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Abstract—The future data-centric world demands edge intelligence (EI)—the ability to

analyze data locally and to decide on a course of action autonomously. Challenges

with Moore’s Law scaling and limitations of von Neumann computing architectures are

limiting the performance and energy efficiency of conventional electronics. Promising

new discoveries of advanced CMOS-compatible HfO2-based ferroelectric devices open the

door for FerroElectronics; electronics based on ferroelectric building blocks integrated on

advanced CMOS technology nodes. It will enable much needed improvement in computing

capabilities making EI a reality. In-memory computing in data-flow architectures is at

the core of FerroElectronics. This approach will enable building 1000Xmore compute-

energy-efficient small-system AI engines needed for EI. Smart edge intelligent IoT devices

enable new applications, for example, micro Drones (uDrones), that demand higher

performance to support local embedded intelligence, real-time learning, and autonomy.

They will drive the next phase of growth in the semiconductor industry.

& INTERNET OF THINGS (IoT) in its “smart” form

is becoming the next driver of the semiconduc-

tor industry. We live in a world where huge

amounts of data from our physical world around

us are being sensed. These data need to be ana-

lyzed, reduced, and acted upon. Today these

data are sent to a central location, the cloud, for

analysis. In the cloud, using established comput-

ing architectures, data are processed to provide

analytics and services for users based on known

business models. This cloud-centric model is

not sustainable and will not be capable of meet-

ing the requirements of the smart IoT world as
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explained by Keshavarzi and van den Hoek.1 It is

interesting to note that in 1999 at its inception,

IoT was defined by Proctor and Gamble’s Kevin

Ashton as “Sensor-technology enabled com-

puters that observe, identify, and understand

the world—without the limitations of human-

entered data. These computers communicate

with each other via the Internet.” This describes

a smart system, but due to a lack of capabilities

of the available technologies, the implementa-

tion yielded passive (not smart) IoT devices.

This turned the world of IoT into a communica-

tion-centric proposition where raw data col-

lected locally by the IoT devices were

transmitted by these IoT devices to a central

location for processing and analysis.

The semiconductor industry for several deca-

des has revolved around using versatile, perva-

sively available, programmable CPUs

based on the von Neumann architec-

ture with clear (physical and archi-

tectural) separation of memory

blocks and logic/processing units.

These architectures rely on a con-

troller thatmoves data fromcache to

the compute element. Preserving the

states and the control flow is critical

in these architectures. While the von

Neumann architecture for construct-

ingmicrosystems has served uswell and continues

to be useful, it is proving to be insufficient to sup-

port today’s new computing workloads, more

focused on the flow of data and characterized by

an overwhelming deluge of data.1,2 Today’s and

tomorrow’s computing demand new capabilities

driven by data centric applications to augment our

legacy ecosystem. New architectures are needed

to serve the demand of smart IoT.

One of the core challenges ofmany IoT applica-

tions is being able to operate in an environment

where energy is scarce, and its sources are inter-

mittent. To process massive amounts of data

locally collected by these IoT devices with high

energy efficiency while maintaining high through-

put, the computing hardware will have to over-

come energy waste associated with moving data

back and forth between separately located mem-

ory and logic areas, i.e., addressing the memory

wall and the von Neumann bottleneck (speed mis-

match of memory and logic) challenges. This

points toward adopting near-memory and in-mem-

ory computing (IMC) architectures, i.e., moving

toward a blurred boundary between logic and

memory elements. Memory plays a critical role

in these innovative data-flow architectures. The

concept of a controller may get challenged

because compute occurs by immediate access

to the data, as it flows. For example, a mathe-

matical function like a matrix multiplication

may occur in the memory. The goal is for the

computation to become analogous to a flow,

where one cannot separate the data flow from

the compute. These new architectures need to

be considered while delivering continued per-

formance gains at a rate exceeding the one pro-

vided by scaling microsystems utilizing the

established von Neumann architecture.1-3

At the forefront of the data centric computing

paradigm is the vision that a tril-

lion, connected, smart edge IoT

device will be pervasively and

seamlessly integrated into the

fabric of life measuring physical

world parameters. For this to

become a reality, EI is required.

EI is the ability to analyze data at

the point of data collection and

make decisions based on that

data autonomously, locally at the

edge in real time (see Figure 1). The EI ability

will lead to unprecedented opportunities for

contextually intelligent applications with far-

reaching societal implications. EI will also ame-

liorate the communication bottleneck by allow-

ing the communication of information bits

rather than the raw data bits.1 EI requires artifi-

cial intelligence (AI) to evolve from being per-

formed in the cloud to being executed by “Small-

System AI” engines in the smart IoT devices at

the edge.

Small-system AI enabled autonomy in deci-

sion making requires a capable engine for these

smart IoT devices. Energy autonomy is equally

vital, especially when energy is scarce and its

supply intermittent. This leads to a special class

of smart IoT devices that will need to rely on

intermittent computing.1 Their small-system AI

engines will operate on harvested energy and

need to have a means to preserve their computa-

tional state when the energy source is depleted.1

We live in a world

where huge amounts of

data from our physical

world around us are

being sensed. These

data need to be

analyzed, reduced,

and acted upon.
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Altogether, if new semiconductor technology

capabilities can support the upcoming computing

paradigm shift effectively, the sheer number of

required semiconductor devices will drive the

next stage of exponential growth of the semicon-

ductor industry. This motivates this article. Inno-

vations at all levels of the computing hierarchy

enabled by materials, devices, circuits, architec-

ture, system, and algorithms will have to play in

concert to deliver new functionalities beyond

what is available today.1,3 FerroElectronics was

introduced as a subfield of electronics based on

HfO2 ferroelectric thin films.1,4 Khan et al.4 dis-

cussed the wide range of devices from versatile

embedded (non)volatile memory elements to

compute elements made possible by CMOS com-

patible HfO2 thin films. This technology shows

promise to form the foundation of tomorrow’s in-

memory computing (IMC) paradigm.

This article addresses the small-system AI

engine based on new architectures, IMC fabrics,

and memory compute elements using ferroelec-

tric key building blocks which are compatible

with advanced CMOS technology platforms. It will

show how ferroelectrics can be leveraged at the

circuit, microarchitecture, system, algorithm, and

software level to deliver autonomy and energy effi-

ciency and provide the performance gains result-

ing from logic-memory colocation. Here, we posit

that FerroElectronics, its building blocks, in

particular the ferroelectric field-effect transistor

(FEFET) memory device with its extreme energy

efficiency and functional diversity enablesmerged

logic-memory functionalities and is the new para-

digm of electronics, necessary for addressing the

needs of these emerging data centric edge com-

puting applications.4,5

APPLICATION-DRIVEN HARDWARE
REQUIREMENTS

Currently, GPUs, the main computing units

used in a central location, the cloud, perform the

computation needed for the neural networks

(NN) used in image recognition applications.

They (including TPUs) operate at a compute effi-

ciency of approximately 1 TOPS/W (and are

aspiring to reach 10 TOPS/W) while delivering

100 TOPS of performance (see Figure 2). TOPS

stand for tera operations per second. This com-

puting performance level is needed to achieve

the required system level accuracy targets. It

mainly relies on an array of processing cores

with shared memory. In these GPU-based accel-

erators, weights and inputs/outputs move

across graphics processing elements (PEs)

accessed from a shared memory. The multiply-

and-accumulate (MAC) function is performed

digitally for the required linear algebra. The

compute efficiency tops out at �1 TOPS/W.

EI’s requirements exceed today’s capabili-

ties. Take for example the case of a micro Drone

(uDrone).3.6 A uDrone should be capable of

doing local computing in order to move

smoothly at speed of 10 m/s or higher and to

control its movement without getting stalled in

the air waiting to decide where to go next. It

needs to process images at a data rate of 30

frames per second (fps) or more. To be able to

do this, three computing vectors need to be

addressed and accelerated: 1) computing for

solving perception class of problems, such as

inference (in machine learning) using neural net-

works; 2) computing for optimization class prob-

lems: particularly, solving large-dimensional

Figure 1. Energy-efficient local computing is the

key for EI, a key to enabling the vision of a trillion

smart connected IoT devices. The power-

performance design space of computing hardware is

depicted.
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optimization problems by the alternating direc-

tion method of multipliers (ADMM), by breaking

the convex optimization problem into smaller

pieces and solving with neural network; this

method requires iteration capability and hence

relies on local memory capability; and 3) com-

puting to enable in-field learning, i.e., utilizing

reinforcement learning (RL) as an efficient tech-

nique, particularly doing so by a combination of

transfer learning (TL) and RL (referred to as

RLþTL). Efficiently performing RLþTL, which

requires a clever local memory hierarchy design

and perhaps combining different memory com-

puting elements, will be discussed in this article.

To quantify these computing needs, the follow-

ing should be considered. As mentioned above,

the uDrone relies on a vision-based navigation

capability because it needs to move smoothly at

speed of 10 m/s. It will process images at a date

rate of 30 fps. Assuming it will use inference for

navigation (which means training has happened

somewhere else), this uDrone needs to deliver 1.8

TOPS of performance. This number is based on

using the average of ResNet-50 and VGG-16 models

(parameters and computing), which requires �10

GMACs per inference in the required neural net-

work. Each MAC corresponds to 2 OPS, so 10

GMACs translates to 20 GOPS. At 30 fps, we need

600 GOPS of performance. Since the uDrone relies

on multispectral imaging, using 3-frequency imag-

ing the total required computation is 1.8 TOPS

for this inference-based image-based navigation.

Inference utilizes stationary weights in the neural

network. If the uDrone needs the ability to learn in

the field, RL for training on-the-fly is needed. RL

can use neural network to learn a function approx-

imator. We are assuming that our required RL

needs 10 rounds (or passes) and 10 iterations,

leading to 100 times more computation than in

the case of inference only. In-the-field learning

requirement increases the computation demand a

hundred fold from 1.8 to 180 TOPS. With the

uDrone being powered by a lightweight battery

providing 100 mW over a period of 30 h of flight,

this means that an engine with a performance of

100 TOPS requires a compute efficiency of 1000

TOPS/W (see Figure 2).

These calculations show that EI may demand

delivering to a wide dynamic range of perfor-

mance, spanning from 1 TOPS to over 100 TOPS.

Considering the limited power budget at the

edge, compute efficiency of exceeding 1000

TOPS/W would be necessary to deliver our

required performance in the small systems to

realize the vision of EI (see Figure 2) for low-

latency and real-time decision-making ability.

WHY EMBEDDED NONVOLATILE
MEMORY?

Various new elements, building blocks, and

foundational technologies (bottom-up) will be

necessary to march toward achieving these high

compute efficiencies. IMC is one such foundation.

Figure 2. Compute performance versus compute efficiency with contours of constant power consumption. EI

requires 1000 TOPS/W with 1-mW power consumption, delivering a performance of 1 TOPS.
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IMC needs a memory compute element made

using an advanced technology node because

both high performance and low power consump-

tion are key requirements. Typically, embedded

SRAM (eSRAM) is the only memory available to

be integrated on the chip in these advanced tech-

nology nodes, but not at large densities nor cost

effectively. Moreover, SRAM is a volatile embed-

ded memory, at 120–150F2 its bit cell is not dense

and for IMC the situation is even worse because

extra transistors (8 T to 10 T instead of typical 6

T SRAM) are needed to manage the write disturb.

In addition, SRAM does not support multiple bits

per cell, it is leaky and consumes significant

amount of standby leakage power. Furthermore,

embedded nonvolatile memory (eNVM) is

required for our small-system AI engine to be

capable of doing intermittent computing and

burst communication. Being in the field where

sources of energy are scarce and having a small-

system AI engine capable of operating in the mW

regime opens the door for energy scavenging as

the main source of energy. Intermittent comput-

ing requires the capability to maintain the state

of the compute engine when the energy source

runs out. This requires the appropriate architec-

ture and software in combination with eNVM to

store the “state of the compute engine” so the

system, at the time when energy becomes avail-

able again, can seamlessly progress forward from

where it stalled rather than having to roll back

the computation progress (resulting in wasting

valuable energy) (see Figure 3).

The EI applications, of which the uDrone

case is an example, impose additional require-

ments on the choice of embedded memory

and the memory compute element. Considering

that the application should be capable of doing

the three defined computing vectors, at least

two classes of neural network topologies are

considered in our discussions. These two neu-

ral network topologies are AlexNet neural net-

work topology and ResNet-50 neural network

topology. For these two neural network topolo-

gies, we will discuss the number of weight

parameters and the required amount of MACs,

assuming that each weight parameter needs

approximately eight bits (8 b) or one-byte (1 B)

of memory.

The AlexNet neural network model and its

variants have been shown to serve EI applica-

tions that require solving a combination of per-

ception and optimization problems because this

neural network topology uses a combination of

both convolutional and fully connected layers. It

requires �60 MB of memory and a computing

performance of �0.725 GMACs or �1.5 GOPS.

The AlexNet neural network topology has 5 con-

volutional and 3 fully connected layers repre-

senting a more balanced neural network

approach. It requires a large amount of memory

along with delivering a high computing perfor-

mance. However, it is not just about computing.

As a result, it cannot be serviced by a systolic

array of processing elements alone. This topol-

ogy applies to the uDrone example and for the

in-field learning RLþTL using a mix of �20%

SRAM and�80% eNVM to provide the right mem-

ory density, low write energy, and high endur-

ance write capable implementation.6,7

A dense and hierarchical embedded memory

with a mix of volatile and nonvolatile capability

is chosen to avoid the memory wall problem

and the energy cost associated with an external

Figure 3. FerroElectronics building blocks based on orthorhombic phase ferroelectric HfO2. Ferroelectric

devices include: the 1T FEFET, 1T-1C FEMFET, and 1T-1C FERAM. A large memory window and multiple bits

per cell are exhibited in FEFET and FEMFET. By harnessing the partial polarization switching in ferroelectric

HfO2, intermediate analog states can be created and utilized as synaptic weight cell. Symmetric weight tuning

characteristics can be achieved in FEFET. Intermittent computing uses eNVM to store the computing state.
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DRAM and FLASH memory combination used in

computing solutions typically seen in the cloud.

At the edge and in our discussed topology for

the uDrone, we need to go beyond stationary

weights for inference-only applications. First and

foremost, we will be requiring a dense low write

energy profile embedded memory solution.

The ResNet-50 topology can be more suit-

able for perception class problems (deployed

in imaging and vision applications) that use a

deeper 50-layer neural network with 49 convolu-

tional layers and 1 fully connected layer. This

neural network topology demands more com-

puting and requires less memory. ResNet-50

asks for �26 MB of memory and requires a com-

puting performance of �4 GMACs or �8 GOPS.

To support both topologies, a computing per-

formance of >10 GOPS and a memory density of

>60 MB at the neural network level are needed.

For challenging EI applications such as the

uDrone, >1 TOPS of performance with embed-

ded memory density of >100 MB at low power

are required.

FEFETs AND KEY FERROELECTRICS
BUILING BLOCKS OF
FERROELECTRONICS

For the data centric smart IoT applications

requiring EI, the key features of the memory

compute element for the IMC and the memory

compute fabric in the memory-centric comput-

ing approaches are discussed next. A dense,

fast, and low energy embedded memory is

essential. SRAM although readily available in

advanced technology nodes (below 28-nm node)

by itself is not the desired choice (low density,

high cost in area, high leakage resulting in poor

energy efficiency). It should be augmented with

a denser and equally low energy profile embed-

ded nonvolatile memory. Key EI application-

driven requirements are as follows: 1) dense

embedded memory capacity of >100 MB; achiev-

ing density metric improvement >4� bits/mm2

based on a single bit per cell compared to an

SRAM; 2) cell size of 20–30F2 corresponding to

>5� smaller cell size than an SRAM; 3) multiple

bits per cell capability, preferably 3 bits/cell;

4) density improvement of >10� per consumed

area, for example, �5� by cell size reduction

and �3� improvement by multiple bits per cell

for about �15� improvement; 5) symmetric con-

ductance for improved learning capability;

6) high endurance of >1010 cycles as learning

needs writing to the memory and not just read-

ing and sensing it; 7) low write energy and in gen-

eral a low energy profile in the class of fJ/bit;

8) speed in ns range; 9) transistor transconduc-

tance allowing for faster read and improved

multibit per cell read; and 10) finally retention

which may be traded for higher endurance for

improving write performance as needed in an

IMC operation. Such tradeoff in a computing-

oriented memory has ramifications for speed

and energy improvements. A table of eNVMs

and embedded memories is captured in

Figure 5.4,5 From an energy, speed, and density

parameters point of view, a memory compute

element based on century-old physics and a

decade-old newly found ferroelectric material

stands out for serving the requirements of EI. It

also satisfies the critical attribute of being pro-

cess compatible with advanced technology

nodes, so it can be used in concert with eSRAM

and scaled logic transistors.

Ferroelectricity has been around for 100

years. In fact, for decades there have been com-

mercial products using PZT-based Perovskite

Oxide Ferroelectric Capacitors (FeCAP) in a 2T-

2C FERAM cell configuration (some applications

use 1T-1C FERAM cell configuration) inside mem-

ory arrays that are used as nonvolatile embed-

ded memories for microcontrollers and digital

signal processors as well as standalone NOR

memory solutions in niche applications like e-

metering and RFIC.1,4 FERAM solutions based on

Perovskite Oxides have not scaled beyond the

130-nm technology node. They suffer from a

destructive read, are slow, and sensing for read

requires an accurate reference, which adds com-

plexity to the memory array design, typically

requiring the larger 2T-2C cell configuration and

it impacts array efficiency negatively. These

commercial FERAM solutions have shown very

good endurance of >1014 cycles making them

well suited for the DRAM type application (note

that the FERAM operation is like a DRAM’s with a

destructive read, consuming some extra endur-

ance cycles for rewriting, but with a longer reten-

tion, lowering the refresh burden at the cost of

not being as dense as DRAM). The film thickness
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for PZT-based FeCAP is large at 70 nm. This is a

major reason why the technology has not scaled

beyond 130 nm. The cell size is at best 3�
smaller than an SRAM’s at that 130-nm node.

Another reason for the niche status of this tech-

nology is the fragile nature of the PZT film, which

makes it hard to integrate in a standard CMOS

process flow. Higher spontaneous and remnant

polarization for a 1T-1C FERAM architecture uti-

lizing 1C FeCAP are required.

Ferroelectric-based devices have the best

energy profile, primarily because of their phys-

ics. The polarization state changes by applying

the small amount of energy associated with

moving an atom by a distance less than an ang-

strom. This consumes less energy than needed

to program charge-based devices and much

less than needed to program magnetic, spin,

phase change, or filament forming RRAM devi-

ces.4 Our quest for the next eNVM technology

that meets all the requirements of our EI appli-

cations leads us to a novel thin film ferroelec-

tric material used to create a device called

FEFET. The FEFET device has been the subject

of research lately because of the recent break-

through observation of ferroelectricity in doped

hafnium dioxide (HfO2),
8,9 an oxide that is com-

patible with leading edge high-k-metal-gate

(HKMG) CMOS process flows. HfO2-based ferro-

electricity and related materials (such as HZO,

i.e., Zr-doped HfO2 also shown as Hf1-xZrxO2

where x<1, but typically x is �0.5) have opened

the path to FEFETs becoming the preferred

memory compute element to be used for

IMC,1,4,5 hafnium dioxide (HfO2) has been widely

used in HKMG logic transistors since the mid-

2000.2,4 Therefore, this compatibility and the

availability of processing tools can unleash the

promise of FEFETs in high volume semiconduc-

tor manufacturing.1,4 Provided the ferroelectric

gate stack thickness is scaled concurrently,

the FEFETs have similar scalability trends to

state-of-the-art logic HKMG/FinFET transistors,

which are scalable down to sub-10-nm nodes.

FEFETs can be integrated in FEOL with a greatly

reduced mask count of �2. FEFETs have already

been integrated in 28-nm planar bulk CMOS and

22-nm fully depleted planar silicon-on-insulator

CMOS platforms as an embedded memory

technology.4,9

FEFETs will be critical in addressing the

needs of the data centric computing paradigm

based on their extreme energy efficiency, high

density, and diverse merged logic-memory func-

tionalities. For example, FEFETs may prove to

possess the ideal analog weight cell characteris-

tics (critical for IMC). Ferroelectric devices oper-

ate based on polarization switching dynamics. In

FEFETs, the intrinsic ferroelectric polarization

dynamics are strongly coupled to the conduc-

tance state of the underlying transistor channel

(see Figure 3).4,5 This device relies on voltage

(electric field driven) switching and is not based

on current switching like many of the proposed

emerging eNVM solutions.

The FEFET is a three-terminal device having

a high transconductance gain that allows for a

wide range of circuit topologies and designs

that can leverage its unique ferroelectric phys-

ics, serving the needs of both traditional and

emerging computing applications. One aspect of

ferroelectric physics in FEFETs is its plasticity

based on the stable, partial switched states in

the ferroelectric film of the FEFET, programmed

by subcoercive voltages (Vc). In the FEFET,

plasticity leads to multistates, nonvolatile oper-

ation, allowing multiple bits per cell capability

as shown in Figure 3. Transconductance gain

eases the operation of reading the multiple bits

per cell. Another interesting characteristic, use-

ful for learning, is the symmetric conductance

behavior that can be achieved in the FEFET

(see Figure 3).

The energy profile of the FEFET is the best-

in-class among all nonvolatile memory technolo-

gies (see Figures 3 and 5) and approaches the

realm of the volatile eSRAM. The transistor

action in FEFETs, which is not available in other

two terminal emerging (resistive) eNVM memo-

ries, allows not only for a fast, nondestructive

read but also enables unique, efficient, and cre-

ative cell, array and circuit designs with a small

cell size (10–30F2 depending on the application).

The write operation in ferroelectric devices can

be extremely fast, taking less than 1 ns. It is the

FEFET’s transconductance that makes also the

read fast.

FEFETs are a work-in-progress and are being

heavily researched to address some of their chal-

lenges: variability (a problem toward achieving
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high density arrays), endurance improvement

requiring engineering of the Interfacial oxide

Layer (IL), lowering of the HZO film thickness,14

and scaling of the FEFET device size. To date,

endurance cycling performance of state-of-the-art

FEFETs have been limited to the range of 105–109

cycles.4 Although this endurance is better than

the endurance of most emerging memory alterna-

tives, it is poor compared to the near unlimited

endurance of eSRAM. Since IMC needs >1010

endurance cycles, improving endurance is the

subject of research with alternative device struc-

tures being considered (for example, the FEMFET

shown in Figure 3, in which the IL layer is elimi-

nated). Improving the design of the gate stack

and the IL layer between the FE layer and transis-

tor channel of the FEFET are also topics of intense

research. The IL layer is the main cause of the lim-

ited endurance performance of the FEFET. The FE

layer by itself if sandwiched between two metallic

layers will have good endurance similar to the 1T-

1C FERAM.4 Retention in FEFETs is good and

meets the typical 10 years duration specification.

It is important to note that retention may be

traded for improving endurance for performing

IMC and in-field learning in smart IoT devices at

the edge.

FEFETs possess a set of key characteristics

that are particularly important for creating

either dense embedded memories for standard

embedded memory applications or more impor-

tantly toward the memory compute element for

IMC to accelerate computation, for example, for

neural networks (providing multistate weight

cells or so-called analog synapses).4 Multibit

operation with 2–8 bits per cell (4–256 levels), in

the order of 100-fold conductance modulation,

fast nanosecond write time, as well as linear and

symmetric conductance (potentiation-depres-

sion) leading to higher accuracy computation

were discussed by Khan et al.4 An FEFET can

also act both as the selector and the nonvolatile

memory element in a ternary content address-

able memory (TCAM) leading to the smallest

footprint TCAM cell with just two transistors.

Content addressable memory cells can be effi-

ciently used for pattern matching applications,

for fast and parallel database searches and in

finding match locations. Cypress semiconductor

commercially deployed nonvolatile SRAM

(combining SRAM and SONOS eNVM) to make

TCAM solutions for network packet routing, but

that TCAM cell compromised of over ten transis-

tors resulting in a very large footprint.1 Nonvola-

tile logic and fast data back-up and wake-up

circuits for intermittent computing can also uti-

lize combinations of these ferroelectric features

and characteristics.4

The use of ferroelectric devices expands sig-

nificantly beyond memory applications and

today includes negative capacitance transistors

for ultralow power, high-performance logic tech-

nology, artificial neurons for spiking neural net-

works (SNNs), and circuit primitives for

stochastic computing.4 All are beyond the scope

of this article. However, we will briefly elude to

using ferroelectric-based coupled oscillatory

networks for continuous time dynamical sys-

tems in our outlook section.4,10

The FEFET is a foundational technology

building block in FerroElectronics. However, Fer-

roElectronics builds on additional ferroelectric-

based devices and technologies for logic, analog,

and RF transistors,1 but these are not the subject

of this article. The FEFETs provide desired fea-

tures for the alternative computing paradigms.

FEFET technology and the broader FerroElec-

tronics are important elements for realizing EI,

the bottom-up approach path.

IN-MEMORY COMPUTING BASED ON
CIRCUITS WITH FEFETs

This section describes building the arrays,

memory compute fabric, corresponding circuits,

processing elements, and the cores for the com-

pute engine for EI using the FEFET memory com-

pute element.

The idea of IMC is not new. Back in the

1960s, even von Neumann himself was thinking

about processing in memory. However, the

question of what processing should be per-

formed in the memory was not resolved then.

Today, with data-centric computing demands

and in particular with the need for vector multi-

ply and add operations, it is worth revisiting

IMC for small systems that need to process

large amounts of data at the point of collection

efficiently with low latency and high speed

(with high throughput). IMC is essential in mem-

ory centric computing. IMC reduces the
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movement of large amounts of data and hence

addresses the memory bottleneck challenge.

IMC brings the MAC operation into the memory.

The way IMC works is that the vector–matrix

multiplication (VMM) is conducted in a parallel

manner: input vectors activate multiple rows in

parallel in the memory. The input vectors are

multiplied by the memory cell conductance

(i.e., multiplication or dot-product) that con-

tains the weights creating a partial sum on the

bit line column, where the current of the bit

line column represents the analog MAC value in

VMM. IMC needs analog-to-digital converters

(ADCs) at the periphery of the array in order to

convert the analog MAC/VMM on the bit line to

binary bits for digital processing in the small

system. The parallel nature of conducting the

math saves energy, but several tradeoff parame-

ters such as the energy, array area efficiency,

pitch-matching, types of ADCs used and the

area and power consumed by the required

ADCs (and extra complexity of mixed signal

design used) need to be considered for IMC.

Next the design of the memory computing

fabric delivering a more efficient IMC needs to

be addressed. What memory compute element

should be used?

SRAM is available and has been used by itself

for IMC with mixed results. The throughput is

high, the read it fast, and the write energy of this

charge-based embedded memory solution is

good. However, this memory is not dense

enough (it consumes a large area in very expen-

sive silicon on advanced technology nodes) for

the workloads of interest in the data-centric sys-

tems utilizing IMC, for example, storing the

weights for doing inference. SRAM leakage is

high favoring the use of SRAM for systems that

are computing with a high activity factor in

order to amortize the leakage cost/penalty of the

memory. SRAM does not support multiple bits

per cell. It is based on 1 bit/cell and to achieve

higher precision it needs to add them, using

thermometer coding. Capacitive banks (based

on the SAR ADC topology) add to its complexity

(capacitive matching and offset cancelation) and

add to the cost. SRAM IMC is based on the mixed

signal design and it is more efficient than digital-

only implementations. It targets lower precision

applications and the periphery circuits are

complex. These issues lower the array efficiency

for SRAM IMC. Particularly, it will be difficult to

encode inputs in voltage or time. This limits

SRAM to toy and smaller problems with a low

number of weight parameters. SRAM IMC is

mostly targeted for binary neural networks

(BNNs) based on XNOR/XOR with low precision.

Since multiple word lines are activated simulta-

neously, read disturb is a fundamental issue. A

bit line discharge in the SRAM array, which is

required for high dynamic-range readout, threat-

ens to write-back into the cell causing destruc-

tive read. SRAM IMC happens locally on the bit

line as we explained earlier (and it requires

ADCs). A better approach is to leverage the

SRAM’s strengths and augment it with a dense

eNVM.1,4,6,7 Based on our applications’ require-

ments, >100 MB memory capacity is required,

suggesting utilizing a mix of 20% SRAM (20 MB)

and 80% dense eNVM (80 MB).6,7

Referring to the three vectors of computing

described earlier, more than computing for accel-

erating neural networks (e.g., CNNs/DNNs) is

needed. Other statistical machine learning algo-

rithms for supporting other linear algebra kernels

(beside the covered vector matrix multiplication)

may not be as complex as deep neural networks

(DNNs). Thus, near-memory computing using

embedded memory (however, not in 2.5D HBM

style systems deployed in the cloud) may be

used. For example, solving the optimization prob-

lems encountered in the case of autonomous

uDrones relies on iterative and distributed

architectures. One such standard algorithmic

approach is ADMM, which is based on local com-

puting and iterative communication (computing a

result, communicate, and iterate on it) in these

distributed array architectures. Studies address-

ing where the energy goes in systems designed for

ADMM tasks show that the consumed energy is

almost equally distributed between computing,

communication, and memory operations.12 This

shows that pure systolic arrays of processing ele-

ments using a predetermined dataflowmay not be

suitable for solving optimization class problems.

Rather, processing units used for optimization

should be connected with their immediate and

farther away neighbors for consensus for deter-

mining global optimization in ADMM as shown by

Chang et al.12 using a Network-on-a-Chip (NoC)
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with an 8-neighbor hierarchical multicast network

based on asynchronous communication and cir-

cuits with a 4-phase handshake protocol. Further-

more, optimization class problems will require

higher bit precision in the compute stages and

should support a programmable bit precision and

datamovement for the iterative algorithms.

Most AI solutions based on machine learning

and accelerated computing for matrix multiplica-

tions for neural networks can be modified to use

positive numbers only, which simplifies the

math and implementation. To address the need

of our three computing vectors and solving opti-

mization class problems requires that both posi-

tive and negative operands are handled. This

capability of doing the math with both positive

and negative numbers will allow serving a wider

range of useful algorithms. However, it will

require designing a special array11 with devices

to emulate positive and negative operands, as

well as appropriate peripheral circuits as shown

in Figure 4. This figure shows using a pseudoc-

rossbar with a 2T cell. What memory element

would be most suited in this approach?

Most emerging eNVM solutions are based on

resistive elements typically using a two-terminal

1R resistor element forming a 1T-1R memory cell

that is deployed in crossbar resistive arrays.

However, the FEFET can be a memory compute

element in the proposed 2T cell configuration.

Building a large array from FEFETs for IMC, doing

computing and using them for EI applications

will require working on improving device-to-

device variability and increasing the endurance of

the FEFETs. We described earlier FEFET’s poten-

tial capability for being an eNVM operating at fJ/

bit energy consumption with nano second speed

(latency) for IMC. Moreover, the FEFET for our

proposed 2T-cell configuration has a small cell

size of �30F2 which is �4-5� smaller than an

SRAM cell size. Enabling multiple bits per cell, let

us say 3 bits/cell, where the FEFET transistor gain

plays a key role in distinguishing between the

states also contributes to a higher overall density

of �15� compared to the same technology node

eSRAM. FEFETs can operate at low voltage and are

compatible with advanced technology nodes and

hence can be integrated next to the embedded

SRAM and advanced logic transistors with mini-

mal extra masks. These listed characteristics and

what we discussed earlier make FEFETs an ideal

solution toward fulfilling our three asked for com-

puting vectors for EI. The FEFET enables a mem-

ory compute element, leading to an IMC fabric,

building a unit to go inside a core, and then config-

uring many cores with local memories as per a

more capable data flow architecture while allow-

ing for communication among neighboring cores

to solve a broader scope of computing problems.

Beyond fixed flow neural networks for vision and

perception (in today’s systolic array data-flow

architectures), this provides a path toward solv-

ing optimizationwith ADMM.

Many factors need to be considered in design-

ing circuits and IMC arrays: cell size, cell configu-

ration (more flexible positive and negative

operands with a differential 2T FEFET cell configu-

ration without impacting peripheral circuits),

number of bits/cell, symmetric potentiation/

depression for higher accuracy computation, BL

capacitance, number of cells per BL, number of

rows and columns, number of activated rows for

IMC, DAC, and ADC resolutions, topology, type of

ADC, and circuit style (requiring mixed signal

circuit design) for IMC readout and sensing. A

careful analysis of the circuit simulation of the full

Figure 4. In memory computing with FEFETs. By using the FEFET conductance as the neural network weight,

matrix vector multiplication can be accelerated in the analog domain. IMC computing based on FEFETs

provides a 9360� improvement in energy-delay product compared to the von Neumann “Baseline.”

Chip Design 2020

42 IEEE Micro

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 12:45:10 UTC from IEEE Xplore.  Restrictions apply. 



integrated circuit chip using the measured FEFET

device parameters based on 28-nmHKMG technol-

ogy by Yoon et al.11 compared three chip imple-

mentations of systems for solving iterative convex

optimization problem by ADMM via least-squares-

minimization: 1) a digital von Neumann architec-

ture implementation based on ALUs and embed-

ded SRAM (Baseline); 2) an SRAM-based 6T-cell

IMC implementation (SRAM-based IMC); and 3) an

FEFET-based 2T-Cell, in pseudo-cross-point array

for IMC implementation (FEFET-based IMC). The

results are shown in Figure 4. All three parame-

ters: energy, delay, and energy-delay product

(EDP) were better for implementation number (3),

i.e., the FEFET-based IMC. In fact, the FEFET-based

IMC consumes 65� less energy than the digital

von Neumann baseline and 19� less energy than

the SRAM-based IMC. The EDP for the FEFET-

based IMC is �9400� lower than the EDP for the

digital von Neumann baseline and 60� lower than

the EDP for SRAM-based IMC. It should be empha-

sized that improved EDP resulting from using the

FEFET technologymakes FEFET technology based

IMC a preferred solution for inference applica-

tions, and not necessarily limited to just low bit

precision inference. This technology is also posi-

tioned for in-field learning. Note that the SRAM-

based IMC occupies >3� larger silicon area than

the FEFET-based IMC implementation. Exploring

the design space shows that for parallel through-

put computation using 12-bit DAC and 14-bit ADC

with 3 bits/cell, the FEFET-based IMC implementa-

tion results in the lowest energy and compute

time. Using higher than 3 bits/cell increases the

overhead and when the DAC resolution increases,

a higher ADC resolution is needed, increasing the

energy consumption. Device variability was

accounted for in these simulations.

The improved efficiency in computing achie-

ved by the FEFET-based IMC was utilized for solv-

ing iterative convex optimization problems by

ADMM via least-squares-minimization in two

applications: 1) constructing signal from 1-D EEG

(ElectroEncephaloGram) and 2) recovering of CT

(computerized tomography) scan images which is

relevant inmedical imaging applications. The fidel-

ity of reconstruction process increases as the sub-

space dimension increases because the FEFET-

based IMC has more computing capability. This

enables real-time reconstruction of the data in the

field at low-power consumption. Furthermore, it is

worth mentioning that solving an iterative algo-

rithm like ADMM in the dataflow architecture

resembles a hardware emulation of a distributed

and discrete-time dynamical system that will be

discussed later.

Figure 5. Comparison table of ferroelectric devices with other embedded (nonvolatile) memory devices.

Ferroelectric devices are advantageous in terms of energy-efficiency and overall balanced performance.4,5

Note that more references for this table are captured by Khan et al.4
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For these imaging applications, accuracy is a

system-level metric. A similar exercise for the

uDrone application would use a different metric

like collision avoidance as a key system-level

metric. A uDrone uses computing for path find-

ing, mapping, depth, localization/SLAM, and con-

trol in addition to vision-based navigation. The

kinds of circuits and arrays we described for the

FEFET-based IMC can help doing more computa-

tion for these functions and algorithms.

SMALL-SYSTEM AI AND THE ENGINE
FOR EDGE INTELLIGENCE

The engine for EI should be more than a sim-

ple inference engine. Perception and optimization

class problems (model-free and even model-

based), and ultimately in-field learning by RL for

autonomy (for uDrone applications) all need to

be handled by such an engine.

A small-system AI engine should be capable of

handing the real-time low-latency learning in the

field through RLþTL using a combination of

eSRAM and FEFET memory. Learning is critical in

the case of uDrones if there is no GPS coverage.

When the uDrones need to be autonomous, pro-

viding a means to learn by interacting with their

environment is critical and challenging, since the

uDrone needs tomove seamlessly at a reasonable

speed of 10 m/s. In that case, model weights need

to be updated frequently (for learning) and in a

short amount of time with a latency of<10ms. RL

can be viewed as a form of learning by trial and

error based on rewardmechanisms. Learning pla-

ces a demanding burden on write time, write

energy, and endurance cycling performance of

the embedded memory solution used in IMC.

This explains why dense FEFET’s potential for

fast nanosecond write time at low fJ/bit write

energy with an improved endurance of at least

1010 cycles is a game changer for these learning

applications. eSRAM and magnetic/spin-based

STT-MRAM were used in a memory hierarchy for

RL in systems for uDrones by mapping the algo-

rithm carefully into this memory hierarchy.6 The

algorithm utilizes both convolutional and fully

connected layers. The fast and changing fully

connected layers use eSRAM while convolutional

and slow changing fully connected layers are

placed in a denser eNVM. In the case of Yoon

et al.,6 the choice of eNVM was STT-MRAM. The

write time (latency) and write energy of this

choice of eNVM determine the performance of

the system and is limited by the magnetic/spin

technology capability; although this hierarchical

approach allowed for an overall improvement in

speed of the uDrone by allowing processing per-

formance at a higher data rate measured by fps,

but it did not meet what is needed for 30 fps at 10

m/s and without any loss in system-level accu-

racy metric. Using FEFET-based eNVM and mov-

ing to more advanced technology nodes will

significantly improve the performance of such

small systems for these applications.

If more computing capability is needed for the

uDrone application for path planning, mapping,

depth, localization/SLAM, and control in addition

to the vision-based navigation, then an FEFET-

based IMCprovides themore computing required.

The uDrone example is an interesting platform for

exploring various compute demands such as 1)

model-free, learning-based statistical solutions by

neural network, etc.; and 2)model-based solutions

by the potential fields approach utilizing various

linear and nonlinear processing units.

Therefore, capabilities enabled by new ferro-

electric-based materials and devices such as the

FEFET-based IMC circuits will be key to realizing

small-system AI engine’s computation demands.

This goes beyond current research in curating

data, pruning, compression, condensing the

weights or techniques for tweaking the precision

based on today’s technology features that have

been widely discussed and continue to be

explored in the literature.2,3

Going back to today’s solutions (e.g., GPU

engine) operating at an energy efficiency of 1 to

10 TOPS/W and considering the gains in delay

reduction by a factor of �140� and improve-

ment in energy efficiency by a factor of �65� for

the FEFET-based IMC as shown in Figure 4, the

system performance compared to these digital

von Neumann architecture (Baseline) solutions

can be enhanced by implementing an IMC archi-

tecture. The results of these improvements

make it likely that the target of >1000 TOPS/W

compute efficiency with a performance dynamic

range of 1–100 TOPS for a corresponding power

range of 1–100 mW as shown in Figure 2 is feasi-

ble for an FEFET-based IMC solution that can be
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exploited by smart IoT devices. In comparison,

central systems in the cloud deliver >100 TOPS

of performance at much higher power consump-

tion of >100 W. However, it will require pushing

research vectors in all scales from materials,

devices, circuits, architecture, and systems,

incorporating both bottom-up and top-down

approaches to achieve the efficiency.

ARCHITECTURAL FEATURES OF THE
PROCESSING ENGINE

Until this point, we discussed how FerroElec-

tronics, a bottom-up approach viewpoint, can

enable much needed efficiency and performance

improvements for EI. Let us also look at architec-

ture and software from a top-down perspective.

Architecture plays a key role in achieving the

goals of the small-system AI engine solutions

deployed for the EI applications. So far, the archi-

tecture has evolved from many cores to domain

specific architectures (DSA) with accelerators and

ASIC SoC implementations in 2.5D heterogeneous

integration for near memory computing. Further-

more, data-flow architectures are deployed based

on a systolic array of processing elements where

predetermined data flow paths are being imple-

mented with shared memory, inching their way

toward near-memory computing implementa-

tions. The next phase in architecture enhance-

ment will be revisiting and implementing IMC with

a dense and low-energy profile embedded mem-

ory to eliminate the “memory wall” problem, pro-

viding more energy efficient higher compute

performance needed to move toward in-field

learning. Such architectures are shown in Figure 6

and are discussed in greater details in the work of

Raychowdhury.3 These architectures will be able

to support the three vectors of computing

described earlier in this article.

Data-flow architectures with arrays of systolic

processing elements have been deployed and one

could conceive moving toward IMC using other

resistive memory elements, but we described its

challenges earlier. However, implementing these

modified data-flow architectureswith ourmemory

compute fabric in IMC, adopting new Ferroelec-

tric-based eNVM in the form of a FEFET memory

compute element, in conjunction with eSRAM to

be used in the architecture shown in Figures 4 and

6 can deliver the performance and efficiency we

discussed in this article. Small systems designed

based on these technology features can solve

interesting EI problems. Distributed optimization

shows an interesting class of algorithms where

computation, communication, and memory stor-

age are almost equally important in terms of

power consumption.12 In-field learning’s computa-

tional demand will be served by IMC, employing

TLþRL by using an eSRAM and FEFETs memory

hierarchy.6,11

The path toward merged logic and memory

and the computational memory concepts will

lead to a future when we create MANNs, RNNs,

dynamical systems based on FerroElectronics

computing foundational capabilities.

OUTLOOK AND A PATH TOWARD THE
FUTURE

A small-system AI engine is at the heart of the

much-needed efficient electronic hardware for EI

that enables the explosion of data centric com-

puting applications. This will in effect fuel the

next wave of exponential growth of the semicon-

ductor industry. We have explained in this arti-

cle why FEFET technology and the broader

FerroElectronics are important elements for real-

izing EI and how they fit in a data-flow architec-

tural scheme with IMC.

Achieving a computing performance at the

very high compute efficiency of 1000 TOPS/W

based on FerroElectronics allows minimizing the

system-level energy consumption by utilizing

enough local computing to minimize the commu-

nication needs in these smart small systems.1

Local computing lowers the burden of communi-

cation. Because transmission energy per bit has

Figure 6. Architecture of computing hardware

supporting near memory and in-memory computing.
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not been successfully reduced below 1 nJ/bit and

because of the bandwidth problems, communica-

tion needs to be kept to a minimum and reserved

for valuable information bits. The solution path

points to using IMC consuming 1 fJ/bit to convert

raw data to valuable information bits, aggregate

these information bits and communicate them in

bursts while being aware of the quality of the

channel, i.e., communicate when channel is good,

further lowering the communication energy (see

Figure 1). Note that by going from data to informa-

tion using local computing reduces the number of

bits by a factor of 10 000�.1

A recent paper13 shows how computing and

communication can be managed by a small-sys-

tem AI engine doing IMC to autonomously opti-

mize the system energy consumption. The

engine is implemented by a SoC that includes an

image processor and a digitally

adaptive radio for communication

along with an IMC-based controller

implemented in 65-nm technology.

It emphasizes the point that AI can

be applied even for the manage-

ment task of determining how

much computing versus communi-

cation should occur. The problem

is a multivariable system level

power optimization challenge.13

This paper is an interesting proof

of concept, but the compute performance effi-

ciency is only at about 1 TOPS/W mainly con-

strained by the technological features and the

limited capabilities supported by the 65-nm

node. To improve the efficiency by greater than

two orders of magnitude while delivering much

improved performance that can be allocated for

computing, for in-field learning, for implement-

ing in-device in-hardware security solutions, Fer-

roElectronics computing is a promising answer.

In dynamical systems, much like the human

brain, logic and memory are not physically sepa-

rated. In a dynamical system, computation

evolves as a flow of physical variables like voltage,

current, phase, etc., that interact with each other

in a coupled system. In futuremachines deploying

a dynamical-system-based compute engine, the

states and the compute are not physically separa-

ble. States appear as analog variables (current,

voltage, phase, etc.), which evolve based on

physical rules and computation is analogous to a

flow. This can be thought of as the ultimate form

of merged logic and memory, where states evolve

autonomously based on the computation that we

are performing (as per flow of the data). For exam-

ple, in a dynamical system, we can set the phase

of an oscillator to follow the function that wewant

to differentiate, and then observe the correspond-

ing frequency [frequency ¼ d/dt(phase)]. Phase

and frequency are not separable here—one is the

result of another. However, if we think of phase as

a state variable, then frequency is the output of

the computation. Ferroelectric-based oscillators

(by FEFETs and as part of FerroElectronics) for

dynamical systems can create such future

machines.4,5,10

In closing, this article discussedhowcombining

a bottom-up ferroelectric based material and

device approach (see Figure 3)

with a top-down architecture

choice (see Figure 6) enabled an

IMC capability to achieve the

results shown in Figure 4 and the

future small-system AI engine to

meet the compute performance

and efficiency requirements of EI

(see Figure 2). The application-

driven discussions in this article

based on looking at the require-

ments from both bottom-up and

top-down identified several technical challenges

and research vectors covering all scales—materi-

als, devices, circuits, design, architectures, and

implementation of an engine to realize the vision of

EI. The archetype of AI in small efficient systems is

a key enabler for a wide range of applications that

require the devices to operate autonomously and

sustainably in challenging and energy-constrained

environments, projected to reach a trillion IoT

devices. EI enables smart devices to sense, analyze,

decide based on and act on locally collected data,

and send information to the cloud, rather than rely-

ing on the cloud to analyze and decide based on

the transmission of raw locally collected data that

is sent to the cloud. Turning sensed data into infor-

mation for actionable intelligence locally requires

a careful balance of energy-efficient computing and

communication demands in a small system. The

system is operating at the intersection of Moore’s

Law and the Shannon–Hartley Theorem. The

In both near-memory

and IMC approaches,

logic and memory are

architecturally close

but physically need to

be designed explicitly.

Thinking beyond, a

dynamical system

approach should be

explored.
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careful tradeoff results in minimized system

energy consumption. Ferroelectric building

blocks enable a new capability and ushers in

the era of FerroElectronics, paving the way for

doing IMC in data-flow architectures, improv-

ing compute efficiency by 1000�, satisfying the

requirements of EI. This will allow deployment

of many smart IoT devices based on the small-

system AI engines for a range of smart applica-

tions that will drive the next phase of the semi-

conductor industry growth.
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