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ABSTRACT Electromagnetic (EM) side-channel analysis (SCA) is a prominent tool to break
mathematically-secure cryptographic engines, especially on resource-constrained devices. Presently, to per-
form EM SCA on an embedded device, the entire chip is manually scanned and the MTD (Minimum Traces
to Disclosure) analysis is performed at each point on the chip to reveal the secret key of the encryption
algorithm. However, an automated end-to-end framework for EM leakage localization, trace acquisition,
and attack has been missing. This work proposes SCNIFFER: a low-cost, automated EM Side Channel
leakage SNIFFing platform to perform efficient end-to-end Side-Channel attacks. Using a leakage measure
such as Test Vector Leakage Assessment (TVLA), or the signal to noise ratio (SNR), we propose a greedy
gradient-search heuristic that converges to one of the points of highest EM leakage on the chip (dimension:
N × N ) within O(N ) iterations, and then perform Correlational EM Analysis (CEMA) at that point. This
reduces the CEMA attack time by ∼ N times compared to an exhaustive MTD analysis, and by >20×
compared to choosing an attack location at random. We demonstrate SCNIFFER using a low-cost custom-
built 3-D scanner with an H-field probe (<$500) compared to >$50, 000 commercial EM scanners, and a
variety of microcontrollers as the devices under attack. The SCNIFFER framework is evaluated for several
cryptographic algorithms (AES-128, DES, RSA) running on both an 8-bit Atmega microcontroller and a
32-bit ARM microcontroller to find a point of high leakage and then perform a CEMA at that point.

INDEX TERMS End-to-end EM SCA attack, low-cost EM scanning, automated framework, SCNIFFER.

I. INTRODUCTION
As the internet of things (IoT) continues to grow, security
of many edge nodes has become critical. With many of
these edge nodes being simple microcontrollers, side-channel
attacks pose a powerful threat to their security. In the world of
cryptography, side-channel attacks have long been identified
as a threat to the security of computing and communication
systems attempting to provide confidentiality and integrity of
sensitive data, since the introduction of Differential Power
Analysis in [1]. By analyzing physical side-channel informa-
tion, such as power consumption, timing, or electromagnetic
emissions, cryptographic algorithms that are mathematically
secure can be broken efficiently.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Aljawarneh .

EM side-channel analysis (SCA) is a method of using
the information found in the electromagnetic emissions of a
cryptographic system to extract the secret key, compromising
the security of such a system. Such attacks have been shown
to be capable of actually extracting secret key information,
as in [2] and [3]. These EM emissions originate from cur-
rent consumption of an IC running cryptographic algorithms,
which while flowing through the metal layers of an IC cause
EM radiation as described in [4]. The EM emissions can
either be caused by key-dependent operations or other oper-
ations. EM emissions caused by key-dependent operations
contribute to the side-channel signal, while EM emissions
caused by other operations contribute to algorithmic noise.
EM SCA attacks have successfully been used in the real
world on PCs, shown in [5] and [6], and also on Smart Cards,
in [7], [8]. One powerful and commonly used side-channel
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FIGURE 1. (a, b) Comparison between existing EM SCA systems and
SCNIFFER. While current frameworks have integrated trace collection and
attack and analysis, SCNIFFER integrates EM scanning as well. (c) High
level overview of proposed SCNIFFER framework. SCNIFFER analyzes EM
leakage and uses a gradient descent algorithm to locate points of high
informative leakage at which the EM SCA attack should be performed.

analysis technique is correlational electromagnetic analysis
(CEMA). In CEMA, EM measurements are taken while a
cryptographic algorithm is executing on the target system
(each measurement is known as a trace), and these traces
are correlated with a leakage model, such as the Hamming
Weight or Hamming Distance of data at a particular point in
an algorithm [1], under a hypothesis of a subset of the secret
key. In a successful attack, the hypothesis that results in max-
imum correlation corresponds to the secret key. Thanks to the
divide and conquer nature of side-channel analysis, the cost of
performing an SCA attack is linear in the key size, rather than
exponential, as in brute force or other cryptanalysis methods.

A. MOTIVATION
EM side-channel attacks, while powerful in that they are
non-invasive and do not require any physical changes to the
system being attacked, and benefit from allowing an attacker
to choose the location with maximum information leakage
(SNR), introduce a number of additional challenges com-
pared to the power SCA attacks. Firstly, as the EM signals go
through a power to EM transformation that reduces amplitude
compared to the measurement noise floor, meaning more
traces, or more expensive measurement equipment may be
needed to perform an attack. Secondly, unlike power attacks,
EM attacks require attackers to choose the location of the
attack in the system to capture the EM traces. However,
scanning a device to determine this point is is not currently
integrated into current frameworks (Figure 1(a)). This choice
of location can have a drastic impact on the effectiveness
and efficiency of an attack. As seen in Figure 2, depend-
ing on where the EM probe is placed on a chip, the MTD
for a CEMA attack can vary by >20×, even for the small
9mm x 9mm Atmega and STM microcontrollers used as the
target devices for this work. Current methods for determining
the best location to perform CEMA are based on exhaustive
search, simply performing a CEMA attack at most locations.
Alternatively, it is also possible to choose an arbitrary loca-
tion, and use as many traces as necessary to perform the
CEMA. Practically, if the size of the system is larger, finding

FIGURE 2. The difference in MTD between a CEMA attack at a point of
high leakage vs. at a point of low leakage for both an 8-bit XMEGA
microcontroller (a, b) and a 32-bit STM32F3 microcontroller (c, d). At a
location of high leakage, the correct key separates in 250 traces for both
microcontrollers, while a low leakage location requires >20× more traces
on the XMEGA. At a low leakage location on the STM32F3, the key does
not separate at all within 10,000 traces.

the correct location of the EM leakage becomes extremely
challenging and requires scanning the entire chip/system.

Given the limitations of present attack systems, in this
work, we propose a low-cost, fully automated, end-to-end
platform for performing efficient EM side-channel attacks.
SCNIFFER integrates EM scanning, trace collection, and
attack/analysis into a single framework (Figure 1(b)). A high
level overview of the SCNIFFER framework is shown in
Figure 1(c). The core of this framework is a ∼$200 3-D
printer, which we have modified to utilize as a low-cost
EM scanner. SCNIFFER also uses a greedy gradient-search
heuristic using a leakage measure, such as test vector leakage
assessment (TVLA), or SNR to quickly and automatically
locate a point of high data-dependant leakage (referred to
as simply high leakage throughout this work). Finally, once
the point is determined, the proposed SCNIFFER frame-
work performs the correlational or differential EM analysis
(CEMA/DEMA) at this point.While both CEMA andDEMA
are possible attacks, throughout this work, we will demon-
strate results with CEMA. Such an automated low-cost attack
platform significantly increases the threat surface for IoT
devices, however, it should be noted thatSCNIFFER does not
constitute a new attack; and existing countermeasures against
EM SCA attack are effective against SCNIFFER.

B. CONTRIBUTION
Specific contributions of this article are:
• Low-cost Automated EM Side-channel Analysis
Framework: A fully-automated system for efficiently
scanning a cryptographic chip and finding a location
of high leakage to mount an end-to-end EM SCA
attack is proposed. The entire attack set-up is extremely
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low-cost, owing to the custom-built EM scanner (adapt-
ing a ∼$200 3-D printer) used for mounting the attack,
compared to the commercially available EM probe sta-
tions, which are very costly (>$50, 000). The sys-
tem achieves 100µm spatial resolution, and has a scan
range of 220mm × 220mm, and is easily replicable
(Section 3).

• Integrated EM Scanning, Trace Collection, and
Attack: EM Scanning is brought in the loop of the
attack framework through the proposed greedy gradient-
descent heuristic algorithm, which analyzes leakage on-
the-fly to efficiently scan the chip and locate a point of
high leakage. This algorithm converges to a high leakage
location on an N × N chip within O(N ) iterations. This
algorithm is evaluated with both TVLA and SNR as
the measures of leakage, and results for the complete
system on a variety of cryptographic targets are shown
(Sections 4, 5, 6).

C. PAPER ORGANIZATION
The remainder of the paper is organized as follows.
Section 2 provides the background and summarizes the
existing works on EM Scanning and side-channel attacks.
In Section 3, the SCNIFFER framework is introduced and
the low cost, custom-built EM scanning platform is pre-
sented. Section 4 describes two options for measuring leak-
age, TVLA and SNR, and provides motivation for finding a
point of high leakage. In Section 5, the gradient-descent algo-
rithm for efficiently determining a point of high information
leakage is proposed. Next, Section 6 provides results of run-
ning the system on microcontrollers of varying architectures,
cryptographic algorithms executed, and measures of leakage.
Finally, Section 7 concludes the paper.

II. BACKGROUND AND RELATED WORK
IoT devices have been successfully attacked using side chan-
nel attacks, for example CPA was used to extract encryption
keys from Philips Hue smart lamps in [9]. EM side-channel
attacks were first proposed in [10], and share many properties
with power side-channel attacks, however, can be performed
at a distance, even up to one meter, as in [11]. One of the most
powerful EM SCA attacks is CEMA, which is the straightfor-
ward application of Correlation Power analysis (CPA) [12] on
EM traces.

However, to make these profiled and non-profiled EM
SCA attacks more practical and real-time on any embedded
platform/device, the trace capture and the attack needs to be
automated and more efficient.
SCNIFFER can use several methods of assessing leakage,

for instance, simple signal magnitude, Test Vector Leakage
Assessment (TVLA) [13], or SNR [14]. InTVLA, two sets of
traces are collected. In one set, both the key and plaintext used
as input to the algorithm under test are kept fixed, and in the
other the plaintext is varied randomly, while the key remains
fixed. To assess the leakage, one then performs Welch’s t-test
for each time point of the trace. Welch’s t-test is given by

t = X̄1−X̄2√
s21
N1
+

s22
N2

, where X̄1, X̄2 are the sample means of the two

sets, s1, s2 are sample standard deviations for the sets, and
N1,N2 are the sizes of the sets. If the maximum t-value at a
point is above 4.5, one can conclude leakage is present with
99.999% confidence. Meanwhile, we consider the signal to
noise ratio as defined in [14], to be SNR = VAR[Q]

VAR[N ] , where Q
is the side channel leakage, andN is the noise. Unlike TVLA,
which does not guarantee exploitable leakage, SNR defined
in this way can be directly related to the success rate of a
CEMA attack [14].

Once SCNIFFER has chosen a point to attack, CEMA
is used to recover the secret key. CEMA revolves around
making hypotheses on secret values, then predicting the
EM leakage of an intermediate variable based on the key.
Measurements (traces) are taken while the device performs
encryption, then the measurements are correlated with the
predicted leakage for all hypotheses. The hypothesis that
results in the largest correlation is taken as the guess for the
secret value. The number of traces needed to recover the key
in this way is then the minimum traces to disclosure (MTD).
In this work, the secret values are the bytes of the AES key,
and the intermediate variable is the first round sbox output,
and Hamming Weight, that is, the number of 1’s in the binary
representation of this variable, is used as the leakage model
of data at this point.

Addressing the issue of finding where a chip leaks the
most EM radiation has been investigated in [15], and [16].
EM scanning with a focus on side-channel attacks, that is,
determining where the most cryptographic information leaks
within a chip has been addressed in [17], [18], and [19].
However, such methods focus on observing the leakage over
the entire chip, not efficiently finding the point or region of
the maximum leakage. This causes these methods to take
a long time and a majority of the time is spent collecting
data that is unnecessary for an attacker. Even in recent years,
exhaustive search is used in many EM attacks, including an
attack against threshold implementations in [20] which uses
multiple EM probes simultaneously, and against leakage-
resilient pseudo-random functions in [21]. These attacks use
localized EM leakage to perform attacksmore efficiently than
with power, but rely on exhaustive search to find localize the
leakage. More recently in [22], an adaptive method to deter-
mine the location of greatest cryptographic leakage without
resorting to exhaustive search is presented. However, this
method performs a full SCA attack at each location analyzed,
again making it unsuitable for an attacker, whose goal is
only a single successful attack. By creating a framework that
minimizes this unnecessary data collection, EM side-channel
attacks can be made more efficient, powerful, and practical,
requiring far fewer traces to reveal the secret key of the
cryptographic algorithm. Additionally, these platforms can be
orders of magnitude more costly than the system proposed
in this work, for instance the Riscure EM Probe station [23]
itself can cost∼$50, 000, while the entireSCNIFFER system
costs <$500. Table 1 compares the SCNIFFER system to
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TABLE 1. Comparison with previous works. SCNIFFER is significantly
lower cost compared to previous works, and additionally is the only
system designed to maximize the effectiveness of an attack, as other
systems seek only the location of most informative leakage.

previous works. Note that while all previous works as shown
in the table aim to locate the point of greatest informative
leakage, only SCNIFFER focuses on minimizing the total
number of traces needed for a successful attack. SCNIFFER
is the first fully-automated, efficient EM SCA attack frame-
work and the system is described in the following section.

III. SCNIFFER: LOW COST AUTOMATED EM SCANNING
The SCNIFFER system is designed for low cost and automa-
tion. In this section, we first describe the physical components
that make up SCNIFFER, then discuss the automation aspect
of the system.

TABLE 2. Summary of the main components of the SCNIFFER system,
their costs, performance, and a comparison to Riscure’s EM Probe station.

A. LOW COST EM SCANNING SETUP
The scanning hardware consists of an Ender-3 3-D
printer [24] with a 10mm loop diameter H-field probe
attached to the extruder, the Chipwhisperer [25] platform for
interfacing with the victim (The CW309T-XMEGAmounted
on the 308 UFO Target board) and trace collection, an ampli-
fier to amplify the EM probe output, and finally a PC to
control both the 3-D printer and the Chipwhisperer Lite
capture board. While such EM scanning systems do exist,
for instance, Riscure’s EM Scanning Station, we chose to
create such a system from scratch for the following reasons:
1) Commercial scanning systems (like Riscure [23]) scanning
station is orders of magnitude more expensive and 2) It is
very straightforward to interface with the custom system to
develop the scanning algorithm. As seen in Table 2, the cost

of a commercial scanner is orders of magnitude higher than
SCNIFFER, and while it is hard to know if this price has been
inflated by the selling company, it is reasonable for prices to
be higher, as there are not many EM scanners on the market.

To manipulate the probe, an Ender-3 3-D printer, run-
ning stock firmware was used. This model of printer has a
minimum step size of 0.1mm, and can be controlled via a
USB serial connection. It has a maximum movement speed
of 180 mm/s, with a print area of 220mm×220mm×250mm.
The precision and speed offered by this 3-D printer are suf-
ficient to complete a 50 × 50 scan of the 9mm × 9mm IC
used in testing in an acceptable time. Additional justification
for the choice of printer, beyond the cost includes the ease
of interfacing, the form factor, maintainability, and software
support. The open source firmware used by this printer is well
documented, and can be controlled through an exposed serial
port, making interfacing very easy. The printer also has an
open form factor that allows the probe and victim board to
be mounted easily. While the durability and hardware support
would not be as good as a commercial EM scanner, the simple
construction and use of off-the-shelf components make main-
tenance straightforward. The software support is quite strong,
being open source, and the printer is plug-and-play compati-
ble with any device with a serial port. The system is capable
of performing a 30×30 scan of the chip in∼15 minutes, and
perform an amplitude scan in ∼75 minutes. The probe used
is a commercial H-field probe for performing EMCmeasure-
ments, and the signal is amplified before being passed to the
Chipwhisperer capture board. While the probe used does not
have extremely high spatial resolution, the probe resolution
matches the scan resolution, allowing heatmaps such as the
one in Figure 4(a) to be created, and Chipwhisperer is able
to capture enough information leakage for the target devices
considered, leading to lowMTDs when probed at appropriate
locations, as seen in Figure 2, while still being low cost.
Even though this probe is on the larger side, the SCNIFFER
platform is compatible with more sensitive probes and is
expected to become more precise with such probes. The
complete system is shown in Figure 3(a) showing the 3-D
printer, the probe, Chipwhisperer system, and PC. The probe
and victim IC are shown in detail in Figure 3(b). The probe
position can be controlled manually, through the 3-D printer
controls, or programmatically through the serial connection
to a PC, as it is in the SCNIFFER system.
The major cost savings in the SCNIFFER system come

from using a low cost 3-D printer to control the probe, instead
of a high cost motorized table. The total cost of the 3-D
printer, probe and amplifier used in SCNIFFER is ∼$500,
which is a few orders of magnitude less expensive than many
motorized tables by themselves, and nearly two orders of
magnitude less expensive than systems such as Riscure’s EM
probe station (∼$50, 000). While more expensive scanners,
probes and measurement systems could improve spatial and
frequency resolution, such a system would only be avail-
able to very sophisticated attackers. As SCNIFFER aims
to demonstrate that practical, low-cost attacks are possible
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FIGURE 3. (a) The complete EM Scanning and trace capture set-up system,
including the 3-D printer, Chipwhisperer system, EM probe, amplifier, and
victim. (b) Close-up of scanner, showing probe and victim board.

using systems two orders of magnitude cheaper than existing
scanners, high-cost, high resolution components are not used.
Table 2 summarizes these components, including their costs
and performance compared to the Riscure system.

B. AUTOMATED EM SCANNING
Now that the SCNIFFER system’s low cost hardware has
been described, we move to the automated scanning and
attack procedure. The basic premise of the automated system
is to locate a point on the target device where the chosen
leakage measure is high by using the scanning algorithm
specified in Section 5, and then to automatically perform
CEMA at this point. This removes the need for an expert to
manually analyze example traces to choose a location for an
attack.

During an attack, the probe is positioned at a location dic-
tated by the intelligent scanning algorithm, then, the appropri-
ate ADC phase for trace collection is determined by capturing

FIGURE 4. (a) Heatmap of the SNR values obtained by performing a full
30× 30 scan of the 8-bit target microcontroller. (b) This shows the grid
divisions where leakage measurements were performed. 1000 traces
were used to compute the SNR values at each point. The part of the target
microcontroller board which leak the most information can be observed.

traces at varyingADC phases, and the phase giving the largest
average amplitude is chosen for further measurements at that
particular point. The signal is sampled at 29.48MHz, 4× the
clock frequency of 7.37MHz, so clock edges are aligned to
samples. The signal is amplified by the external amplifier,
as well as the Chipwhisperer internal amplifier (set to a
gain of 34.5dB), but no other prepossessing is performed.
Chipwhisperer is then used to capture traces for leakage
measurement (through SNR, TVLA or other measures) and
finally CEMA is performed at the location found by the
algorithm to have the highest leakage. Example leakage mea-
sures tested with SCNIFFER, and the development of the
intelligent scanning algorithm, along with detailed results are
described in the following sections.

IV. SIGNAL LEAKAGE MEASUREMENT USING SCNIFFER
As the choice of probe location is a major factor in determin-
ing the number of traces needed to recover a key in CEMA as
shown in Figure 2, this location must be chosen intelligently.
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Currently, this is done by either exhaustive search of the entire
chip, or by an expert evaluating sample EM traces at several
locations, and choosing a location based on visual inspection
of the traces. While an exhaustive search will certainly pro-
duce the best location to attack, it requires a large amount
of time, especially for systems with a large initial MTD.
Choosing a location based on visual inspection of traces
may result in a location that can be attacked, however not
necessarily the best in terms of MTD. Additionally, this
method requires an expert to perform the inspection of traces.
In this work, we aim to fully automate the process of choosing
a location as an expert might, by looking at measures of
leakage, and finding a location with high leakage. As with
a manual choice, this location may not be the location corre-
sponding to the lowest MTD, but should leak enough infor-
mation to be attacked in a reasonable amount of time, without
the need for an expert.
SCNIFFER is designed such that any measure of leak-

age can be used. For example signal amplitude, Test Vector
Leakage Assessment (TVLA) [13], or SNR could be used,
and the SCNIFFER platform will be able to converge to a
location where the leakage measure is high inO(N ) measure-
ments. We provide results using both TVLA and SNR, both
described, and then compared in the following subsections.

A. SIGNAL AMPLITUDE FOR LEAKAGE MEASUREMENT
As motivation for why side-channel leakage measures must
be used with SCNIFFER to locate low MTD locations,
we measure the signal amplitude at each point of the victim
chip, producing the heatmap seen in Figure 7(b). The ampli-
tude was measured as the mean square amplitude of each
trace, averaged across 10 traces. As can clearly be seen in
that figure, the amplitude does not correlate to the MTD at
all, as expected.

Hence, further results are shown using one of the two leak-
age measures explained in the following sections, TVLA and
SNR. While these are the measures chosen for demonstrating
SCNIFFER, they are by no means the best nor the only
measures that can be used, as SCNIFFER does not rely on
specific leakage type, only requires that the leakage correlate
with the MTD. Determining the best measures of leakage
in terms of the attack success rate and minimum number of
traces required is a future research direction.

B. TVLA FOR LEAKAGE MEASUREMENT
While signal amplitude is quick to measure, it has no rela-
tionship to side channel leakage. As the goal of SCNIFFER
is to locate a position with high side channel leakage, ampli-
tude is therefore not a good measure. A measure that does
consider side channel leakage, and may be a better fit for
SCNIFFER is TVLA. While high t-values from TVLA may
not necessarily imply a low MTD, it allows locations where
leakage is detected with high confidence to be focused on.
The TVLA performed is the non-specific, fixed versus ran-
dom t-test. We choose N = 200 for the number of traces in
each group, for a total of 400 traces per TVLA performed.

FIGURE 5. (a) TVLA surface plot. Again, the surface is not
smooth or monotonic, as there are many local minima and maxima,
as in Figure 6(a). (b) Histogram of TVLA measurements at a single point.
50 TVLA measurements were made at a point of high leakage, each done
as in (a), using 400 traces each. Given the distribution much wider seen in
(b), the increased roughness of the surface in (a) can be explained.

This number of traces creates large separation between
points of low leakage and ones of high leakage, as seen
in Figure 5(a), where the high leakage location reaches a
t-value of 22, while the low leakage location only reaches a
t-value of 4. Note that the TVLA surface is rough, with many
local minima and maxima. Even at a fixed location there is
variance in the TVLA measurements, shown in Figure 5(b).
However, it is infeasible to perform many TVLA measure-
ments at each point to average out this noise.

C. SNR FOR LEAKAGE MEASUREMENT
Compared to amplitude and TVLA, SNR, as defined in [14]
requires more traces, however has a direct relationship to
the MTD. Given this relationship, one can estimate the
MTD, thus a location maximizing SNR will minimize MTD.
1000 traces were used to calculate the SNR, as for the 8-bit
microcontroller used, this gave large separation between loca-
tions of high and low leakage, as seen in Figure 6, where the
SNR varies from−30dB to 3dB. SNR is calculated using the
same intermediate variable and leakage model as the CEMA
used, that is, the first round sbox output and the the Hamming
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FIGURE 6. (a) SNR surface plot of the same scan as Figure 4(a). Here it
can be clearly seen that the surface is not smooth or monotonic, as there
are many local minima and maxima. (b) Histogram of SNR measurements
at a single point. 50 SNR measurements were made at 1 point. This
distribution can explain some of the roughness of the surface seen in (a).

Weight model, respectively. Like with TVLA, the surface is
somewhat rough, but again it is infeasible to take many SNR
measurements to average out this noise.

D. CORRELATION AMONG AMPLITUDE, TVLA, SNR, MTD
While signal amplitude, TVLA, and SNR can all be used with
SCNIFFER as measures for leakage, since the end goal of the
SCNIFFER system is to perform an attack, we investigate
how these measures compare to the MTD at each location.
To compare the measures, a 10 × 10 scan of the chip was
carried out, and CEMA was performed using 1,000 traces
at each point. The resulting heatmap, along with heatmaps
for SNR, TVLA, and amplitude, are shown in Figure 7, and
the methods are summarized in Table 3. From these results,
clearly TVLA and SNR both appear to correlate to the MTD
strongly, however amplitude correlates very poorly. While
signal amplitude is easy to measure, there is no guarantee
that this measure correlates to the MTD, as high signal
leakage does not imply high information leakage. Addition-
ally, an uncorrelated EM source having high signal leakage

FIGURE 7. 10 × 10 heatmap of (a) TVLA values (b) signal amplitudes
(c) SNR values and (d) MTDs. From these plots TVLA and SNR appear to
correlate to MTD much better than the signal amplitude. While amplitude
is easy to measure, it is clear that high amplitude of leakage does not
necessarily correspond to high information leakage.

TABLE 3. Summary of investigated leakage measures, and comparison
to MTD.

could confuse an attacker into choosing a poor location to
attack. While TVLA also does not guarantee high exploitable
leakage, it can be used to identify and focus on regions
where leakage is detected with confidence. Additionally, for
the microcontroller considered in this work, TVLA does
empirically correlate to the MTD quite well, even if it is
not guaranteed to be the case in general. Finally, as SNR is
directly related to the attack success rate, it unsurprisingly is
highly correlated in practice. Further, due to this correlation,
the location of highest SNR will theoretically be the location
of lowest MTD, achieving SCNIFFER’s goal.

V. GREEDY GRADIENT-SEARCH HEURISTIC
A critical piece of the SCNIFFER system is the algorithm
for locating the point of high leakage at which the attack
should be performed. It is through this algorithm that the
SCNIFFER attack framework gains benefits over an exhaus-
tive search, as the high leakage location in an N × N grid
can be found with N measurements as opposed to N 2. As an
example, we use SNR as the leakage measure to demon-
strate the performance of the SCNIFFER greedy gradient-
search algorithm throughout this section. The remainder of
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this section describes the algorithm in detail, and provides
results of running the algorithm on an Atmel XMEGA 8-bit
processor running software AES.

A. ALGORITHM DESCRIPTION
To avoid taking measurements at all possible points, we pro-
pose a heuristic search algorithm for finding a point of high
leakage in a minimum number of scans. The search algorithm
works in two phases. In the first phase, the search space is
divided into an M × M grid, where M is the initial grid
size parameter, and the leakage is measured at the center of
each grid cell. This initial grid must be more coarse than the
measurement grid, which would beN×N Then in the second
phase, a gradient search algorithm is started from the point
of the highest leakage found in the first phase. The gradient
is computed by measuring the leakage of the four grid cells
adjacent to the current cell, then treating each measurement
as the magnitude of a vector whose direction is the direction
from the cell where the gradient is being estimated to the cell
where the measurement was made. The sum of these vectors
is treated as the estimate of the gradient. The next point to
measure is determined by adding a vector in the direction
of the gradient with a magnitude of stepSize to the current
location. This location is then mapped to a grid cell, and the
leakage is next measured in the center of this resulting grid
cell. Given this method, movement is restricted to be between
grid cells, and is not entirely arbitrary, however movement to
diagonal cells or moving multiple cells at once are possible
moves, depending on the stepSize parameter.

If the algorithm attempts to measure outside the search
space, it will instead move only to the edge and then stop.
A maximum number of iterations can also be specified, along
with an ‘‘iterations without improvement’’ stopping criteria.
The ‘‘iterations without improvement’’ parameter should be
set to a sizeable fraction of the grid resolution N, for values
too small, several iterations may pass without improvement,
especially for noisy surfaces, and the algorithmmay stop pre-
maturely. This two phase process is described in Algorithm 1.

B. ALGORITHM PERFORMANCE
Based on experimental results, the algorithm is able to locate
a point of high leakage in a N × N grid of possible measure-
ments in≈ N SNRmeasurements. Figure 8 demonstrates that
as the search grid size increases by N 2, the number of tests
required only increases by N , showing the improvement over
an exhaustive search is more drastic as the size of the scan
increases, either due to increased resolution or larger scan
area.We also see the effect of the parameters of the algorithm,
and see how varying them affects performance. In Figure 9(a),
where, by increasing the resolution of the initial search grid,
the lowest MTD found for a given number of measurements
changes. As expected, as more initial points are scanned,
fewer gradient steps are required to converge to the high
leakage location. In Figure 9(b), the step size is varied, andwe
see that for a small step size, the algorithm gets stuck in a local
minimum, and does not converge to the point of high leakage

Algorithm 1 Gradient Search Heuristic to Find the High
Leakage Location

N = Grid Resolution;
maxLeakage = 0;
initLocs = getInitialLocations(initialGridSize, N);
for loc ∈ initLocs do

moveProbe(loc);
leakage = getLeakage();
if leakage > maxLeakage then

maxLeakage = leakage;
startLoc = loc;

end
end
moveProbe(startLoc);
bestLoc = startLoc;
m = startLoc;
while Not Converged do

delta = getDelta(get4Neighbors());
m = m−stepSize∗delta;
moveProbe(m);
leakage = getLeakage();
if leakage > maxLeakage then

maxLeakage = leakage;
bestLoc = loc;

end
end

FIGURE 8. Leakage vs. number of SNR measurements for varying grid
scales. Each SNR measurement is computed using 1000 traces collected
at the measured location. The data for the 30× 30 grid was the same as
in Figures 4 and 6(a). The full 60× 60 and 10× 10 grids were also
collected, allowing the performance of the algorithm to be seen at
various degrees of measurement resolution. Through these results, it can
be seen that even as the size of the search space increases by N2,
the time to converge increases by only N .

the other step sizes do. It is worth noting that even though
the algorithm gets stuck in a local minimum, the initial grid
search, SCNIFFER still finds a relatively low MTD location.
A larger step size also converges, and if the step size is too
large however, the convergence is slower, and less smooth,
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FIGURE 9. (a) MTD vs number of SNR measurements performed for
varying the initial sample grid size parameter. Note that the 2× 2 and
3× 3 grids locate the point of high leakage within 40 SNR measurements,
while a single initial sample point results in a higher MTD, and after
45 such measurements. For all initial sample grid sizes, a step size
of 1.14mm was used. (b) This demonstrates the effect of step size on
performance. A step size too small can result in the algorithm getting
stuck in a local maximum, and in this case as the step size increased,
convergence sped up, however, for much larger step sizes, it is possible to
overshoot the location of highest leakage, resulting in slower, less
smooth convergence. For all step sizes, a 2× 2 initial sample grid was
used. Both (a) and (b) used a 30× 30 scan resolution.

as it may step over the best point. Note that the effective step
size is a function of both the resolution of the scan, N , and
the step size parameter of the algorithm. This, along with the
dimensions, L, of the chip allow calculating the effective step
size as 1

N ∗ L mm ∗ StepSize. Given these results, one can
see that for reasonable choices of parameters, the algorithm is
observed to converge to a point of high leakage inO(N ) steps
for an N × N grid of measurements, providing SCNIFFER
with a significant improvement over an exhaustive search.

VI. RESULTS
In this section, we provide results of using the SCNIFFER
framework in various scenarios. We start with the results
of an attack using TVLA, then with SNR. Following this,
we provide a short discussion of the number of traces needed

in a SCNIFFER attack. We then show the performance of the
TVLA and SNR based attacks for a variety of cryptographic
algorithms. Next, results comparing the 8-bit architecture
chip used so far to a 32-bit architecture chip are shown, again
for both TVLA and SNR measures. Finally, we show results
showing the effects of a masking countermeasure, using the
SNR based attack.

FIGURE 10. Heatmaps for AES running on the 8-bit microcontroller, with
the path taken by SCNIFFER shown for TVLA in (a), and SNR in (b). The
same search algorithm parameters were used in all cases.

A. TVLA BASED SCNIFFER

While it is not guaranteed to correlate with MTD, TVLA can
be used with the SCNIFFER algorithm. The path taken for
this case is shown in Figure 10(a). This path remains in the
zone of high TVLA values, and as TVLA correlates well
with MTD in our experiments, this location has a very low
MTD, seen in Figure 11(b), and is among the lowest on the
chip. TVLA at each location requires a total of 400 traces to
compute TVLA, and additional traces would be needed for
systems with lower SNR, as we describe in section IV D.
Additionally, as the TVLA surface is not smooth, conver-
gence is slightly slowed, increasing the attack time.
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FIGURE 11. MTD plots at locations found by SCNIFFER using TVLA as a
leakage measure (a), and SNR as a leakage measure (b). While the MTD is
not the minimum, it is fairly close to the minimum for both measures,
with SNR having a slightly lower MTD than TVLA.

TABLE 4. Comparison of different leakage measures used with
SCNIFFER, as well as results of a full exhaustive search. The total traces
includes the traces needed for the initial search, gradient search, and
CEMA. The exhaustive search total traces includes a 1000 trace CEMA at
all 100 locations.

FIGURE 12. Number of traces required for TVLA and SNR based SCNIFFER
compared to exhaustive search vs. SNR for the case of a 10× 10 scan. The
∼100× reduction is due to the fact that an exhaustive search must
perform a CEMA at each location, while SCNIFFER only visits N locations.

B. SNR BASED SCNIFFER

In contrast to TVLA, which does not guarantee leakage found
is exploitable, SNR does, as it is related to the MTD. We see
that SNR based SCNIFFER does take a different path than
TVLA, and converges to a different location. TheMTD at this
location is slightly lower than the TVLA location, but still not
the absolute lowest found on the chip. Furthermore, to accu-
rately measure SNR, more traces than TVLA are needed for
measurement, increasing the number of traces needed, and
this number increases as the SNR reduces, as discussed in
section IV D. Despite this, once the SNR reduces below a
certain point, shown in Figure 12, a SNR-based SCNIFFER

attack becomes as efficient as a TVLA-based attack, with the
additional guarantee of exploitable leakage.

C. NUMBER OF TRACES NEEDED FOR SCNIFFER ATTACKS
The performance of the SCNIFFER platform can be quanti-
fied and compared to other methods by investigating how the
total number of traces needed to perform an attack changes
as the SNR of the device under attack changes. Previous
works have shown in [26] and [14] that the MTD for a
CEMA attack is related to the SNR of the signal used in
the attack by MTD = k0 ∗ 1

SNR2
. Additionally, [27], [28]

have shown that the number of traces needed to perform a
TVLA (NTVLA) or calculate SNR (NSNR) is also related to
SNR by NTVLA = c0 ∗ 1

SNR and NSNR = c1 ∗ 1
SNR . From

there, it is straightforward to quantify the performance of
an exhaustive search and SCNIFFER using both TVLA and
SNR as follows,

NSCN−TVLA = N ∗ c0 ∗
1

SNR
+ k1 ∗

1
SNR2

(1)

NSCN−SNR = N ∗ c1 ∗
1

SNR
+ k1 ∗

1
SNR2

(2)

Nexh = N 2
∗ k1 ∗

1
SNR2

(3)

where N×N is the resolution of the grid scan, and k0, k1, and
c0 are arbitrary constants chosen such that the models match
the results presented.

A SCNIFFER attack requires measurements to be made
at approximately N points for an N × N grid, as the search
algorithm requires O(N ) measurements, with each requiring
NTVLA in the TVLA case andNSNR in the SNR case. Addition-
ally a single CEMA attack requiring MTD traces is needed,
resulting in equations (1) and (2). An exhaustive search on
the other hand would require a CEMA to be performed at
all N 2 locations, resulting in equation (3). These trends are
pictured in Figure 12, which clearly shows the 100× reduc-
tion in required traces in the case of a 10 × 10 scan for low
values of SNR. This reduction can be explained by the fact
that the number of traces needed to measure TVLA or SNR
changes as 1

SNR , compared to the MTD which changes as
1

SNR2
. Additionally, the number of points traversed is only

N , as opposed to N 2 for an exhaustive search. Also, we see
TVLA slightly outperforms SNR in terms of number of traces
needed to perform an attack when SNR is high. For low SNR,
the performance of both measures is mostly equivalent, as the
number of traces needed is dominated by the CEMA, and
using SNR as the leakage measure gives guarantees on the
success rate of the CEMA, which TVLA does not.

D. EFFECT OF CRYPTOGRAPHIC ALGORITHM
ON CONVERGENCE
Next, in Figure 13(a), the effect of different cryptographic
algorithms running on the target microcontroller can be seen,
when using TVLA. For AES, DES, and RSA, the gradient
search algorithm converges a point of high leakage in a
similar number of traces. A 30×30 scanwas performed for all
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FIGURE 13. (a) Max t-value vs. number of TVLA tests performed for all
cryptographic algorithms (AES, DES, RSA), showing the scanning
algorithm performs well, finding the point of max leakage within 40 TVLA
tests in all cases, with a grid size of 30× 30. The initial sampling grid was
2× 2 and the step size was 0.84mm. Note that for RSA, one of the initial
samples is already close to the maximum, and this maximum is found in
just one step. For AES and DES, whose leakage patterns are less smooth,
and have smaller areas of high leakage, the time to converge is higher.
(b) Max SNR vs. number of SNR measurements for all algorithms (AES,
DES, RSA). The search algorithm again performs well, converging in all
cases in about O(N) measurements (N = 30 in this case). .

algorithms, and the parameters were fixed at a 2× 2 starting
grid and step size of 0.54 mm for all cases. A similar plot,
using the same parameters but SNR as opposed to TVLA
can be seen in Figure 13(b). Again, the search converges
in approximately the same number of measurements for all
algorithms. Through this, we see that the greedy gradient
search algorithm performs well regardless of the specific
cryptographic algorithm, and regardless of the leakage mea-
sure chosen.

E. EFFECT OF ARCHITECTURE ON CONVERGENCE
Additionally, we investigate the effect of different archi-
tectures (microcontrollers) on SCNIFFER. Up to now,
the results shown have been obtained with an 8-bit XMEGA
microcontroller. We now use a 32-bit STM32F3 micro-
controller running software AES as the target device.

FIGURE 14. (a) Max t-value vs. number of measurements for both the
8-bit XMEGA microcontroller and the 32-bit STM32F3 microcontroller. The
algorithm converges within O(N) measurements, where N = 30 in both
cases. the algorithm parameters used are the same as in Figure 13.
(b) Max SNR vs. number of measurements for both microcontroller
architectures, again showing convergence in O(N) measurements. The
parameters used are the same as those in part (a).

The STM32F3 uses the same clock frequency as the 8-bit
XMEGA, 7.37MHz, and sampling is again done at 4× this
frequency. Similarly the amplifier gain is the same as the
8-bit case. Given the same parameters for the greedy gradient
search, the algorithm converges to a location of high leakage
within N measurements, with N = 30 in this case. These
results are shown in Figure 14(a) for TVLA, and Figure 14(b)
for SNR. In both figures, the 8-bit and 32-bit architectures are
compared, given the samemeasurement and search algorithm
parameters. In this context, it is worth mentioning that as the
size of the chip under attack increases, finding the location of
the cryptographic engine could be a difficult task. In scenarios
such as attacking large systems, the SCNIFFER framework
would be extremely useful in efficiently determining the
position of high leakage and then performing the attack at
that point.

F. EFFECT OF MASKING ON CONVERGENCE
Lastly, the effects of a masking countermeasure with a
fixed mask on the performance of SCNIFFER have been
investigated. The same 8-bit XMEGA microcontroller was
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FIGURE 15. Max SNR vs. number of SNR measurements for the unmasked
and a masked implementation of AES on the 8-bit microcontroller. The
algorithm converges within O(N) measurements, where N = 30 in both
cases. The algorithm parameters used are the same as in Figure 13.

TABLE 5. Summary of SCNIFFER convergence for investigated
algorithms, architectures, and countermeasures.

used as the target device, now running the masked imple-
mentation of AES-128 from [29]. We again use the same
measurement and search parameters, and for both cases,
the SCNIFFER algorithm converges in approximately O(N )
measurements. These results are shown in figure 15, where
we see the algorithm converges after 35-40 measurements
for both masked and unmasked implementations. As one
would expect, the SNR for the masked implementation is
significantly lower than the unmasked implementation, but
the SCNIFFER search algorithm is still able to locate a
higher SNR region through gradient search. While the mea-
surement parameters used here were the same as elsewhere,
an important note is that for countermeasures that reduce the
SNR more drastically, would require more traces to be used
to calculate the SNR. Table 5 summarizes the convergence
results of theSCNIFFER search algorithm for all investigated
algorithms, architectures, and the masking countermeasure.
Note that RSA has amuch higher SNR because the operations
performed are different from a 0 bit vs. a 1 bit (for insecure
implementations such as the one investigated, one can often
classify bits from the EM leakage manually), whereas in
AES/DES, the operations are the same and leakage is due
to the actual data being processed. Consequently, there are
only two classes considered in the case of RSA (0 or 1) com-
pared to AES/DES which consider 9 classes (in the HW/HD
models). For 32-bit AES, SNR is reduced as algorithmic

noise is increased due to more parallel operations leading to
higher uncorrelated signals on the data bus. Even with these
variations, SCNIFFER is able to find high leakage locations
in approximately O(N) measurements.

VII. CONCLUSION
This work has introducedSCNIFFER, a fully automated inte-
grated system for conducting end-to-end EM side-channel
attacks against cryptographic systems. SCNIFFER combines
an EM leakage scanning platform, and correlation EM anal-
ysis into a single system, which can perform all steps of
an attack automatically. The system is comprised of a low-
cost custom scanning hardware and gradient search heuristic
based scanning algorithm. We also plan to make our code
for implementing the efficient SCNIFFER framework and
controlling the low-cost 3-D printer for scanning publicly
available.
SCNIFFER is capable of using a variety of measures

of leakage, and the search algorithm was shown to find a
location of high leakage in an N × N chip search space
with O(N ) measurements, providing a significant improve-
ment over exhaustive search, and performing all stages of
the search and attack completely automatically, removing the
need for expert analysis.

Using this fully automated attack, it is possible to effi-
ciently find a point of high leakage and launch a CEMA
attack at this location at the press of a button. The attack
uses a minimal number of traces, for a variety of microcon-
troller architectures and cryptographic algorithms. Even as
the size of the chip increases, or as protections lowering the
SNR, such as masking, are put in place, SCNIFFER retains
efficiency. Finally, we show that as the SNR of the system
under attack decreases, SCNIFFER attacks maintain their
advantage over existing methods, reducing the number of
traces needed by a factor of N compared to an exhaustive
search, for an N × N scan of a chip.
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