage applied
across a device’s conductance results in a current, and
Kirchhoff’s current law (KCL) we can sum along the
columns of our memory crossbar to perform matrix
multiplication in O(1). These memory crossbars can
then abstracted into cores as shown in Figure 2d, where
system level approaches similar to systolic arrays [3] or
DNN accelerators [5] can be used.

If successful, in-memory computing promises to
solve many of the engineering challenges that the
modern memory hierarchy faces with regards to data
transport. In recent years, new emerging devices
have made huge milestones on their way to commer-
cial viability. High density macros have been fabri-
cated [22], and used in the implementation of highly

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

42 IEEE Design&Test

Tutorial

efficient neural networks [23]–[25]. However, these
new emerging memories face many challenges of
their own preventing them from widespread com-
mercial use. In this article, we will examine some
of these challenges and provide an overview of the
recent developments both from technology as well
as circuits and systems perspectives.

System needs for memory-centric
neural network workloads

The demand for in-memory computing is ever
growing as the state-of-the-art designs for computer
vision, natural language processing, and RL continue
to have larger models with more computation and
performance that require months of training time
on clusters of custom accelerators. At the same time
advances in microrobotics require smaller area foot-
prints and power budgets. These different workloads
require the same thing: energy-efficient computing.
As these applications begin to outpace the computers
we have to perform these tasks, we will need to look
at fundamentally different approaches of computing.

At the start of the current surge in deep learning,
AlexNet [26] was trained and implemented using
a pair of GTX 580 graphics processing units (GPUs)
and custom CUDA code. Soon after larger and larger
models requiring more hardware became the new
state of the art, as VGG [27] and ResNet [28] required
multiple GPUs to train in a reasonable amount of
time. Today there is an abundance of deep learning
frameworks and hardware designed for machine
learning readily available. These tools and hardware
have propelled deep learning research, making it far
more practical to design and test large deep learning
models. Despite these efforts, state of the art models
in natural language processing, computer vision, and
RL require massive amounts of memory and compu-
tation that can no longer be run on consumer grade
hardware. For example, OpenAI has used RL to beat
professional players at Atari, GO, and most recently
StarCraft 2 [29]. Jouppi et al. [3] claim that training
an agent requires 44 days of training with 32 third-gen-
eration TPUs. Training such a model is extremely
expensive and impossible for anyone without access
to enormous compute power. While inference for this
model can be run on a typical GPU, newer models in
NLP [30] and computer vision [31] require 4 billion
and 1 billion parameters, respectively.

At the same time, the interest in machine learning
in mobile and edge platforms is constantly increasing

and hardware accelerators and software frameworks
are being developed specifically for these platforms.
While great progress is being made to run small mod-
els on resource and power constrained hardware,
CMOS limitations and the von Neumann bottleneck
will limit the capability of edge hardware.

Overview of emerging nonvolatile
memory

There are many properties to evaluate when consid-
ering new emerging devices for in-memory computing.
Of course we expect these devices to be nonvolatile
with good retention as well as having a resistive state
that can be used for in-memory computing. Besides
these qualities we also must consider read and write
times, read and write energy, read and write voltage,
endurance, area, and the number of distinguishable
states per cell. We present an exhaustive overview of
these metrics for in-memory computing in Table 1. We
focus our attention to the four leading candidates for
in-memory computing and compare them to the cur-
rent standard used in commercial products: SRAM,
DRAM, and Flash. In their current state, none of the
emerging devices display all desired characteristics.
In a different review article, Yu and Chen [21] and Yu
[32] identify the ideal characteristics for these devices.

We group these properties into four major areas:
1) density; 2) read performance; 3) write perfor-
mance; and 4) reliability. The importance of the
device properties is very application-specific. For
example, as we discuss later this in work, the write
performance and write endurance of these devices
are less important if the devices are used in a net-
work only performing inference. However, in a net-
work that is being trained, high write energy can be
the primary source of energy consumption, and it
can be a significant system challenge.

•	 Density: The density of these NVM technologies is
the product of the number of cells per unit area
and the number distinguishable states per cell. The
density of eNVM is on the order of 10F 2, whereas
SRAM is over 150F 2. 3D integration of eNVM on the
back end of line (BEOL) process is under inves-
tigation; where the density can be pushed even
further. However, some of the constraints in BEOL
processing, most importantly the low temperature
requirements, continue to be challenging.

•	 Read performance: Read performance for CIM
constitutes memory access, memory transport,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

43January/February 2021

and multiply-and-accumulate (MAC) operations.
It is even more important when only inference
is being performed as all power dissipation will
come from reads.

•	 Write performance: As we will discuss later, write
performance is more important when training
crossbar arrays since they will be updated very fre-
quently and most of the times the write energy for
eNVM devices is much higher than read energy. It
is quite intuitive to understand that memory solu-
tions that are inherently nonvolatile will require
higher write energy to change states. Often, the
devices require high write voltage as well (2–5 V)
and they are harder to integrate on the logic pro-
cess. However, compared to eFLASH where write
voltages are often 20 V and higher, the current gen-
eration of eNVM require significantly lower write
voltages and demonstrate scaling paths for voltage
and process compatibility with logic.

•	 Reliability: Most devices have retention on par
with commercial flash processes. However, the
endurance of these devices varies greatly. As we
will discuss later, endurance is important when
implementing training since the devices will be
updated frequently.

Resistive random access memory
Resistive random access memory (RRAM) (often

called ReRAM) is a filamentary device that switches
between a high resistance state (HRS) and low resist-
ance state (LRS) based on the direction of current

applied across the two terminals. The HRS and LRS in
RRAM are achieved by forming and destroying a fil-
ament inside the insulator material of the device. By
creating and destroying this filament we can lower
and raise the resistance of the device by orders of
magnitude. The transition from HRS to LRS is called
the set process where the device allows more cur-
rent to flow emulating a digital “1.” The transition
from LRS to HRS is called the reset process where
the device is less conductive and results in less cur-
rent across the terminals. Since a read and write
operation both apply voltage on the two terminals,
the read voltage must be much lower to not alter the
state of the device and perform a destructive read.
In the 1T1R (1 transistor and 1 resistor) structure, the
read voltage is controlled by using a small voltage on
the gate of the transistor.

Although there are different types of RRAM, the
most successful is metal-oxide RRAM [44]. It has
been used in the implementation of a commercial
RRAM macro [45] as well as in a trainable neural net-
work [25]. The alternative, conductive bridge RAM
(CBRAM), offers a higher HRS to LRS ratio, but has
worse endurance and retention. For this article, we
will focus on metal-oxide RRAM. The device structure
of metal-oxide RRAM simple, comprising a top metal
electrode, a bottom metal electrode, and a transition
metal oxide (TMO) layer in-between as shown in
Figure 3. RRAM initially starts in a pristine state and
most devices must undergo formation prior to being
used as intended. During formation, an initial large

 
Table 1. Device characteristics of mainstream and emerging memory technologies.

All parameters taken from demonstrations in original research works. When a parameter is not reported or cannot be computed the table
index is left blank.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

44 IEEE Design&Test

Tutorial

voltage is required to create an electric field capable
of knocking oxygen atoms out of the insulator’s lattice
and creating vacancies that make up the conductive
filament leading to the LRS. The formation process
only needs to be done once taking the device from its
initial pristine state which has a resistance larger than
the HRS of the device post formation.

After formation, it is assumed that the conductive
filament is created with sufficient oxygen vacancies
in the insulator such that the large formation volt-
age will not be required again. From the formed
LRS state, the device can switch back to an HRS
state during the reset process by recombining the
oxygen atoms with the vacancies making up the
conductive filament. Once the filament is ruptured
its resistance will increase, however, the distance of
the ruptured filament can cause cycle-to-cycle and
device-to-device variation because of the inconsist-
ent location where the filament is ruptured. The way
the device is reset depends on the materials used as
the insulator. The device can be reset as a unipolar
or bipolar switch. A unipolar device is reset based
on the magnitude of the pulse applied across the
device. A bipolar device is reset based on the polar-
ity of the applied voltage. Most device fabricated at
large scale use the HfOx RRAM which is a bipolar
switching device. However, there are advantages to
using a unipolar device since it only requires a diode
as a selector rather than a transistor.

Although used primarily as a binary device,
some work has been shown to demonstrate multi-
bit or even analog state in RRAM. As many as five
states have been demonstrated using HfOx RRAM
[46]. If binary encoding is used for multiple bits,
then additional CMOS circuitry is needed for add
and shift logic. However, achieving multiple states
is difficult due to the abrupt switching behavior,
low on/off ratio, and device-to-device and cycle-
to-cycle variation. Some techniques have been
explored to achieve multiple states in the device.
Different pulse and programming schemes can be
used to better control the exponential behavior of
set resistance states [47]. Another technique [48]
has demonstrated analog control of the RRAM
using the slower reset behavior.

Phase change random access memory
Modern phase-change memory (PCM) devices

enjoy relative maturity and have been explored
for several decades. Early work by Ovshinsky [49]
demonstrated the ability of phase-change materials
to store data, and a subsequent discovery by Yam-
ada et al. [50] demonstrated a class of materials the
stored state of which could be overwritten many
times and switched quickly enough for storage
devices based on these materials to be competitive
with the then-dominant memory technologies. Phase
change materials have since become the critical
component in optical storage media, with an addi-
tional research interest in these materials for use in
new types of electronic storage devices having been
revitalized [51].

PCM consists of memory devices that take advan-
tage of the ability of certain materials to repeatably
transition between a crystalline phase and an amor-
phous phase. For a material to be useful in typical
PCM applications this transition should be accompa-
nied by a marked change in at least one measurable
quantity. Memory systems constructed from these
materials typically leverage either a large contrast
in reflectivity, as in the case of optical storage, or in
resistivity, as in the case of the electrically operated
phase-change random access memory (PCRAM),
where contrast here refers to a change in the meas-
ured quantity as observed in the crystalline material
versus that observed in the amorphous material
[51]–[54]. This section will proceed to discuss resis-
tive PCRAM and will pay particular attention to the
Ge2Sb2Te5 (GST) chalcogenide material that finds

Figure 3. (a) Fabricated device. (b) RRAM after
forming and device in the LRS. The conducting
filament is formed and will be used to toggle between
the LRS and the HRS. (c) RRAM after being reset into
the HRS. The tip of the filament is reoxidized which
increases the resistance of the cell. (Source: Matthew
West, Georgia Tech.)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

45January/February 2021

extensive use in PCRAM, e.g., [36], [55], and [56].
A discussion of material and device properties in the
context of memory applications will be followed by
a brief survey of quantifiable PCM parameters.

PCRAM devices are made up of a layer of glass
chalcogenide material, hereafter assumed to be
GST, sandwiched between two electrodes, as shown
in Figure 4. These electrodes may be used to write
or read the cell state. Crystalline GST is more con-
ductive than amorphous GST, and the conversion
of the volume of GST within the cell between these
phases causes a resistance change that is typically at
least one or two decades [53], [57]. State switching
is accomplished via joule heating by passing current
through the cell, while readout is typically done by
placing a small voltage across the device and meas-
uring current [58]. This is shown in Figure 4. The
two phase-transition write processes, the crystalliza-
tion-driven SET toward lower cell resistance and the
melt/quench RESET toward higher resistance, will
now be discussed in more detail.

Crystallization of amorphous GST is a tempera-
ture-dependent process [59], [60]. Crystal growth
velocity first increases exponentially with tempera-
ture until a relatively hot transition point at which
the relationship between crystal growth and temper-
ature slows down, with growth velocity eventually
reaching a peak and then decreasing with further
increases in temperature. Therefore, Joule heating to
an intermediate temperature (≈400 °C) leads to rapid
growth in the volume of crystalline material in a given
cell and tends to reduce the net resistance between
the two contacts, giving rise to a SET operation that
consists of a prolonged current pulse with limited
magnitude. Heating past the rapid crystallization
temperature eventually results in melting of the GST
material at ≈600 °C. Thus, a RESET operation involves
a large-magnitude current pulse followed by a quick
quench, to solidify the material in an amorphous
state, which is accomplished by a sharp trailing edge.
The relatively high-temperature transition point at
which the GST crystal growth rate ceases to increase
exponentially helps to resolve the dilemma that arises
from the conflicting requirements for a PCM material,
i.e., that it must crystallize quickly when desired but
must crystallize only very slowly, and in the ideal case
not at all, when not intentionally heated.

Without an additional mechanism, the voltage
required to produce sufficient Joule heating to achieve
rapid crystallization from the high-resistance cell state

would be problematically large. However, PCM mate-
rials exhibit a threshold-switching behavior defined by
a dramatic increase in current flow through the amor-
phous-state material under a sufficiently strong electric
field [49], [61]. This switching is a high-field effect dis-
tinct from the previously mentioned phase-mediated
memory switching. As threshold switching is induced
by field strength the voltage at which switching occurs
is nonstationary and depends at least on the thickness
of the amorphous layer [62]. Notable is that this effect
has a non-negligible temporal component, exhibiting
both a delay time, between application of the switching
voltage and the large current increase, and a recovery
time, between the cessation of voltage application and
the corresponding increase in resistivity, both on the
order of tens of nanoseconds [63]–[65]. When biased
subthreshold, the amorphous resistance still depends
on field strength and cells are in an approximately lin-
ear IV region only for applied voltages of up to about
300 mV, above which the IV dependence becomes
exponential [66].

After cessation of Joule heating an additional
transient effect leads to a slower power-law increase
in off-state resistance which is accompanied by
a similar increase in threshold voltage [63], [67].
This so-called resistance drift may be explained
by the time-dependent structural relaxation of the

Figure 4. (a) Typical “mushroom cell” PCM layout,
showing top electrode (TE), GST, and bottom
electrode (BE). Proportions follow TEM images of
a recent device demonstrated in [36]. (b) State-
transition diagram showing the PCM cell in the
RESET state, with the BE plugged by high-resistivity
amorphous material, and in the SET state, with the
volume of GST material switched to the conductive
crystalline phase. Partial-set, bottom-middle, is
typical of MLC while partial-reset, top-middle, is less
feasible.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

46 IEEE Design&Test

Tutorial

amorphous-state material [68]. A more complete
elaboration on the time and temperature depend-
ence of the amorphous phase resistance may be
found in [69] or [70]. In a non-CIM application with
two-state (binary) PCM cells this drift is less impor-
tant as it tends to broaden the interstate gap. An asso-
ciated property of GST-based devices is the presence
of a 1/f noise current which is nearly two orders of
magnitude greater in the amorphous state as com-
pared to the crystalline state [71].

Having laid out the key physical properties of PCM,
we proceed to discuss how these properties practi-
cally impact PCM devices. Crystallization occurs over
time, during which the cell is held at an intermediate
temperature. Recall that the melt and quench proce-
dure can be very fast, and in fact the falling edge must
be very fast to prevent recrystallization. This means
the SET operation traditionally requires hundreds of
nanoseconds and is much slower than the RESET
operation which can occur in tens of nanoseconds.
This long SET operation also means the write time
dwarfs the read time. Furthermore, the required Joule
heating means that the write operations are ener-
getically costly. This is again in contrast to the read
operation, which must occur at just a few hundreds of
millivolts to avoid threshold switching and remain in
the linear operating region of the cell.

Recompense for the difficulty of writes is that
the written states are nominally of high quality with
a substantial on/off ratio of at least 100× in meas-
ured devices [36]. A consequence of this is that it
becomes feasible to program cells to intermediate
states between the fully on and fully off conditions,
leading to increased storage density through MLCs
[58], [72]. Both MLCs and CIM (via current summing
across multiple cells) imply a nonbinary range of
output states and thus depend on precise control of
cell resistance, which is not trivial for two reasons.
First, there are many degrees of separation between
the input variable during programming (i.e., current
or voltage) and the output (which is finally meas-
ured as resistance). Second, there are the previ-
ously discussed resistance drift and 1/f noise in the
amorphous material, which become problematic for
applications that depend on the discernibility of sev-
eral intermediate states despite being mostly benign
with respect to the binary memory application.

The first challenge may be approached by using
feedback-based write algorithms. In these schemes,
a SET is accomplished with a train of write pulses,

where the properties (such as amplitude, width, and
trailing edge length) of each subsequent write pulse
are modulated based on a resistance measurement
that is made after the previous pulse [58], [72]–[74].
Feedback cannot be taken during the write pulse itself
due to threshold switching, and there must be some
delay after the write, prior to the low-voltage read, to
ensure that normal resistance has resumed. The time
for each cycle of a write algorithm is therefore deter-
mined by the delay and recovery time of threshold
switching on top of the minimum pulse time to heat
the material and cause some phase transition.

The second challenge, which may be summa-
rized as the poor resistive accuracy of the amorphous
material, does not present application-agnostic cir-
cuit-level solutions. As mentioned, the effect of this
poor accuracy on purely binary memory is expected
to be minimal, and indeed more in-depth noise anal-
ysis shows that the 1/f noise component has only a
slight impact on RESET-state readout relative to other
sources of error [75]. In the context of MLC, these
problems may be understood as components of a
broader issue, namely the decoupling of the meas-
ured quantity (cell resistance) from the underlying
stored state (relative volumes of crystalline and amor-
phous material). This has motivated the development
of alternative cell-state metrics that, relative to the low-
field resistivity metric, more directly audit the amount
of amorphous material in a cell by measuring with
higher subthreshold fields [76], [77]. Cell readout
under these schemes implies a voltage bias that varies
with cell state meaning they cannot directly be used
in current-accumulative CIM applications.

In light of technological accuracy limitations,
applications that are inherently error-tolerant or that
rely on CIM only for low-precision components of a
computing task are ideal candidates for acceleration
via CIM with PCM. Recently presented examples of
such robust applications include compressed sensing
[78] (in which the linear algebraic operations associ-
ated with both compression and recovery of signals
may be accelerated with approximate in-memory
compute with PCM) and the solving of linear equa-
tions using deliberate mixed-precision techniques
[79]. Note that in the first example the error due to
the inaccuracy of the PCM is accepted, since some
error in the reconstructed signal (an image) is toler-
able, while in the second example a high-precision
computing unit complements the CIM system in an
iterative refinement scheme so that the resultant error

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

47January/February 2021

is only that of the high-precision unit. An alternative
approach is to attempt to mirror biological synapses
by leveraging the analog (i.e., continuous) nature of
the increases and decreases in resistance that can
be accomplished in a PCM cell [80]. Continuous
crystallization is also exploited in [81]. A more basic
approach is to select a lower precision version of the
computing task and hide any remaining error behind
the built-in robustness of that task, as is the case with
binary neural networks (BNNs) as suggested in [36].

Spin torque transfer magnetic random
access memory

A more mature technology for resistive memo-
ries is the spin transfer torque-based RAM. The Spin
torque transfer magnetic random access memory
(STT-MRAM) or MRAM bitcell consists of one access
transistor and one magnetic tunnel junction (MTJ)
where a single bit of information is stored. An MTJ is
formed with two ferromagnetic CoFeB-based layers
and one insulating layer (MgO) in between [82]. One
ferromagnetic layer is called a fixed layer because its
magnetic moment is fixed to one direction. The other
ferromagnetic layer is called a free layer since the
direction of magnetic moment can be changed based
on the direction of current flowing across the MTJ.

Figure 5 describes how the direction of magnetic
moment in the free layer changes based on the cur-
rent across the MTJ. Figure 5 shows how the direction
of magnetic moment in the free layer changes from
(a) antiparallel to parallel and (b) parallel to antipar-
allel direction compared to the direction of magnetic
moment in a fixed layer. Since the fixed layer acts
as a spin polarizer, the spin polarized electrons that
pass the fixed layer exerts the torque on the magnetic
moment in the free layer and causes a flip in the direc-
tion of the magnetic moment in the fixed layer as
shown in Figure 5a. When the current flows from the
fixed layer to the free layer as shown in Figure 5b, the
electrons with opposite spin are reflected back from
the fixed layer and exerts a torque that changes the
direction of the magnetic moment of the free layer to
an antiparallel direction with respect to the magnetic
moment in the fixed layer. The alignment of the mag-
netic moment in the fixed and free layers determine
the resistance across the MTJ. When the magnetic
moments in the two layers are antiparallel to each
other, the resistance across MTJ is high.

A low resistance is achieved when both the mag-
netic moments are parallel to each other. The high/

low resistance is mapped to 1/0. The bias conditions
applied for the write and read operations are shown
in Figure 6. As shown in Figure 6a, the write opera-
tion is bidirectional. In the case of writing a 1, the BL
and the source line are set to supply voltage (VDD)

and ground (GND) and the write current flows from
the fixed layer to the free layer of the MTJ. The bias-
ing condition for writing a 0 is the opposite and is
shown in Figure 6a. In the case of read operations,
the wordline is asserted to VREAD, and the BL and
the source line are set to VDD and GND, respectively.
This causes a weak current to flow across the MTJ
and the resistance state is sensed using either a con-
stant current scheme or a BL discharge scheme [83].
As the technology continues to mature and move
from research to manufacturing, larger arrays and
systems are being demonstrated.

Ferroelectric field effect transistor-based
random access memory

Ferroelectric FET (FeFET) is a nanoelectronic
device composed of a traditional MOSFET or FinFET
and an additional special layer of ferroelectric (FE)
material, which is integrated into the stack of gate

Figure 5. Direction of magnetic moment in free layer
changes from (a) antiparallel to parallel (b) parallel to
antiparallel to the direction of magnetic moment of
fixed layer. The arrow in the free/fixed layer indicates
the direction of magnetic moment.

Figure 6. STT-MRAM cell schematic of (a) write and
(b) read operation.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

48 IEEE Design&Test

Tutorial

terminal [84]. Figure 7a illustrates the 3D structure of
a FeFET built on FinFET. The FE materials are usually
lead zirconium titanate (PZT) [85] or hafnium zirco-
nium oxide (HZO) [86]. The latter one is compatible
with CMOS process while the former one does not.
Note that the spontaneous polarization of the FE layer
is reversible under a certain electric field applied in the
correct direction. The polarization depends on the cur-
rent electric field and its history, resulted in a hystere-
sis loop. Such a feature of FE layer induces a FeFET to
switch “on” at a high voltage and “off” at a low applied
gate voltage (Figure 7b and c). It is nontrivial to clarify
the definition of “FeFET” here since the FeFET is not
the only device that stack FE layer on the gate of a FET
and such a semiconductor structure can also operate
in different operating modes. For example, a negative
capacitance FET (NCFET) with the same structure
operates in “steer switching mode” and usually aims
at eliminating hysteresis for faster switching [87]. Here,
we emphasize that an FeFET exhibits the property of
hysteresis that can be utilized in different applications.
FeFET has been explored in multiple application lev-
els of computing systems, such as components of tra-
ditional analog circuits [87], digital circuits [88]–[90],
nonvolatile memories [42], [91], and FPGA [92], [93].

Recently, FeFET has been considered as an
emerging device used as a memory structure (FeFET
RAM) particularly for machine learning hardware
and neuromorphic computing. It was applied to the
accelerator architectures of both digital and analog
neural networks [94], [95]. In these works, FeFETs
are utilized to design synaptic crossbar arrays such as

RRAM crossbar structure. RRAM-based architectures
are troubled with high write energy and sneak paths.
The three-terminal structure of FeFET provides better
write and read power consumption [94]. Write oper-
ations consume power only when FE layer capaci-
tance VG gets charged, which is much lower than the
crossbar of RRAMs. For the accelerator of a binary
convolutional neural network (CNN), the cell of an
FeFET crossbar array consists of two FeFETs and two
access transistors. It performs the XNOR operation
between the input bit and the weight bit stored in the
two FeFETs. Such a design of FeFET-based crossbar
exhibit power reduction of both read and write oper-
ations when compared to the same designs based on
RRAM and CMOS [94]. In addition to acceleration of
BNN, FeFET-based nonvolatile analog memories are
a promising solution to the future accelerator of DNN
with analog weights. An FeFET synaptic weight is
capable of achieving multibit operation by leveraging
the partial polarization switching dynamics of multid-
omain FE HfxZr1 − xO2 thin films [95].

Furthermore, FeFET has been recently explored in
SNNs, another neuromorphic computing paradigm
that is more biomimetic than DNN. In these scenar-
ios, FeFETs are adopted in the circuits of bioinspired
neuron model, instead of synapses. A spiking neuron
with excitatory and inhibitory interfaces can be imple-
mented with a relaxation oscillator based on FeFET
[96]. The proposed circuits employ the hysteresis of
an FeFET and a traditional NMOS transistor to peri-
odically charge and discharge a load capacitor and
generate spikes of voltage. Such a two-transistor com-
pact design of silicon neuron is capable of modeling
multiple neural dynamics that have been observed in
cortical and thalamic neurons when fed with excita-
tory and inhibitory synaptic inputs [97]. These various
neural dynamics are demonstrated to be useful in a
FeFET-based SNN that solves optimization problems
[98]. Due to the flexible neural dynamics provided by
FeFET-based spiking neuron it also has the potential
to become a promising circuits design for other appli-
cations in neuromorphic engineering, such as neural
interfaces and biohybrid neural circuits [99], [100].

Overview of in-memory computing

Matrix multiplication in eNVM crossbar arrays
Modern deep learning techniques such as CNNs

and RNNs contain a workload of almost entirely
matrix multiplication ()y Wx=

  [101]. In traditional

Figure 7. (a) 3D structure of FeFET, (b) “on” and “off”
states of FeFET with different threshold voltages,
corresponding to the polarity states of FE layer shown
in (c), and (c) hysteresis in terms of polarity and gate
voltage.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

49January/February 2021

von Neumann machines, both the feature data ()x
and matrix weights (W ) are transported from the
main memory to the compute units, where the MAC
operations are performed, and after which, the results
()y are transported and written back into main mem-
ory. For this procedure, prior work has shown that
the energy cost of reading and transporting data from
memory to logic greatly outweighs the cost of the
MAC [4], [5], thus motivating in-memory computing.

In-memory computing seeks to perform the MAC
operation in a crossbar structure using Ohm’s law and
the nonvolatile conductance state provided by ReRAM
or other emerging memories. Using this technique,
each weight of the matrix (Wij) is programmed as a
conductance to a cell in the crossbar and each value
of the vector ()ix is converted to voltage and applied to
the rows of the memory crossbar. By Ohm’s law, the
current through each cell is proportional to the prod-
uct of the programmed conductance (Wij) and applied
voltage ()ix . By KCL, the resulting currents summed
along the columns of the crossbar are proportional to
the product of the matrix and vector, ()y . Under this
procedure, the only data transport required for matrix
multiplication is the feature vector ()x and result ()y .
Therefore, in-memory computing is positioned in such
a way that it eliminates the majority of data transfer and
thus the energy cost of DNNs.

Analog versus digital in-memory computing
The motivation for eNVM has come from multi-

ple directions, and as a result, two different mod-
els for the memories have emerged: 1) digital and
2) analog. These memories were originally intended
to be used as a digital, low latency, and energy-effi-
cient alternative to existing nonvolatile memory in
the traditional memory hierarchy. Later on, HP labs
created a metal-oxide RRAM and claimed it had
memristive properties [102]. They intended to use
this device as an analog memory that could serve as
a synapse or weight in neural networks.

There are several tradeoffs between the two
models. The main tradeoff is performance versus
feasibility. On the one hand, the analog model has
numerous performance advantages over the digital
model. In the ideal case, the analog model can store
any positive, continuous value between its on and
off resistance states. Such a device could be used to
store high precision values without needing several
devices to represent a single weight. Given that tra-
ditional neural networks contain both positive and

negative weights, two cells are required to represent
a single weight since the conductance state of eNVM
cannot be signed. The value of the weight is repre-
sented as the difference of the conductance of two
cells as shown in Figure 8. Naturally, this enables
very high density, but also has implications for both
power and performance.

However, due to device-to-device variance, cycle-
to-cycle variance, and limited on–off resistance ratio
using the eNVM as an analog memory has proven dif-
ficult. Hence most implementations today focus on
digital implementations using write–verify circuitry.
Recent work [36] has demonstrated PCRAM devices
with a resistance standard deviation of 3.5% and
on-to-off ratio of >102 using this technique. With such
a device, it is plausible to enable MLC. An important
distinction between MLC and analog memory is that
while an MLC has multiple states, it still requires ADC
to distinguish the states.

Shafiee et al. [103] encode weights in a offset
format so that negative weights can be represented.
Given that the devices can perform only multiply
and accumulation in the crossbar, there is no way
to naturally represent a negative value. Therefore, a
bias is applied to all weights before being written to
the crossbar, and then subtracted after the rows are
read. Since many rows are turned on and accumu-
lated along the same column, the bias is subtracted
from the final result for each row that was turned on.
For example: in a signed 8-bit 2’s complement for-
mat, -128 would be written to the crossbar as 0. After
being read out during compute-in memory, the bias
of 128 would be subtracted.

Figure 8. 1T1R circuit with a differential pair for
signed weights.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

50 IEEE Design&Test

Tutorial

Peripherals for in-memory computing
CIM architectures promise to achieve certain

advantages over traditional architectures in effi-
ciency and throughput by replacing digital addition
with an analog-domain alternative. This implies
that the binary bitcell readouts typical of traditional
memory macros become multiple-bit readouts in
CIM arrays, and the sense-amps typical of traditional
memory accordingly become ADCs in CIM architec-
tures. Furthermore, certain technology candidates
for CIM require specific bias points for read and/or
unusually large power for write. Meeting these added
requirements without sacrificing the performance

benefits promised by CIM will require novel periph-
eral circuitry. This section will provide an introduc-
tion to the readout peripheral design space for CIM
by detailing a representative set of requirements and
proposing how they may be satisfied. We focus on
readout circuitry up to the ADC, omitting a detailed
discussion of both write circuitry and ADC compo-
sition since the former is intimately dependent on
choice of memory technology and the latter repre-
sents a massive variety of design choices.

The functional components involved in readout
for CIM are shown in Figure 9, a new figure which
expands on and has been inspired by the work of
Close et al. [104], Kwon et al. [105], and Athmana-
than et al. [106]. We propose that the readout pro-
cess may be thought of as consisting of three stages.

•	 A selection stage during which the cells are acti-
vated via a change in wordline state.

•	 A biasing stage during which the selected cells
are forced into the correct operating region, so
that they produce some readable analog value.

•	 A conversion stage during which the analog value
is captured into a digital reading.

The selection stage is accomplished via a buffer
chain subject to two functional requirements: it must
be sized to drive the wordline capacitance within a
required time-frame, and may additionally be required
to provide voltage conversion or protection between
the core logic synchronizing the computation and the
gate voltage of the cell selector devices. The degrees
of freedom for wordline driver implementation
include the choice of voltage level-shifting scheme,
[107]–[112], and the choice of stage-over-stage sizing
in the buffer chain [113]. The tradeoff space is speed,
typically accomplished with a many-stage buffer and
converter design (closer to e-scaling), against power
and area. Broadly, these design constraints for CIM
wordline drivers match those of the well-explored
wordline driver design spaces for traditional memory
technologies, including DRAM [108], SRAM [107],
[109]–[111], and Flash [112]. The wordline driver is
modeled by component (b) in Figure 9.

As shown in Table 1, typical implementations
of Flash, STT-MRAM, PCM, RRAM, and FeFET-RAM
require high voltage and potentially significant current
during write. This encourages a low selector device
channel resistance which may be accomplished by
driving the gates of these selector devices far above typ-
ical core logic voltages. For the buffer to survive these

Figure 9. Readout peripherals for a resistive CIM array
shown as a block diagram of individual functional
units. Examples of the functional makeup of each
unit are shown inside each block, although the
actual implementations will vary based on system
requirements. (a) Column (that is, a group sharing a
BL) of resistive memory cells with access devices.
(b) Wordline driver with level-shifting. (c) Biasing/BL-
driving circuit formatted as a voltage regulator. (d) High-
Vt pass transistors that may be necessary to protect
the BL driver from write pulses. (e) Bias current used to
improve the stability of the voltage regulator in (c) and
linearize the current sense device used to implement.
(f) Current-sensing effective resistance. Note that some
designs will use the gate of the regulator’s pass device
shown in (c) as the measurement point for a voltage
representing memory cell current.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

51January/February 2021

operating conditions at minimum the output devices
must be able to handle these higher voltages. Typi-
cally, this will mean the minimum channel length of
these transistors must be increased, which will in turn
significantly increase the gate area, and capacitance,
of transistors sized to rapidly charge the wordline
[112]. Alternatives include cascoded output devices
that each only see a portion of the high voltage or a
series of moderate voltage step-ups. Any of these will
result in increased area and energy usage. Some other
technological requirements, e.g., for an especially low
gate voltage during read to avoid read-disturb, do not
risk buffer transistor breakdown and are therefore sig-
nificantly easier to accommodate.

Having selected cells, the next task is to bias the
cells into an appropriate operating region so that
their stored state, typically resistance, may be meas-
ured. This is shown in Figure 9c. While other biasing
schemes are possible, the most straightforward and
typical technique is to apply a specific voltage across
the selected cells, converting cell resistance to cur-
rent [105]. If the state of each cell is expressed as a
conductance, the resultant current due to this voltage
will be proportional to the sum of the cell states. Con-
stant-voltage biasing therefore directly implements
current summing. The circuitry involved in applying
a constant-voltage bias across memory cells is similar
to that involved in typical voltage regulator designs,
with a few additional requirements: the biasing cir-
cuit must be able to tolerate high voltage at the BL
(if required for write), tolerate widely variable load
resistance, and sense the output current.

The first of these additional requirements paral-
lels the voltage-tolerance requirement of the word-
line driver. However, the BL driver does not swing
across the full output voltage range but instead holds
voltage nearly fixed while scaling current delivery to
match the load. Additionally, the parasitic BL capac-
itance, which typically looks into the memory cell
(modeled as a variable resistor) may be lower than
the wordline capacitance, which typically looks
into the gate of a fairly high-current transistor. These
factors combine to mean that adding series chan-
nel resistance via a protection pass transistor can
tolerate high voltage on the BL and can be turned
off during write, can be less deleterious to bias-
ing speed and efficiency. This pass device may be
inserted between the output of the voltage regulator
and the BL. Additionally, if significant cell current
may be expected to pass from the regulator to the BL

through the pass device, a separate low-current “volt-
age-sense” pass device may be used for the voltage
feedback component of BL voltage regulation. This
structure is shown in Figure 9d.

The widely variable load resistance results from
a design goal of resistive memory. Resistive mem-
ory cells should exhibit a high on/off ratio, meaning
that their stored state should have a high dynamic
range to maximally separate each nominal state and
reduce error. This has the potential to create two
issues. Practically, the voltage regulator that biases
the cells will likely incorporate negative feedback
to establish a precise BL voltage, and may there-
fore require compensation. This compensation may
occur at the output for high performance, and the
location of this output pole in frequency will be
sensitive to the small-signal impedance at the out-
put of the regulator. In order-of-magnitude terms, as
an example, if ten binary memory cells each swing
100× from off-state to on-state, the load impedance
seen at the output of the regulator will swing 1000×,
i.e., 60 dB. Compensating for the highest-impedance
extreme will therefore be likely to hinder perfor-
mance at the lowest-impedance extreme, which is
exactly where a quick response is required as the
load will be demanding the most current when most
cells are on-state. Conversely, under-compensating
to achieve a quick response for the largest load-
dump may cause stability issues when few cells are
on. The other issue is simply that reliably sensing
current across several decades can be challenging.

Both of these issues may be addressed by introduc-
ing a current-bias circuit, component (e) in Figure 9,
to establish a minimum output current above what
would be set by the memory device alone [105]. This
bias current can be set to place the expected current
range that will be read across a linear region of the
current-sensing device, if needed. The bias circuit
may be expected to decrease output impedance
first of all simply by increasing the minimum current
through the output device of the voltage regulator.
Additionally, the bias circuit may itself be designed to
have a low small-signal input impedance to directly
limit output impedance of the regulator.

The remaining challenge to discuss in the con-
text of the bias circuit is current sensing, component
(f) of Figure 9. The canonical technique for sensing
current is to add a low-value effective resistance in
series with the load then amplify the voltage drop
across this effective resistance. Typical pure-CMOS

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

52 IEEE Design&Test

Tutorial

implementations have accomplished current sensing
via the control-side of a current mirror or cascoded cur-
rent mirror, that is, with a diode-connected transistor
[104]–[106]. In particular, if this current-sense transis-
tor is cascoded (or source-degenerated), the voltage
headroom required by the sense device added to that
required by the output device of the voltage regula-
tor can be significant. In power-sensitive designs, this
may preclude more efficient schemes that would first
reduce the core voltage using a capacitive or induc-
tive converter before finally setting the BL bias with
a linear regulator. Alternatively, adding several series
devices between the regulator’s output transistor and
the rail may reduce the effective transconductance
of this transistor, requiring its size to be increased to
recover gain and improve regulation. These factors
may motivate a simpler scheme where the gate volt-
age of this output transistor is itself used as the cur-
rent-sense metric.

The final step, analog to digital conversion, is
application-specific. The maximum useful resolu-
tion is established by the minimum of the precision
of the memory devices (inversely proportional to
their variance) and the expected number of distinct
output states to be measured. It may be that the cur-
rent handling of core devices in a technology lim-
its the maximum number of on-state devices (at a
given minimum bias voltage) to a small number so
that only this small number of distinct states needs
to be measurable, or alternatively it may be that
the variance of the current conducted by the mem-
ory devices limits the number of devices that may
be measured before variance may be expected to
cause unacceptably frequent errors.

Circuit-level ADC limitations are due to power
and area restrictions. Area usage is a critical factor
in CIM because memory arrays can be very dense
while precise peripherals can be bulky. In a typi-
cal design, peripherals will be pitch-matched along
both axes. While wordline drive circuitry can be
very simple, the BL components will quickly exceed
the pitch of a single column of memory cells. This
limits the ADC and BL driver complexity that is suit-
able for a scalable design. While we will not fully
explore the available options for ADCs, consider
that the special requirements for ADCs for CIM are
that they have a high throughput at a relatively low
bit depth (3- to 6-bit designs are typical) and that
their complexity and efficiency is managed so that

throughput may be increased by tiling many of
them adjacent to the array.

Low precision peripheral designs
As we will discuss in the “CIM-based accelerator

architecture” section, it is possible to reduce the
complexity of peripheral circuits by reducing the bit
precision used in both the input features and weights
of the network. While this does come at a cost in
application performance, several works have shown
that this is minimal for less complex applications.
As a result, these works can achieve significantly
higher throughput and lower energy per operation
[13]. However, it should be noted that for larger and
more complex problems, higher precision is often
required to achieve respectable results.

One such approach is to use a BNN where only
1-bit words and activations are needed [114], [115].
Originally used in FPGAs to take advantage of their
configurability and offset the area and power over-
head, BNNs have also been shown to work with
RRAM in both simulation [116] and experiment
[23]. When using a binary activation function, a
1-bit word-line driver and sense amplifier can be
used rather than an ADC [117]. This design forgoes
using multiple states in the device and avoids the
additional circuit overhead. To activate many rows
at a time, these networks can change the threshold
of their sense amplifier to implement a binary acti-
vation function which quantizes all activations to 0
and 1. Although this implementation is appealing
from a circuit perspective it suffers greatly when
scaling the data sets to more complex problems
[115]. Rastegari et al. [115] showed 9% perfor-
mance degradation on ImageNet when going from
full precision weights to binary weights. In addition
to accuracy, BNNs struggle with training, as they are
trained using full precision weights only to be quan-
tized during inference.

SNNs have also been used to bypass the periph-
eral circuit overhead of ADCs [24]. Since SNNs only
output spikes rather than conventional multibit digi-
tal values, an analog circuit can be used to integrate
the current through PCM memory and fire a spike
when it has passed a threshold. Though this tech-
nique is similar to BNNs, it makes use of the time
domain by integrating over time and slowly reducing
the state value of the neuron over time similar to the
behavior of leaky-integrate and fire neuron model.
Like the BNN, however, SNNs have issues with both

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

53January/February 2021

accuracy and training preventing them from seeing
large-scale use.

In Figure 10, we show both ends of the complexity
spectrum ranging from DACs and ADCs to word-line
drivers and sense amplifiers. In the past, many opti-
mistic designs used multilevel inputs, high precision
designs, and MLCs. However, such designs have
proved to be difficult given cell-to-cell variance and
select transistor source degradation. This gave rise to
simpler designs using just word line drivers and sense
amplifiers with single state cells, but as we discussed
these designs have had difficulty in scaling to larger
problems. As a result, most recent CIM designs utilize
word-line drivers and ADCs [103]. This configuration
is popular because it allows multiple rows to be read
at the same time, and avoids the source degradation
problem that occurs when using multilevel inputs.

Zero skipping
There are two common techniques for perform-

ing CIM. The first technique, which we refer to as
baseline, is simply to read as many rows as the ADC
precision allows (e.g., for a 3-bit ADC, we read eight
rows simultaneously). The next technique is com-
monly called zero skipping [118]–[120], where only
rows with “1”s are read. Zero-skipping performs faster
than the baseline technique because for most cases
it will process more total rows per cycle. In Figure 11,
we provide an example case for zero-skipping where
eight total rows are read using a 2-bit ADC. Baseline
(11A) requires two cycles since it targets four con-
secutive rows at a time. Zero-skipping (11B) is able
to finish all eight rows in a single cycle because we
only consider the “1”s in the input vector.

There are few reasons not to perform zero skip-
ping, unless there is limited input data bandwidth or
the eNVM has high variance and accumulated too
many errors. A recent work [120] has exploited this
technique along with compression to achieve upward
of 10× performance improvement. They illustrate that
in most DNNs used today, activation sparsity is well
above 50%. In fact, the larger the size of the neural net-
work model the higher activation sparsity is observed.

Impact of variance in in-memory computing
At the device level, the fundamental performance

bottleneck is a function of the device-to-device var-
iance and the on-to-off ratio of each cell. These two
properties define the number of distinguishable
states that can be accurately read from a column

of the crossbar. If more states are read than can be
accurately distinguished, then errors in the operation
will occur following the distribution of the device-to-
device variance. Since these errors compromise the

Figure 10. Two different peripheral circuit
configurations for neural networks for compute in
memory. (a) DACs and ADCs are used for multibit
activations and reading higher precision. (b) 1-bit
wordline drivers and sense amplifiers can be used to
implement BNN and minimize area and power.

Figure 11. Simplified breakdown of ADC reads in
baseline and zero-skipping with 2-bit ADC precision.
(a) Baseline targets four consecutive rows at a time
since the 2-bit ADCs are capable of distinguishing four
states. (b) Zero skipping targets the next four rows
where the word-line is enabled. This way we can read
more rows and not overflow our ADC.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

54 IEEE Design&Test

Tutorial

accuracy of the operation, the performance can no
longer be compared to that of a bit-accurate CMOS
implementation. Interestingly, in many data-inten-
sive applications, particularly in neural networks,
limited amounts of variance can be tolerated.

Modern eNVM technologies, such as PCRAM and
RRAM, suffer considerably from device-to-device var-
iance. State-of-the-art devices [36] have been demon-
strated with a resistance standard deviation of 3.5%,
on-to-off ratio of >102, logic process and voltage com-
patibility, and high density. That said, analyses focused
on solely device variability have revealed that the
intrinsic and cell-to-cell variability can result in stand-
ard deviation that range from 5% to 50% depending
on the write effort and the final stored resistance state
[121], [122]. While lower nominal variability has been
achieved in limited experimental research, real-world
factors such as device drift and degeneration along
with limited write-energy budget mean that well-con-
trolled variance is rarely guaranteed and often practi-
cally impossible. The latter implies a precision/power
tradeoff design-space that encourages algorithmic solu-
tions to the variance issue.

In Figure 12, we demonstrate how, given enough
variance, a CIM operation will result in an error. We
show three cases: 5%, 10%, and 20% variance in the
resistance of the memory state. This figure depicts the
resultant variance expressed as the cumulative distri-
bution of the computing error, when seven on-state
cells are being read (the maximum allowed by a 3-bit
ADC) and when 15 on-state cells are read (the maxi-
mum for a 4-bit ADC). Recent work [123] has shown

several techniques on how the impact of device level
variance can be reduced at the system level by con-
trolling the operating speed based on the variance of
the devices and importance of the particular oper-
ation. In 8-bit matrix multiplication, an error when
computing the product of the most significant bits is
214 times more costly than an error for the least sig-
nificant bits. Therefore, when operating on the most
significant bit the number of rows being read should
be reduced to minimize error at the system level.

Implementation of neural networks

Vector operations in DNN accelerators
So far, we have discussed the various mem-

ory technologies and circuit design techniques to
implement CIM engines. Despite matrix multiplica-
tion being the bulk of the workload, there are other
essential operations to implement in a DNN acceler-
ator. Fortunately, these operations represent a small
portion of the workload since they operate directly
on input and output vectors rather than perform-
ing matrix transformations on the data. There are
several examples of this in CNNs, LSTMs [124], and
transformer networks [125]. In all cases, these ele-
ment-wise vector operations are performed post-ma-
trix multiplication and thus have at least twice the
bit-precision of the matrix operations.

In a CNN, the most common vector-wise opera-
tions are element-wise addition and comparison for
bias and ReLU [126]. ReLU is particularly popular
given that it typically yields the highest accuracy and
also has the simplest operation. Other popular acti-
vation functions like sigmoid and tanh require expo-
nential functions and division which require more
complex CMOS logic. In low precision logic these
can be implemented as lookup tables, however, in
higher precision accelerators expensive ALUs are
required. Many CNN accelerators [11] create special
cores for processing these nonlinear activation func-
tions and applying biases. A similar approach can
be used for CIM accelerators, where eNVM arrays
process the matrix operations and these vector oper-
ations are performed in special logic units.

For training deep CNNs, batch normalization [127]
has become an integral component of all very DNNs.
Prior to batch normalization and the use of residual
[28] and dense [128] connections, very DNNs suf-
fered from the vanishing and exploding gradient prob-
lems. Batch normalization normalizes the outputs of

Figure 12. CDF of error in calculating MAC as a
function of normalized cell current under parametric
variation.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

55January/February 2021

intermediate layers and applies a bias and scaling
parameter to each output. This adds additional com-
plexity to the necessary ALU operations required
because performing multiplication and division are
more challenging than addition and comparison.
However, this can be avoided in all inference-only
accelerators since the normalization, bias, and scal-
ing parameters can be folded together [129].

Another popular neural network architecture for
extracting patterns in sequences and time is the RNN.
The most popular form of the RNN is a long short-term
memory (LSTM). eNVM is especially interesting for
implementing LSTMs since they are constructed from
large fully connected layers and thus have far more
parameters and greater dependence on memory
bandwidth. Recent work [130] has demonstrated an
RRAM-based RNN accelerator. They create a special
function unit (SFU) for the many vector operations
of RNNs to complement the PE used for matrix multi-
plication. Although CMOS logic is used to implement
the SFUs, the number of vector operations is far fewer
than matrix operations, and therefore does not negate
the performance benefit from using RRAM.

Weight and activation quantization
Neural networks are most commonly trained in

high precision 32-bit floating point operations. Exist-
ing infrastructure in BLAS [131] and GPUs enabled
sufficient performance. However, new research
trends seek to use lower precision weights and acti-
vations to achieve the same results. Naturally, this
has big implications in terms of memory capacity,
data transport, and computation as the complexity
of all three scales with the precision of the operands.
Given the performance advantages, popular tools
like TensorFlow and PyTorch have created packages
dedicated to quantized arithmetic.

Originally, a “binarized” neural network [132] was
shown to yield good results for small data sets. This
network was trained with full precision weights, but
during inference these weights could be stored as just
0 and 1. Later work has shown that this technique did
not scale well to more challenging data sets [129],
[133], [134], but lower precision weights and activa-
tions (8-bit) could still be used on large data sets like
ImageNet [135]. There are different types of quantiza-
tion, namely post training quantization and training
aware quantization [129]. Post training quantization
uses statistics from the weights and activations dis-
tributions to quantize a pretrained model. Training

aware quantization trains a quantized model by quan-
tizing full precision weights during the forward pass of
backpropagation, and proceeding to train the model
as if it were not quantized.

Most works in traditional CMOS accelerators [3]
focus on 8-bit integer weights and activations for
inference since it yields a nice balance between per-
formance and accuracy. In [129] and [134], a small
accuracy degradation can be observed when transi-
tioning from full precision to 8-bit arithmetic. As the
precision is lowered beyond 8 bits, a much larger
accuracy degradation occurs. For training higher
precision is often used [136], however, recent work
has shown that it is possible to use 8-bit precision to
train networks as well [136]–[138].

CIM array level simulators
eNVM have many new properties that make it diffi-

cult to determine their utility in creating machine learn-
ing accelerators. Of course it is better to have lower read
energy and latency, but understanding how important
these properties are at the system level is challeng-
ing. This problem is particularly important in device
engineering so research effort is allocated to the most
important device properties. For example, in the design
of a system with low ADC precision (2-bit) device vari-
ance and on-to-off ratio have a much lower impact on
accuracy and performance than a system with high pre-
cision ADCs. It is these types of scenarios that simula-
tors seek to evaluate to both guide device level research
and provide accurate power, performance, and area
estimations for CIM system level designs.

The design and implementation of these simula-
tors is a research challenge in itself. Typical circuit
simulations like SPICE are notoriously slow for even
small designs. At the same time, modeling all these
properties while evaluating the memories in a higher
level system is not only computationally demand-
ing, but rarely explored until recently. Large neural
networks are already extremely computationally
demanding although they only perform matrix multi-
plications with optimized BLAS libraries on dedicated
hardware. Simulating the same networks with circuit
and device level components is even more computa-
tionally challenging. Several works [139]–[142] have
made promising initial progress on this problem.

An early work, NVSim [139], was not developed
specifically for DNNs. Since they avoid the computa-
tional complexity of a DNN accelerator, they are able
to focus on lower level details that allow for a more

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

56 IEEE Design&Test

Tutorial

accurate comparison with flash for server workloads.
More recent works [140]–[142] have extended the
idea, but for evaluating DNNs. These simulators use
object-oriented models of circuit components and
devices to accurately model power, variance, delay,
and other properties that must be modeled to give
circuit level approximations.

Recent works, such as NeuroSim [140], explore
the simulation tradeoff space choosing the important
characteristics to model. Given the notoriously slow
simulation time of accurate SPICE models, tradeoffs
have to be made if a realistic DNN will be simulated.
However, accurate estimations for area and power
can be achieved by abstracting temporal variation
and considering fixed energy and delay parameters
for all array level components and global intercon-
nects. RxNN [142] gives special attention to nonide-
alities of emerging devices and peripheral circuits as
these will be fundamental performance bottlenecks
in any realistic design. In both simulation tools, all
devices from this article can be evaluated with both
optimistic and pessimistic parameters. Power and
performance breakdowns can be gathered across cir-
cuit level components to identify the largest sources
of power to motivate and guide future research effort.

Network on chip for CIM accelerators
Although CIM seeks to minimize data transport, it

is nonetheless an important aspect of implementing a
CIM-based DNN accelerator. Fortunately, CIM-based
architectures are similar to CMOS- and SRAM-based
designs and thus make use existing research pro-
gress in network on chip (NoC), routers, and inter-
connects. Despite these similarities, there are some
differences that require special attention. Given that
CIM accelerators offer the advantage of high density
and low power, low overhead NoC designs, such
as those mentioned in [143], are of special interest.
Furthermore, since CIM accelerators typically run at
lower clock frequency and struggle with computa-
tional efficiency [103], special routing policies [144]
will likely be required if eNVM CIM systems are to be
used in real-time embedded systems.

Recent work [145] has proposed a new data flow
based on prior work in CMOS-based CNN accelerators
[5], [9]. This work implements a new weight mapping
strategy for minimizing data movement in CIM DNN
accelerators. As we discuss further in the “CIM-based
accelerator architecture” section, eNVM PEs are not
typically reprogrammed and hence each compute unit

is not capable of performing each operation in a DNN.
Therefore, the mapping of weights to compute units is
a new challenge that was avoided in CMOS- and SRAM-
based designs. Using this data flow and mapping strat-
egy, the authors demonstrate improvements in power,
performance, and memory efficiency.

Since all of the eNVM candidates are both pro-
cess and voltage compatible with CMOS, we expect
future research in interconnects to be coupled with
CIM research. Emerging technology such as optical
interconnects [146] or wireless NoCs [147] can be
directly applied to CIM to further reduce the cost of
data transport. Although these technologies need fur-
ther research and development before mainstream
adoption, they promise to reduce power and improve
throughput over traditional interconnects, particularly
for global routing layers. The combination of CIM and
new interconnect technologies has the potential to
drastically reduce power in DNN accelerators by both
reducing the cost of data transport and eliminating a
large fraction of the total data movement required.

CIM-based accelerator architecture
In previous sections, we describe the different

components that go into creating a standalone
CIM PE. By encapsulating the array, ADCs, and shift
and add logic, a matrix multiplication engine can
be created. Using these arrays as building blocks,
prior work has implemented CNNs where a group
of arrays implement a larger matrix multiplication.
In Figure 13, we illustrate this idea, showing how a
group of arrays is tiled together to form a PE and then
used in a larger systolic array that can perform matrix
operations. In most designs so far [103], [145], [148],
the most common crossbar choice is 128 × 128
where 8 bit weights and activations are used. There-
fore, each array can perform a 128 × 16 dot product
on its own requiring only the 128-byte input vector.
These arrays can easily be pieced together to form
larger matrices. For example, a 1024 × 1024 matrix
can be formed by a 8 × 64 grid of 128 × 128 arrays.

This has important implications as modern DNNs
such as CNNs and RNNs contain a workload of
almost entirely matrix multiplication [101]. Despite
performing more complex operations, the core oper-
ations of CNNs and RNNs are converted into matrix
multiplication. In Figure 14, we further depict how
these arrays can be pieced together to form a larger
matrix that forms the kernel of a CNN. In this exam-
ple, both input feature maps and filters are vectorized

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

57January/February 2021

with the filters forming the columns of a matrix. The
vectorized feature maps are input to the crossbar to
perform matrix multiplication, where the results are
output feature maps for this layer in a CNN.

Given the high density of these PEs, hundreds or
thousands of them can be tiled in the same area used
by modern ICs. Although similar in concept, CIM-
based DNN accelerators have numerous differences
from traditional CMOS-based designs that introduce
challenges in maximizing performance. First off,
a CIM-based PE has fixed weights that cannot be
reprogrammed due to the high energy cost of writing
eNVM. Traditional CMOS-based PEs are generalized
compute units that can operate on any input data,
since they do not contain fixed weights. Thus, the
fundamental issue in CIM-based accelerators is array
utilization [149]. Several works have addressed this
issue introducing ideas such as weight duplication,
weight partitioning, and layer pipe-lining.

Layer pipelining
In traditional CMOS accelerators, PEs can be used

for all layers of the network. CIM arrays are not as
flexible because the weights should not be repro-
grammed between layers because of high write
energy. Thus, each array in the CIM accelerator
should be used for a single layer. It is possible to split
layers across these PEs for larger arrays; however, for
typical 128 × 128 arrays it is impossible to split many
layers across a single array effectively [145].

To combat this issue, pipe-lining the layers of the
DNN has been proposed [103], [150]. In these works
images are pipelined through the network to keep all
arrays fed. Although this compromises single example
latency, the total throughput of the array is the same
as if all arrays were used for a single layer. However,
pipe-lining faces performance issues when some lay-
ers perform faster than others. In this case, the max-
imum throughput of the network is constrained to
the slowest layer, hence it is important that arrays are
allocated uniformly so that performance is optimized.

Weight duplication
Weight duplication [103], [150] is used to max-

imize throughput in large-scale CIM accelerators
where the amount of on-chip memory exceeds the
number of weights in the model. In [145], 24,960
arrays are used for a total on-chip memory capacity of
nearly 104 MB (2b cells) for weights alone, while only
using an area of 250 mm2. In comparison, the TPU [3]

which occupies over 300 mm2 only has 24 MB of on
chip SRAM that is used for both weights and activa-
tions. Using this enormous on-chip memory capacity,
they not only fit ResNet [28] but duplicate shallow lay-
ers up to 32× so that all arrays are fully utilized.

When weights are duplicated, the input data are
divided equally among each group duplicate array
so they can process in parallel. In a convolutional
layer, the input patches can be sent to each dupli-
cate in an alternating fashion as the accelerator
strides across the image. We further illustrate this
idea in Figure 15. In this example, we show two
duplicates each receiving alternating input patches.
Each duplicate performs the convolution and sends
the resulting output feature map to its designated
location in main memory.

Weight mapping and partitioning
Traditional digital accelerators [14] utilize arrays

of PEs to perform MAC operations and accumulate

Figure 13. Typical in-memory computing array
architecture featuring dual word line drivers, ADCs,
shift and add units, and an adder tree.

Figure 14. Typical 3 × 3 × 128 × 128 filter used in
layer 10 from ResNet18 converted into a matrix and
mapped to 128 × 128 eNVM arrays. This filter requires
72 128 × 128 arrays to store in a 9 × 8 grid.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

58 IEEE Design&Test

Tutorial

partial sums. For each operation, input and weight
data are read in through cache or main memory. Due
to the low density SRAM caches that are used, data
reuse is key to minimize the number of main mem-
ory accesses performed. As a result, many data flow
architectures have been proposed that maximize
both spatial and temporal reuse and consequently,
minimize data transport. Despite these efforts, data
transport still consumes a large fraction of the total
energy consumption.

In-memory computing offers an elegant solution to
this problem with high density, nonvolatile memory
that performs the MAC operation using the physical
properties of the cell and crossbar. The challenge
in-memory computing faces is not with weight trans-
port, but rather with weight placement. To maximize
throughput, weights must be distributed in a way
that allows each CIM PE to be operating at all times

to maximize throughput. One example of an optimal
weight mapping and data flow was demonstrated in
[145]. Using redundant weights and clever mapping
strategies, they maximize throughput of a large-scale
CIM accelerator.

D. Weight rotation
Another interesting technique to improve array

utilization is weight rotation [151]. Given that ADCs
make up most of the power consumption and area
for small form factor eNVM PEs. Thus, rather than
pipe-lining a CNN to make full use of the arrays,
[151] redefine the challenge to making full use of
the ADCs. To do this, every PE is allocated an array
programmed with a portion of the weights from
each layer. Then all arrays in a PE are connected
to shared ADCs through multiplexers. In this way,
arrays can be rotated based on the current layer
and maximize use of the ADCs in each PE. This
technique results in a small area footprint and large
on-chip capacity, however, maximum throughput
is reduced.

E. CIM-based architecture level designs
Numerous exhaustive CIM designs have been

done with excellent power and performance eval-
uations. These works [103], [145], [148] consider
both computational and energy efficiency meas-
ured as TOP/mm2 and TOP/W, respectively. The
key metric for evaluating DNN accelerators has
been TOP/W, however, for CIM-based designs com-
putational efficiency (TOP/mm2) is particularly
important. This is because current eNVM technol-
ogy struggles to compete with CMOS-based designs
in computational efficiency. CMOS designs have
far less on-chip memory and can use this additional
area for many low area PEs, increasing the compu-
tational efficiency. However, the lack of on-chip
memory allows eNVM CIM designs to be far more
energy-efficient.

In Table 2, we compare several large-scale designs
in terms of storage, area, normalized TOP/mm2, and
normalized TOP/W. The different designs used differ-
ent parameters which greatly impact performance.
For this comparison, we scaled all designs to 8-bit
inputs and 8-bit weights with 2 bits per NVM cell. In
each of these designs the primary bottleneck in both
performance and energy efficiency is the ADC. The
ADC accounts for the majority of power and area, but
their performance set the bottleneck for each design.

Figure 15. Convolutional layer mapped to a CIM array.
Both input feature maps and filters are vectorized
with the filters forming the columns of a matrix. The
vectorized feature maps are input to the crossbar to
perform matrix multiplication, where the results are
output feature maps for this layer in a CNN.

 
Table 2. Comparison of architectural designs.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

59January/February 2021

ISAAC [103] and PRIME [150] were the origi-
nal exhaustive architecture-level simulations for
CIM DNN accelerators. Both made large strides in
mapping the design DNNs to CIM arrays utilizing
layer pipe-lining and weight duplication. PipeLayer
[148] maximized computational efficiency for train-
ing DNNs using a clever strategy in computing the
gradients. AtomLayer maximized on-chip memory
and minimized area using weight rotation achiev-
ing 83.69 MB in just 6.9 mm2. Sparse ReRAM engine
[120] took advantage of sparsity in both the feature
inputs and the weights to greatly improve the com-
putational and energy efficiency of ISAAC. Peng et
al. [145] created a new weight mapping strategy and
data flow to minimize data transport throughout the
chip. This strategy is comparable to CMOS-based
designs like those mentioned in [5] and [152].

Training CIM neural networks
Implementation of neural networks feature two

distinct challenges: 1) inference and 2) training.
Inference consists of just the forward pass or eval-
uation of the neural network model that we have
discussed so far. Training is a more complex pro-
cedure that updates the weights in the network to
optimize a loss function and improve performance.
To train a network, we must perform inference and
two more additional steps: 1) gradient calculation
and 2) weight update.

After inference is performed on data samples
and the network has made a prediction, the error
is computed using the prediction and the label to
compute the gradients for all weights in the net-
work. These gradients represent the error of each
weight with respect to the global loss function. Tra-
ditionally, backpropagation [153] is used to com-
pute these gradients. Backpropagation computes
the partial error of each weight in the network via
the chain rule. Once acquired, these gradients are
then applied to the network iteratively in the weight
update phase.

The gradient calculation and weight update com-
ponents of training present challenges to CIM that
has been mostly avoided thus far. In particular, the
additional complexity of transposable memory and
the large number of write operations has motivated
the use of off-chip learning. In the following sections,
we outline challenges and current solutions for each
of these steps.

Forward propagation (inference)
The forward pass computation of the neu-

ral network required to make a prediction is the
inference phase. This features matrix multiplica-
tion, convolution, and the element-wise vector
functions we discussed in the “Implementation
of neural networks” section. Often times, models
have already been trained offline and are ready
to be deployed. For these applications our NVM
will be programmed once and then not modified
during the duration of the application. Under this
assumption, we need perform only the forward
pass of the neural network and do not consider
the many complexities that come with training
such as the cost of write energy or transposable
memory. Mathematically, the feed forward com-
putation can be written as

(),y W x a f y= ⋅ =1 1 1 1 � (1)

(),y W a a f y= ⋅ =2 2 1 2 2 � (2)

(),n n n n ny W a a f y
−

= ⋅ =1 � (3)

where x is the feature vector and Wi is the weight
matrix connecting layer i  – 1 to layer i (y0 = x). The
dot product of x and Wi yields yi, and applying the
nonlinear activation function f results in the activa-
tion at neuron i, ai.

Backpropagation
To train state-of-the-art DNNs on chip, we rely on

backpropagation or some variant which computes
gradients of the weights with respect to a loss func-
tion. Backpropagation computes this gradient at
each layer, starting from the last layer and propa-
gating backward one layer at a time. This technique
efficiently reuses computation, since the gradients
of layers early in the network are functions of gra-
dients from layers deeper in the network. The error
at the last layer of the network, n, is the classifica-
tion error e. BP computes the error at each hidden
layer l, δal, by transposing the weight matrices W
and multiplying by the gradient of the activation
function. These layerwise computations for BP can
be written as

=nda e � (4)

()d ′
= ⋅ 

Ta W a f a 2 2 3 2 � (5)

()d ′
= ⋅ 

Ta W a f a1 1 2 1 � (6)

δ

δ

δ

δ

δ

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

60 IEEE Design&Test

Tutorial

where  is the element-wise multiplication operator.
In (5) and (6), the transpose of matrices W2 and W1
are used to compute the error at the hidden layers of
the network.

Therefore, to compute the error at each of the
hidden layers in our network, we use the transposed
weights in the previous layer to backpropagate the
error to the current layer. In CIM crossbars, this
is a significant problem that can be solved by two
methods.

•	 Read conductance values from the crossbar,
and perform the multiplication in CMOS
peripherals.

•	 Transposed matrix multiplication in the crossbar.

Reading the weights out requires that we spend
significant time reading each weight one at a time, or
a row at a time described by Li et al. [25]. Once com-
plete, we must then perform the matrix multiplication
in CMOS. This method limits the advantages of using
in-memory computing because we revert to a von
Neumann computing architecture in the backward
direction.

Using additional circuitry, it is possible to trans-
pose the weight matrix so that the backward pass
can be computed in memory [154], [155]. Trans-
posing the weight matrix requires significant circuit
overhead which increases area, power, and design
complexity. The 2T1R synapse circuit is shown in
a crossbar array in Figure 16. The circuit elements
highlighted in red represent the portion of the cir-
cuit for the transposed read and matrix multiplica-
tion. This additional circuity comes at a significant
overhead in area and design complexity. Additional
select transistors, wordline drivers, BL drivers, and
ADCs are required to read the transposed data.
Such a design greatly reduces inference computa-
tional efficiency since this overhead is not needed
in the forward direction.

Network update
Once we have computed the gradients using

backpropagation, we must apply the gradients to
the network. The error with respect to each weight
is computed as the outer product of input values
and error: a e⋅ . This results in a matrix, δ W , that we
must apply to our crossbar. To update an eNVM cell,
we must apply a positive voltage to “set” the device
(lower resistance) or negative voltage to “reset”
(increase resistance).

There are different ways to apply the error update
to the crossbar. For digital CIM, the most common
approach is to compute δW in CMOS and then write
each row one at a time. Like computing the back-
ward pass, this limits the advantages of using CIM
because we need to move the two vectors a e⋅  and a e⋅  to
CMOS logic and then perform N M MAC operations.
After which, we have to transport a matrix with the
dimensions of the size of vectors a e⋅  and a e⋅  back from
logic to the array. This technique not only struggles
from data movement, but also in storing the gradient
of the matrix in SRAM. While we have high density
eNVM on chip to store weight matrices, there will not
be sufficient SRAM to store a large gradient. Another
technique [156] showed that the eNVM arrays can be
reprogrammed with the error gradients so that weight
gradients could be computed with CIM. However, this
method requires significant data transfer and high
power writing of eNVM.

For analog CIM, there exists an extremely efficient
method for performing the weight update that has
been proposed in [24], [157], and [158]. To update
the eNVM network we perform outer product of a e⋅ 

Figure 16. 2T1R circuit for transposed matrix
multiplication. The transpose logic is shown in red.
The 2T1R configuration requires additional select
transistor, wordline, BL, and ADC.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

61January/February 2021

and a e⋅  with time and the results are integrated by the
eNVM. If we apply pulses proportional to the input
values on the word lines, and pulses proportional to
the errors on the columns then the time overlap of
the two is proportional to the product. In Figure 17,
we demonstrate an example where WL is asserted for
40% of the period and BL is asserted for 80% of its
period. The resulting voltage across the cell is roughly
32% of the period. It is necessary that the period of

BL is several times shorter than WL, otherwise a min
function is performed rather than multiplication.

Alternatives to backpropagation
Given the difficulty of training eNVM on chip,

most works train the model off chip and simply per-
form inference on the eNVM CIM accelerator. The
difficulty of training on chip comes primarily from
the gradient calculation phase in training. In both
CMOS- and eNVM-based designs, gradient calcula-
tion using backpropagation requires excessive data
transport and doubles the number of computations
required by a training example. For eNVM-based
designs, backpropagation also requires additional
hardware for training that reduces inference perfor-
mance per unit area.

An interesting alternative to backpropagation
inspired from biological perspective was proposed
in [159]. Feedback alignment (FA) uses fixed ran-
dom feedback weights to propagate the errors back
through the layers of a DNN rather than using the
actual network weights to compute the partial error.
Consequently, the weights in the shallow layers of
the network no longer need information of the
weights of all the deeper layers. Building on top of
this, Nøkland [160] proposes direct FA (DFA), where
it was shown that the feedback to shallow layers
need not be propagated through all the layers. DFA
showed that instead, a random matrix can be used
to compute the error at each layer. Such a matrix
can be randomly initialized with size N C, where N
is the number of hidden neurons at a hidden layer,
and C is the number of classes (or outputs) in the
network. This matrix is used to create a linear projec-
tion of the error for each hidden neuron.

Decoupling the forward and backward weights
makes DFA a suitable algorithm for training net-
works that rely on in-memory computing. The
advantage of in-memory computing is that in the
forward pass, the weights do not need to be read
out and brought to compute. Similarly, with DFA

we no longer need to read weights out during the
backward pass. Instead a random feedback matrix
can be used to compute the error and update the
network independent of the forward weights. Using
these techniques, several works [158], [161]–[164]
have achieved lower hardware complexity and
improved performance.

Compensating for large write latency of eNVM
All the eNVM technologies that we have dis-

cussed so far promise high density, short read
latency, no leakage power and voltage/process
scalability with scaled processor logic. However,
all these technologies require high write energy
and typically have higher write latency. For edge
devices where only inference is performed, the
write latency is not critical. But in systems with real-
time performance requirement, such as real-time
RL in drones, robots, and UAVs, it is challenging to
maintain high speed while being able to write into
the eNVM. To address this challenge, Yoon et al.
[165] recently proposed a method of transfer learn-
ing with real-time RL over a small portion of the
model weights. In a typical application of drones,
it has been shown that the initial model weight can
be trained off-line using a simulation environment
and the weights of the shallow layers are trans-
ferred to the eNVM. Next the drone is deployed in
a real environment and the last few layers of the
network, which are stored on an on-die SRAM, are
updated in real-time. It has been shown that such
a system performs at almost identical performance

Figure 17. Waveform showing pulsed-based
multiplication of positive and negative voltages
applied to eNVM array. Wordline (WL) and Bitline (BL)
are the two inputs. The result of multiplication is VR.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

62 IEEE Design&Test

Tutorial

with more than 70% decrease in system energy and
latency compared to end-to-end learning [165].

Discussions and outlook
From enabling intelligent microrobotics to train-

ing massive neural networks, both the applications
and progress of research in artificial intelligence
are bounded by the tools we have to design with.
CMOS has carried us so far, but ultimately we must
find alternatives that better suit the massively paral-
lel and data intensive needs to artificial intelligence
and machine learning. In-memory computing is a
competitive design choice, where there is minimal
overhead in transporting data. Increased research
effort from both the industry and the academia as
well as consistent breakthroughs in device quality
make emerging nonvolatile memories a promising
technological advancement.� 

Acknowledgments
This work was supported by the U.S. Department

of Defense’s Multidisciplinary University Research
Initiatives (MURI) Program under Grant FOA:
N00014-16-R-FO05, the Applications and Systems
Driven Center for Energy-Efficient Integrated Nano-
Technologies (ASCENT); in part by the Center of
Brain Inspired Computing (C-BRIC) though the Joint
University Microelectronics Program sponsored by
DARPA; and in part by the Semiconductor Research
Corporation.

 References
	 [1]	 M. Abadi et al., “TensorFlow: A system for large-scale

machine learning,” in Proc. 12th USENIX Symp.

Operating Syst. Design Implement. (OSDI), 2016,

pp. 265–283.

	 [2]	 A. Paszke et al., “PyTorch: An imperative style, high-

performance deep learning library,” in Proc. Adv. Neural

Inf. Process. Syst., 2019, pp. 8024–8035.

	 [3]	 N. P. Jouppi et al., “In-datacenter performance analysis of

a tensor processing unit,” in Proc. ACM/IEEE 44th Annu.

Int. Symp. Comput. Archit. (ISCA), Jun. 2017, pp. 1–12.

	 [4]	 M. Horowitz, “1.1 computing’s energy problem

(and what we can do about it),” in IEEE Int. Solid-

State Circuits Conf. Dig. Tech. Papers (ISSCC),

Feb. 2014, pp. 10–14.

	 [5]	 Y.-H. Chen et al., “Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional

neural networks,” IEEE J. Solid-State Circuits, vol. 52,

no. 1, pp. 127–138, Jan. 2017.

	 [6]	 T. Chen et al., “DianNao: A small-footprint high-

throughput accelerator for ubiquitous machine-

learning,” ACM SIGARCH Comput. Archit. News,

vol. 49, no. 4, pp. 269–284, Apr. 2014.

	 [7]	 Y. Chen et al., “DaDianNao: A machine-learning

supercomputer,” in Proc. 47th Annu. IEEE/ACM Int.

Symp. Microarchit., Dec. 2014, pp. 609–622.

	 [8]	 H. Kwon, A. Samajdar, and T. Krishna, “MAERI:

Enabling flexible dataflow mapping over DNN

accelerators via reconfigurable interconnects,” ACM

SIGPLAN Notices, vol. 53, no. 2, pp. 461–475,

Nov. 2018.

	 [9]	 H. Kwon, A. Samajdar, and T. Krishna, “A

communication-centric approach for designing flexible

DNN accelerators,” IEEE Micro, vol. 38, no. 6,

pp. 25–35, Nov. 2018.

	[10]	 C. Kim et al., “A 2.1TFLOPS/W mobile deep RL

accelerator with transposable PE array and experience

compression,” in IEEE Int. Solid-State Circuits Conf.

(ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 136–138.

	[11]	 D. Shin et al., “14.2 DNPU: An 8.1TOPS/W

reconfigurable CNN-RNN processor for general-

purpose deep neural networks,” in IEEE Int. Solid-

State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb.

2017, pp. 240–241.

	[12]	 N. Cao, M. Chang, and A. Raychowdhury, “14.1 a

65 nm 1.1-to-9.1TOPS/W hybrid-digital-mixed-signal

computing platform for accelerating model-based and

model-free swarm robotics,” in IEEE Int. Solid- State

Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019,

pp. 222–224.

	[13]	 D. Bankman et al., “An always-on 3.8 µJ/86%

CIFAR-10 mixed-signal binary CNN processor with all

memory on chip in 28-nm CMOS,” IEEE J. Solid-State

Circuits, vol. 54, no. 1, pp. 158–172, Jan. 2019.

	[14]	 Y.-H. Chenet al., “Eyeriss v2: A flexible accelerator for

emerging deep neural networks on mobile devices,”

IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2,

pp. 292–308, 2019.

	[15]	 P. N. Whatmough et al., “14.3 a 28 nm SoC with a 1.2

GHz 568 nJ/prediction sparse deep-neural-network

engine with >0.1 timing error rate tolerance for IoT

applications,” in IEEE Int. Solid-State Circuits Conf.

(ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 242–243.

	[16]	 J. Lee et al., “7.7 LNPU: A 25.3TFLOPS/W sparse

deep-neural-network learning processor with fine-

grained mixed precision of FP8-FP16,” in IEEE Int.

Solid- State Circuits Conf. (ISSCC) Dig. Tech. Papers,

Feb. 2019, pp. 142–144.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

63January/February 2021

	[17]	 F. Karimzadeh et al., “Hardware-aware pruning of

DNNs using LFSR-generated pseudo-random indices,”

2019, arXiv:1911.04468. [Online]. Available: http://arxiv.

org/abs/1911.04468

	[18]	 E. Qin et al., “SIGMA: A sparse and irregular GEMM

accelerator with flexible interconnects for DNN

training,” in Proc. IEEE Int. Symp. High Perform.

Comput. Archit. (HPCA), Feb. 2020, pp. 58–70.

	[19]	 P. A. Merolla et al., “A million spiking-neuron integrated

circuit with a scalable communication network and

interface,” Science, vol. 345, no. 6197, pp. 668–673,

Aug. 2014.

	[20]	 M. Davies et al., “Loihi: A neuromorphicmanycore

processor with on-chip learning,” IEEE Micro, vol. 38,

no. 1, pp. 82–99, Jan. 2018.

	[21]	 S. Yu and P.-Y. Chen, “Emerging memory technologies:

Recent trends and prospects,” IEEE Solid State

Circuits Mag., vol. 8, no. 2, pp. 43–56, Feb. 2016.

	[22]	 Y. J. Song et al., “Demonstration of highly

manufacturable STT-MRAM embedded in 28 nm logic,”

in IEDM Tech. Dig., Dec. 2018, pp. 18–22.

	[23]	 S. Yu et al., “Binary neural network with 16 mb RRAM

macro chip for classification and online training,” in

IEDM Tech. Dig., Dec. 2016, pp. 16–22.

	[24]	 S. Kim et al., “NVM neuromorphic core with 64k-cell

(256-by-256) phase change memory synaptic array

with on-chip neuron circuits for continuous in-situ

learning,” in IEDM Tech. Dig., Dec. 2015, pp. 17–21.

	[25]	 C. Li et al., “Efficient and self-adaptive in-situ learning

in multilayer memristor neural networks,” Nature

Commun., vol. 9, no. 1, p. 2385, Dec. 2018.

	[26]	 A. Krizhevsky, I. Sutskever, and G. E. Hinton

“ImageNet classification with deep convolutional

neural networks,” in Proc. Adv. Neural Inf. Process.

Syst., 2012, pp. 1097–1105.

	[27]	 K. Simonyan and A. Zisserman, “Very deep

convolutional networks for large-scale image

recognition,” 2014, arXiv:1409.1556. [Online]. Available:

http://arxiv.org/abs/1409.1556

	[28]	 K. He et al., “Deep residual learning for image

recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jun. 2016, pp. 770–778.

	[29]	 O. Vinyals et al., “Grandmaster level in StarCraft II

using multi-agent reinforcement learning,” Nature,

vol. 575, pp. 350–354, Oct. 2019.

	[30]	 N. Shazeer et al., “Outrageously large neural

networks: The sparsely-gated mixture-of-experts layer,”

2017, arXiv:1701.06538. [Online]. Available:

http://arxiv.org/abs/1701.06538

	[31]	 H. Touvron et al., “Fixing the train-test resolution

discrepancy,” 2019, arXiv:1906.06423. [Online].

Available: http://arxiv.org/abs/1906.06423

	[32]	 S. Yu, “Neuro-inspired computing with emerging

nonvolatilememorys,” Proc. IEEE, vol. 106, no. 2,

pp. 260–285, Feb. 2018.

	[33]	 Q. Dong et al., “A 1 Mb 28 nm STT-MRAM with 2.8

ns read access time at 1.2 V VDD using single-cap

offset-cancelled sense amplifier and in-situ self-write-

termination,” in IEEE Int. Solid-State Circuits Conf.

(ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 480–482.

	[34]	 K. Tsuchida et al., “A 64 Mb MRAM with clamped-

reference and adequate-reference schemes,” in IEEE

Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.

Papers, Feb. 2010, pp. 258–259.

	[35]	 H. Noguchi et al., “7.5 a 3.3 ns-access-time 71.2 µW/

MHz 1 Mb embedded STT-MRAM using physically

eliminated read-disturb scheme and normally-off

memory architecture,” in IEEE Int. Solid-State Circuits

Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015, pp. 1–3.

	[36]	 J. Y. Wu et al., “A 40 nm low-power logic compatible

phase change memory technology,” in IEDM Tech.

Dig., Dec. 2018, pp. 27–36.

	[37]	 Z. T. Song et al., “High endurance phase change

memory chip implemented based on carbon-doped

Ge2Sb2Te5 in 40 nm node for embedded application,”

in IEDM Tech. Dig., Dec. 2018, pp. 27–35.

	[38]	 B. Govoreanu et al., “10×10nm2Hf/HfO pp. 31–36,

IEEE, 2011. crossbar resistive RAM with excellent

performance, reliability and low-energy operation,” in

IEDM Tech. Dig., pp. 31–36, IEEE, 2011.

	[39]	 P. Jain et al., “13.2 a 3.6Mb 10.1Mb/mm2 embedded

non-volatile ReRAM macro in 22 nm FinFET

technology with adaptive forming/set/reset schemes

yielding down to 0.5 V with sensing time of 5ns at 0.7

V,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.

Tech. Papers, Feb. 2019, pp. 212–214.

	[40]	 T. F. Wu et al., “14.3 a 43pJ/cycle non-volatile

microcontroller with 4.7µs shutdown/wake-up

integrating 2.3-bit/Cell resistive RAM and resilience

techniques,” in IEEE Int. Solid-State Circuits Conf.

(ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 226–228.

	[41]	 M. Trentzsch et al., “A 28 nm HKMG super low power

embedded NVM technology based on ferroelectric

FETs,” in IEDM Tech. Dig., Dec. 2016, pp. 11–15.

	[42]	 S. George et al., “Nonvolatile memory design based

on ferroelectric FETs,” in Proc. 53rd Annu. Design

Autom. Conf. (DAC), 2016, pp. 1–6.

	[43]	 M. Qazi et al., “A low-voltage 1 Mb FRAM in 0.13 µm

CMOS featuring time-to-digital sensing for expanded

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

64 IEEE Design&Test

Tutorial

operating margin,” IEEE J. Solid-State Circuits, vol. 47,

no. 1, pp. 141–150, 2011.

	[44]	 H.-S. P. Wong et al., “Metal-oxide RRAM,” Proc. IEEE,

vol. 100, no. 6, pp. 1951–1970, Jun. 2012, doi: 10.1109/

JPROC.2012.\break2190369.

	[45]	 S.-S. Sheu et al., “A 4 Mb embedded SLC resistive-

RAM macro with 7.2 ns read-write random-access time

and 160ns MLC-access capability,” in Proc. IEEE Int.

Solid-State Circuits Conf., Feb. 2011, pp. 200–202.

	[46]	 H. Y. Lee et al., “Low power and high speed bipolar

switching with a thin reactive ti buffer layer in robust

HfO2 based RRAM,” in IEDM Tech. Dig., Dec. 2008,

pp. 1–4.

	[47]	 S. Yu, Y. Wu, and H.-S.-P.Wong, “Investigating the

switching dynamics and multilevel capability of bipolar

metal oxide resistive switching memory,” Appl. Phys.

Lett., vol. 98, no. 10, Mar. 2011, Art.no. 103514.

	[48]	 S. Yu et al., “A neuromorphic visual system using

RRAM synaptic devices with sub-pJ energy and

tolerance to variability: Experimental characterization

and large-scale modeling,” in IEDM Tech. Dig.,

Dec. 2012, pp. 10–14.

	[49]	 S. R. Ovshinsky, “Reversible electrical switching

phenomena in disordered structures,” Phys. Rev. Lett.,

vol. 21, no. 20, p. 1450, Nov. 1968.

	[50]	 N. Yamada et al., “High speed overwritable phase

change optical disk material,” Jpn. J. Appl. Phys.,

vol. 26, no. S4, p. 61, Jan. 1987.

	[51]	 M. Wuttig and N. Yamada, “Phase-change materials for

rewriteable data storage,” Nature Mater., vol. 6, no. 11,

p. 824, 2007.

	[52]	 S. Raoux, “Phase change materials,” Annu. Rev. Mater.

Res., vol. 39, pp. 25–48, Aug. 2009.

	[53]	 S. Lai, “Current status of the phase change memory

and its future,” in IEDM Tech. Dig., 2003, pp. 10–11.

	[54]	 A. Sebastian, M. Le Gallo, and E. Eleftheriou,

“Computational phase-change memory: Beyond von

Neumann computing,” J. Phys. D, Appl. Phys., vol. 52,

no. 44, Oct. 2019, Art. no. 443002.

	[55]	 S. Ambrogio et al., “Unsupervised learning by spike

timing dependent plasticity in phase change memory

(PCM) synapses,” Frontiers Neurosci., vol. 10, p. 56,

Mar. 2016.

	[56]	 M. He et al., “Ultra-low program current and multilevel

phase change memory for high-density storage

achieved by a low-current SET pre-operation,” IEEE

Electron Device Lett., vol. 40, no. 10, pp. 1595–1598,

Oct. 2019.

	[57]	 A. R. A. L. Lacaita, “Electrothermal and phase-change

dynamics in chalcogenide-based memories,” in IEDM

Tech. Dig., 2004, pp. 911–914.

	[58]	 F. Bedeschi et al., “A bipolar-selected phase change

memory featuring multi-level cell storage,” IEEE J.

Solid-State Circuits, vol. 44, no. 1, pp. 217–227,

Jan. 2009.

	[59]	 J. Orava et al., “Characterization of supercooled liquid

Ge2Sb2Te5 and its crystallization by ultrafast-heating

calorimetry,” Nature Mater., vol. 11, no. 4, p. 279, 2012.

	[60]	 A. Sebastian, M. Le Gallo, and D. Krebs, “Crystal

growth within a phase change memory cell,” Nature

Commun., vol. 5, no. 1, p. 4314, Sep. 2014.

	[61]	 D. Adler et al., “Threshold switching in chalcogenide-

glass thin films,” J. Appl. Phys., vol. 51, no. 6,

pp. 3289–3309, 1980.

	[62]	 D. Ielmini et al., “Analysis of phase distribution in

phase-change nonvolatile memories,” IEEE Electron

Device Lett., vol. 25, no. 7, pp. 507–509, Jul. 2004.

	[63]	 D. Ielmini, A. L. Lacaita, and D. Mantegazza,

“Recovery and drift dynamics of resistance and

threshold voltages in phase-change memories,” IEEE

Trans. Electron Devices, vol. 54, no. 2, pp. 308–315,

Feb. 2007.

	[64]	 S. Lavizzari et al., “Transient effects of delay, switching

and recovery in phase change memory (PCM)

devices,” in IEDM Tech. Dig., Dec. 2008, pp. 1–4.

	[65]	 M. Le Gallo et al., “Evidence for thermally assisted

threshold switching behavior in nanoscale phase-

change memory cells,” J. Appl. Phys., vol. 119, no. 2,

Jan. 2016, Art.no. 025704.

	[66]	 D. Ielmini and Y. Zhang, “Analytical model for

subthreshold conduction and threshold switching in

chalcogenide-based memory devices,” J. Appl. Phys.,

vol. 102, no. 5, Sep. 2007, Art. no. 054517.

	[67]	 A. Pirovano et al., “Low-field amorphous state

resistance and threshold voltage drift in chalcogenide

materials,” IEEE Trans. Electron Devices, vol. 51, no. 5,

pp. 714–719, May 2004.

	[68]	 M. Boniardi and D. Ielmini, “Physical origin of the

resistance drift exponent in amorphous phase change

materials,” Appl. Phys. Lett., vol. 98, no. 24, Jun. 2011,

Art.no. 243506.

	[69]	 M. Le Gallo et al., “The complete time/temperature

dependence of I-V drift in PCM devices,” in Proc. IEEE

Int. Rel. Phys. Symp. (IRPS), Apr. 2016, p. MY-1.

	[70]	 M. Le Gallo et al., “Collective structural relaxation in

phase-change memory devices,” Adv. Electron. Mater.,

vol. 4, no. 9, Sep. 2018, Art. no. 1700627.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

65January/February 2021

	[71]	 P. Fantini et al., “Experimental investigation of

transport properties in chalcogenide materials through

1/f noise measurements,” Appl. Phys. Lett., vol. 88,

no. 26, Jun. 2006, Art.no. 263506.

	[72]	 T. Nirschl et al., “Write strategies for 2 and 4-bit multi-

level phase-change memory,” in IEDM Tech. Dig.,

Dec. 2007, pp. 461–464.

	[73]	 A. Pantazi et al., “Multilevel phase change memory

modeling and experimental characterization,” in Proc.

EPCOS, 2009, pp. 1–8.

	[74]	 N. Papandreou et al., “Programming algorithms for

multilevel phase-change memory,” in Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS), May 2011, pp. 329–332.

	[75]	 G. BettiBeneventi, M. Ferro, and P. Fantini, “1/f noise

in 45-nm RESET-state phase-change memory

devices: Characterization, impact on memory readout

operation, and scaling perspectives,” IEEE Electron

Device Lett., vol. 33, no. 11, pp. 1559–1561, Nov. 2012.

	[76]	 A. Sebastian et al., “Non-resistance-based cell-state

metric for phase-change memory,” J. Appl. Phys.,

vol. 110, no. 8, Oct. 2011, Art. no. 084505.

	[77]	 M. Stanisavljevic et al., “Phase-change memory:

Feasibility of reliable multilevel-cell storage and

retention at elevated temperatures,” in Proc. IEEE Int.

Rel. Phys. Symp., Apr. 2015.

	[78]	 M. Le Gallo et al., “Compressed sensing with

approximate message passing using in-memory

computing,” IEEE Trans. Electron Devices, vol. 65,

no. 10, pp. 4304–4312, Oct. 2018.

	[79]	 M. Le Gallo et al., “Mixed-precision in-memory

computing,” Nature Electron., vol. 1, no. 4, p. 246, 2018.

	[80]	 D. Kuzum et al., “Nanoelectronic programmable

synapses based on phase change materials for

brain-inspired computing,” Nano Lett., vol. 12, no. 5,

pp. 2179–2186, 2011.

	[81]	 A. Sebastian et al., “Temporal correlation detection

using computational phase-change memory,” Nature

Commun., vol. 8, no. 1, p. 1115, Dec. 2017.

	[82]	 O. Golonzka et al., “MRAM as embedded non-volatile

memory solution for 22FFL FinFET technology,” in

IEDM Tech. Dig., Dec. 2018, pp. 18.1.1–18.1.4.

	[83]	 A. Chintaluri et al., “Analysis of defects and variations

in embedded spin transfer torque (STT) MRAM

arrays,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 6,

no. 3, pp. 319–329, Sep. 2016.

	[84]	 A. Aziz et al., “Computing with ferroelectric FETs:

Devices, models, systems, and applications,” in

Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE),

Mar. 2018, pp. 1289–1298.

	[85]	 J. Chen, M. P. Harmer, and D. M. Smyth, “Compositional

control of ferroelectric fatigue in perovskite ferroelectric

ceramics and thin films,” J. Appl. Phys., vol. 76, no. 9,

pp. 5394–5398, Nov. 1994.

	[86]	 M. H. Lee et al., “Prospects for ferroelectric HfZrOx

FETs with experimentally CET=0.98 nm, SSfor=42 mV/

dec, SSrev=28 mV/dec, switch-off 0.2 V, and hysteresis-

free strategies,” in IEDM Tech. Dig., Dec. 2015, pp.

22–25.

	[87]	 S. Salahuddin and S. Datta, “Use of negative

capacitance to provide voltage amplification for low

power nanoscale devices,” Nano Lett., vol. 8, no. 2,

pp. 405–410, Feb. 2008.

	[88]	 S. George et al., “Device circuit co design of FEFET

based logic for low voltage processors,” in Proc. IEEE

Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2016,

pp. 649–654.

	[89]	 X. Yin et al., “Exploiting ferroelectric FETs for low-

power non-volatile logic-in-memory circuits,” in Proc.

35th Int. Conf. Comput.-Aided Design, Nov. 2016,

p. 121.

	[90]	 D. Wang et al., “Ferroelectric transistor based

non-volatile flip-flop,” in Proc. Int. Symp. Low Power

Electron. Design (ISLPED), 2016, pp. 10–15.

	[91]	 A. Sharma and K. Roy, “1T non-volatile memory

design using sub-10nm ferroelectric FETs,” IEEE

Electron Device Lett., vol. 39, no. 3, pp. 359–362,

Mar. 2018.

	[92]	 X. Chen et al., “Power and area efficient FPGA

building blocks based on ferroelectric FETs,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 5,

pp. 1780–1793, May 2019.

	[93]	 X. Chen, M. Niemier, and X. S. Hu, “Nonvolatile

lookup table design based on ferroelectric field-effect

transistors,” in Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS), 2018, pp. 1–5.

	[94]	 X. Chen et al., “Design and optimization of FeFET-

based crossbars for binary convolution neural

networks,” in Proc. Design, Autom. Test Eur. Conf.

Exhibit. (DATE), Mar. 2018, pp. 1205–1210.

	[95]	 M. Jerry et al., “A ferroelectric field effect transistor

based synaptic weight cell,” J. Phys. D, Appl. Phys., vol.

51, no. 43, Oct. 2018, Art. no. 434001.

	[96]	 Z. Wang and A. I. Khan, “Ferroelectric relaxation

oscillators and spiking neurons,” IEEE J. Explor. Solid-

State Comput. Devices Circuits, vol. 5, no. 2,

pp. 151–157, Dec. 2019.

	[97]	 Y. Fanget al., “Neuro-mimetic dynamics of a

ferroelectric FET-based spiking neuron,” IEEE Electron

Device Lett., vol. 40, no. 7, pp. 1213–1216, Jul. 2019.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

66 IEEE Design&Test

Tutorial

	[98]	 Y. Fang et al., “A swarm optimization solver based

on ferroelectric spiking neural networks,” Frontiers

Neurosci., vol. 13, p. 855, Aug. 2019.

	[99]	 J. Wang et al., “Assimilation of biophysical neuronal

dynamics in neuromorphic VLSI,” IEEE Trans. Biomed.

Circuits Syst., vol. 11, no. 6, pp. 1258–1270, Dec. 2017.

	[100]	 E. Donati et al., “Deriving optimal silicon neuron

circuit specifications using data assimilation,” in Proc.

IEEE Int. Symp. Circuits Syst. (ISCAS), May 2018,

pp. 1–5.

	[101]	 V. Sze et al., “Efficient processing of deep neural

networks: A tutorial and survey,” Proc. IEEE, vol. 105,

no. 12, pp. 2295–2329, Dec. 2017.

	[102]	 D. B. Strukov et al., “The missing memristor found,”

Nature, vol. 453, no. 7191, pp. 80–83, May 2008.

	[103]	 A. Shafiee et al., “ISAAC: A convolutional neural

network accelerator with in-situ analog arithmetic in

crossbars,” ACM SIGARCH Comput. Archit. News,

vol. 44, no. 3, pp. 14–26, 2016.

	[104]	 G. Close et al., “A 512 Mb phase-change memory

(PCM) in 90 nm CMOS achieving 2b/cell,” in Symp.

VLSI Circuits Dig. Tech. Papers, pp. 202–203,

IEEE, 2011.

	[105]	 J.-W. Kwon et al., “A two-step 5b logarithmic ADC with

minimum step-size of 0.1% full-scale for MLC phase-

change memory readout,” in Proc. IEEE Custom

Integr. Circuits Conf., Sep. 2014, pp. 1–4.

	[106]	 A. Athmanathan et al., “A 6-bit drift-resilient readout

scheme for multi-level phase-change memory,” in

Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC),

Nov. 2014, pp. 137–140.

	[107]	 W. R. Reohr et al., “High voltage word line driver,”

U.S. Patent 8 120 968, Feb. 21, 2012.

	[108]	 G. B. Bronner, S. H. Dhong, and W. Hwang, “Word line

driver circuit for dynamic random access memories,”

U.S. Patent 5 253 202, Oct. 12 1993.

	[109]	 I. Arsovski et al., “Word-line level shift circuit,” U.S.

Patent 8 218 378, Jul. 10, 2012.

	[110]	 S. R. Cottier et al., “Level shifter for boosting wordline

voltage and memory cell performance,” U.S. Patent

7 710 796, May 4, 2010.

	[111]	 O. Hirabayashi et al., “A process-variation-tolerant

dual-power-supply SRAM with 0.179 µm2 Cell in 40

nm CMOS using level-programmable wordline driver,”

in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.

Tech. Papers, Feb. 2009, pp. 458–459.

	[112]	 H.-H.Lu and C.-F. Wang, “High voltage wordline driver

with a three stage level shifter,” U.S. Patent 7 283

406, Oct. 16, 2007.

	[113]	 V. Stojanovic et al., “Energy-delay tradeoffs in

combinational logic using gate sizing and supply

voltage optimization,” in Proc. 28th Eur. Solid-State

Circuits Conf., Sep. 2002,pp. 211–214.

	[114]	 I. Hubara et al., “Binarized neural networks,” in Proc.

Adv. Neural Inf. Process. Syst., 2016, pp. 4107–4115.

	[115]	 M. Rastegari et al., “XNOR-Net: ImageNet

classification using binary convolutional neural

networks,” in Proc. Eur. Conf. Comput. Vis, 2016,

pp. 525–542.

	[116]	 X. Sun et al., “XNOR-RRAM: A scalable and parallel

resistive synaptic architecture for binary neural

networks,” in Proc. Design, Autom. Test Eur. Conf.

Exhibit. (DATE), Mar. 2018, pp. 1423–1428.

	[117]	 X. Sun et al., “Fully parallel RRAM synaptic array

for implementing binary neural network with (+1,–1)

weights and (+1, 0) neurons,” in Proc. 23rd Asia

South Pacific Design Autom. Conf. (ASP-DAC),

Jan. 2018, pp. 574–579.

	[118]	 J. Yue et al., “14.3 a 65 nm computing-in-memory-based

CNN processor with 2.9-to-35.8TOPS/W system energy

efficiency using dynamic-sparsity performance-scaling

architecture and energy-efficient inter/intra-macro data

reuse,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)

Dig. Tech. Papers, Feb. 2020, pp. 234–236.

	[119]	 P. Wang et al., “SNrram: An efficient sparse neural

network computation architecture based on resistive

random-access memory,” in Proc. 55th ACM/ESDA/

IEEE Design Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

	[120]	 T.-H. Yang et al., “Sparse ReRAM engine: Joint

exploration of activation and weight sparsity in

compressed neural networks,” in Proc. 46th Int.

Symp. Comput. Archit., Jun. 2019, pp. 236–249.

	[121]	 N. Gong et al., “Signal and noise extraction from analog

memory elements for neuromorphic computing,” Nature

Commun., vol. 9, no. 1, pp. 1–8, May 2018.

	[122]	 A. Grossi et al., “Fundamental variability limits of

filament-based RRAM,” in IEDM Tech. Dig., Dec.

2016, pp. 4–7.

	[123]	 B. Crafton, S. Spetalnick, and A. Raychowdhury,

“Counting cards: Exploiting weight and variance

distributions for robust compute in-memory,” 2020,

arXiv:2006.03117. [Online]. Available: http://arxiv.org/

abs/2006.03117

	[124]	 S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural Comput., vol. 9, no. 8,

pp. 1735–1780, 1997.

	[125]	 M. Jaderberg et al., “Spatial transformer networks,”

in Proc. Adv. Neural Inf. Process. Syst., 2015,

pp. 2017–2025.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

67January/February 2021

	[126]	 V. Nair and G. E. Hinton, “Rectified linear units

improve restricted Boltzmann machines,” in Proc. 27th

Int. Conf. Mach. Learn. (ICML), 2010, pp. 807–814.

	[127]	 S. Ioffe and C. Szegedy, “Batch normalization:

Accelerating deep network training by reducing

internal covariate shift,” 2015, arXiv:1502.03167.

[Online]. Available: http://arxiv.org/abs/1502.03167

	[128]	 G. Huang et al., “Densely connected convolutional

networks,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

	[129]	 R. Krishnamoorthi, “Quantizing deep convolutional

networks for efficient inference: A whitepaper,” 2018,

arXiv:1806.08342. [Online]. Available: http://arxiv.org/

abs/1806.08342

	[130]	 Y. Long, T. Na, and S. Mukhopadhyay, “ReRAM-based

processing-in-memory architecture for recurrent

neural network acceleration,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 26, no. 12,

pp. 2781–2794, Dec. 2018.

	[131]	 C. L. Lawson et al., “Basic linear algebra

subprograms for fortran usage,” ACM Trans. Math.

Softw. (TOMS), vol. 5, no. 3, pp. 308–323, Sep. 1979.

	[132]	 M. Courbariaux et al., “Binarized neural networks:

Training deep neural networks with weights

and activations constrained to +1 or -1,” 2016,

arXiv:1602.02830. [Online]. Available: http://arxiv.org/

abs/1602.02830

	[133]	 D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed

point quantization of deep convolutional networks,” in

Proc. Int. Conf. Mach. Learn., 2016, pp. 2849–2858.

	[134]	 B. Jacob et al., “Quantization and training of

neural networks for efficient integer-arithmetic-only

inference,” in Proc. IEEE/CVF Conf. Comput. Vis.

Pattern Recognit., Jun. 2018, pp. 2704–2713.

	[135]	 J. Deng et al., “ImageNet: A large-scale hierarchical

image database,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., Jun. 2009, pp. 248–255.

	[136]	 N. Wang et al., “Training deep neural networks with

8-bit floating point numbers,” in Proc. Adv. Neural Inf.

Process. Syst., 2018, pp. 7675–7684.

	[137]	 S. Wu et al., “Training and inference with integers

in deep neural networks,” 2018, arXiv:1802.04680.

[Online]. Available: http://arxiv.org/abs/1802.04680

	[138]	 R. Banner et al., “Scalable methods for 8-bit training

of neural networks,” in Proc. Adv. Neural Inf. Process.

Syst., 2018, pp. 5145–5153.

	[139]	 X. Dong et al., “NVSim: A circuit-level performance,

energy, and area model for emerging nonvolatile

memory,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 31, no. 7, pp. 994–1007, Jul. 2012.

	[140]	 P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim: A circuit-

level macro model for benchmarking neuro-inspired

architectures in online learning,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 37, no. 12,

pp. 3067–3080, Dec. 2018.

	[141]	 L. Xia et al., “MNSIM: Simulation platform for

memristor-based neuromorphic computing system,”

IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 37, no. 5, pp. 1009–1022, May 2018.

	[142]	 S. Jain et al., “RxNN: A framework for evaluating

deep neural networks on resistive crossbars,” 2018,

arXiv:1809.00072. [Online]. Available: http://arxiv.org/

abs/1809.00072

	[143]	 C. Fallin, C. Craik, and O. Mutlu, “CHIPPER: A

low-complexity bufferless deflection router,” in Proc.

IEEE 17th Int. Symp. High Perform. Comput. Archit.,

Feb. 2011, pp. 144–155.

	[144]	 S. K. Mandal et al., “Analytical performance models

for NoCs with multiple priority traffic classes,” ACM

Trans. Embedded Comput. Syst., vol. 18, no. 5s, pp.

1–21, Oct. 2019.

	[145]	 X. Peng, R. Liu, and S. Yu, “Optimizing weight

mapping and data flow for convolutional neural

networks on processing-in-memory architectures,”

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 4,

pp. 1333–1343, Apr. 2020.

	[146]	 D. Vantrease et al., “Corona: System implications of

emerging nanophotonic technology,” ACM SIGARCH

Comput. Archit. News, vol. 36, no. 3, pp. 153–164,

2008.

	[147]	 S. Deb et al., “Wireless NoC as interconnection

backbone for multicore chips: Promises and

challenges,” IEEE J. Emerg. Sel. Topics Circuits Syst.,

vol. 2, no. 2, pp. 228–239, Jun. 2012.

	[148]	 L. Song et al., “PipeLayer: A pipelined ReRAM-based

accelerator for deep learning,” in Proc. IEEE Int.

Symp. High Perform. Comput. Archit. (HPCA), Feb.

2017, pp. 541–552.

	[149]	 B. Crafton et al., “Breaking barriers: Maximizing array

utilization for compute in-memory fabrics,” in Proc.

IFIP/IEEE 28th Int. Conf. Very Large Scale Integr.

(VLSI-SoC), 2020, pp. 1–6.

	[150]	 P. Chi et al., “PRIME: A novel processing-in-memory

architecture for neural network computation in

ReRAM-based main memory,” ACM SIGARCH

Comput. Archit. News, vol. 44, no. 3, pp. 27–39,

Oct. 2016.

	[151]	 X. Qiao et al., “AtomLayer: A universal ReRAM-based

CNN accelerator with atomic layer computation,” in

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

68 IEEE Design&Test

Tutorial

Proc. 55th ACM/ESDA/IEEE Design Autom. Conf.

(DAC), Jun. 2018, pp. 1–6.

	[152]	 H. Kwon et al., “Understanding reuse, performance,

and hardware cost of DNN dataflows: A data-centric

approach using MAESTRO,” 2018, arXiv:1805.02566.

[Online]. Available: http://arxiv.org/abs/1805.02566

	[153]	 D. E. Rumelhart, G. E. Hinton, and R. J. Williams,

“Learning representations by back-propagating

errors,” Nature, vol. 323, no. 6088, p. 533, 1986.

	[154]	 R. Hasan and T. M. Taha, “Enabling back propagation

training of memristor crossbar neuromorphic

processors,” in Proc. Int. Joint Conf. Neural Netw.

(IJCNN), Jul. 2014, pp. 21–28.

	[155]	 D. Soudry et al., “Memristor-based multilayer neural

networks with online gradient descent training,”

IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10,

pp. 2408–2421, Oct. 2015.

	[156]	 X. Peng et al., “DNN+NeuroSim V2.0: An end-

to-end benchmarking framework for compute-in-

memory accelerators for on-chip training,” 2020,

arXiv:2003.06471. [Online]. Available: http://arxiv.org/

abs/2003.06471

	[157]	 T. Gokmen, M. Onen, and W. Haensch, “Training

deep convolutional neural networks with resistive

cross-point devices,” Frontiers Neurosci., vol. 11,

p. 538, Oct. 2017.

	[158]	 B. Crafton et al., “Local learning in RRAM neural

networks with sparse direct feedback alignment,”

in Proc. IEEE/ACM Int. Symp.Low Power Electron.

Design (ISLPED), Jul. 2019, pp. 1–6.

	[159]	 T. P. Lillicrap et al., “Random synaptic feedback

weights support error backpropagation for deep

learning,” Nature Commun., vol. 7, no. 1, p. 13276,

Dec. 2016.

	[160]	 A. Nøkland, “Direct feedback alignment provides

learning in deep neural networks,” in Proc. Adv.

Neural Inf. Process. Syst., 2016, pp. 1037–1045.

	[161]	 D. Han et al., “A 1.32 TOPS/W energy efficient

deep neural network learning processor with direct

feedback alignment based heterogeneous core

architecture,” in Proc. Symp. VLSI Circuits, Jun. 2019,

pp. C304–C305.

	[162]	 J. Park, J. Lee, and D. Jeon, “A 65-nm neuromorphic

image classification processor with energy-efficient

training through direct spike-only feedback,” IEEE

J. Solid-State Circuits, vol. 55, no. 1, pp. 108–119,

Jan. 2020.

	[163]	 B. Craftonet al., “Direct feedback alignment with

sparse connections for local learning,” Frontiers

Neurosci., vol. 13, p. 525, May 2019.

	[164]	 C. Frenkel, M. Lefebvre, and D. Bol, “Learning

without feedback: Direct random target

projection as a feedback-alignment algorithm

with layerwisefeedforward training,” 2019,

arXiv:1909.01311. [Online]. Available: http://arxiv.org/

abs/1909.01311

	[165]	 I. Yoon et al., “Transfer and online reinforcement

learning in STT-MRAM based embedded systems for

autonomous drones,” in Proc. Design, Autom. Test Eur.

Conf. Exhibit. (DATE), Mar. 2019, pp. 1489–1494.

Brian Crafton is currently pursuing a PhD with the
Georgia Institute of Technology, Atlanta, GA, USA, under
the supervision of Dr. Raychowdhury. His research interest
includes in-memory and near-memory computing for
energy efficient machine learning. Crafton has a BS in
computer engineering from Northeastern University,
Boston, MA (2017). He is a Student Member of IEEE.

Samuel Spetalnick is currently pursuing a PhD
with Georgia Institute of Technology, Atlanta, GA, USA.
His research interest includes applications and circuits
for emerging nonvolatile memory devices. Spetalnick
has a BS in EE and CE from Johns Hopkins University,
Baltimore, MD, USA.

Yan Fang is currently a Postdoctoral Researcher
with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta,
GA, USA. His research interests include brain-inspired
computing systems based on emerging nanodevices,
as well as smart materials that compute and
applications in machine intelligence. Fang has an MS
and a PhD in electrical and computer engineering
from the University of Pittsburgh, Pittsburgh, PA, USA.

Arijit Raychowdhury is currently a Professor
with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA, USA, where
he joined in January 2013. His research interests include
low power digital and mixed-signal circuit design,
design of power converters, and sensors and exploring
interactions of circuits with device technologies.
Raychowdhury has a PhD in electrical and computer
engineering from Purdue University, West Lafayette, IN,
USA (2007). He is a Senior Member of IEEE.

 Direct questions and comments about this article
to Arijit Raychowdhury, School of Electrical and
Computer Engineering, Georgia Institute of Technology,
Atlanta, GA 30332 USA; arijit.raychowdhury@ece.
gatech.edu.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:46:45 UTC from IEEE Xplore. Restrictions apply.

mailto:arijit.raychowdhury@ece.gatech.edu.
mailto:arijit.raychowdhury@ece.gatech.edu.

