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Abstract— Simultaneous localization and mapping (SLAM) is
a quintessential problem in autonomous navigation, augmented
reality, and virtual reality. In particular, low-power SLAM has
gained increasing importance for its applications in power-limited
edge devices such as unmanned aerial vehicles (UAVs) and small-
sized cars that constitute devices with edge intelligence. This
article presents a 7.25-to-8.79-TOPS/W mixed-signal oscillator-
based SLAM accelerator for applications in edge robotics. This
study proposes a neuromorphic SLAM IC, called NeuroSLAM,
employing oscillator-based pose-cells and a digital head direction
cell to mimic place cells and head direction cells that have been
discovered in a rodent brain. The oscillatory network emulates a
spiking neural network and its continuous attractor property
achieves spatial cognition with a sparse energy distribution,
similar to the brains of rodents. Furthermore, a lightweight vision
system with a max-pooling is implemented to support low-power
visual odometry and re-localization. The test chip fabricated in a
65-nm CMOS exhibits a peak energy efficiency of 8.79 TOPS/W
with a power consumption of 23.82 mW.

Index Terms— Accelerator, continuous attractor network, edge
intelligence, experience map, simultaneous localization and map-
ping (SLAM), spiking neural network (SNN), topological map,
visual odometry, visual template (VT).

I. INTRODUCTION

THE ever-increasing demands on widespread applications
in autonomous navigation such as in mobile robotics,

self-driving vehicles, and unmanned aerial vehicles (UAVs)
have piqued our interest in recent years. Due to the advent
of autonomous navigation, technologies on estimating self-
motion of agents and filtering the cumulative error while
observing an environment have become essential [1], [2]. The
problem of self-motion estimation and error filtering has been
studied in robotics as simultaneous localization and mapping
(SLAM). SLAM is a quintessential problem in autonomous
navigation with applications in obstacle avoidance, path plan-
ning, and swarm robotics [3]–[8]. Visual SLAM using a
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Fig. 1. Simplified procedure of the visual SLAM operations.

monocular or stereo camera has been widespread [9], [10]
because of its low cost and simple platform integration.
In visual SLAM, an inertial measurement unit or an RGB-D
camera can be also employed tradingoff between accuracy
and power consumption [11]–[14]. Recently, low-power visual
SLAM operation has gained importance with applications in
power-limited edge devices such as UAVs and small-sized
cars with edge intelligence. Since the SLAM on the battery-
powered edge devices has a strict power budget, the dedicated
visual SLAM system is necessary for application in edge
robotics. Fig. 1 depicts a simplified procedure of the visual
SLAM operation. In visual SLAM, the self-motion of an agent
and re-localization are conducted with input images. Data
association determines whether an input image is matched
with previously observed images stored in a memory. For
image matching, a direct or a feature-based method can be
employed. A direct method conducts the data association based
on the difference of pixel data which is called a photometric
error. A feature-based method extracts distinct points, called
features, and compares features in each image. In case an
input image is not matched with the retained images, the
visual SLAM stores the input image as well the information
of the current position of the agent in the memory for future
data association. Visual odometry estimates the self-motion

0018-9200 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:01:44 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7373-7028
https://orcid.org/0000-0001-8391-0576


YOON AND RAYCHOWDHURY: NeuroSLAM: MIXED-SIGNAL OSCILLATOR-BASED SLAM ACCELERATOR FOR EDGE ROBOTICS 67

of the agent considering the change of images from one
frame to the next. Then, path integration is performed by
accumulating the output of the visual odometry system. Since
the output of the visual odometry inevitably contains an error
in estimating the self-motion, the error is accumulated during
path integration. In order to suppress the accumulated errors,
loop closure is employed in visual SLAM. In case an input
image is matched with any of the retained images in the phase
of data association, the agent recalls the corresponding position
considering the matched image from the memory and loop
closure occurs to correct the error accumulated during path
integration.

As a solution to the visual SLAM, computational methods
have long been studied [15], [16]. Probabilistic SLAM such as
Kalman filter-based SLAM represents the position of an agent
and distinct objects in the environment, called landmarks,
as probabilities. Since probabilistic SLAM requires extensive
computation to estimate the probabilities that each object
exists in a certain position in every input frame, it is not prac-
tical to implement the probabilistic SLAM system on a low
power application-specified integrated circuits (ASICs). In pur-
suit of practical SLAM systems, many prior arts have focused
on keyframe-based visual SLAM [17]–[22]. The keyframe-
based SLAM estimates the position of the agent in an intermit-
tent frame which is called a keyframe. The keyframe is set to
avoid excessive computation while achieving the appropriate
SLAM results. Some prior arts that employ keyframe-based
SLAM also use feature-based data association. A feature-
based method is tolerant of image distortion in estimating the
self-motion of the agent. However, since features should be
extracted by feature descriptors such as scale-invariant feature
transform (SIFT), speeded up robust features (SURF), etc.,
it leads to computation overhead [23]–[25]. In addition, the
distance from the agent across multiple features should be
estimated, which incurs a considerable amount of computation.
In order to surmount the high power consumption in such
SLAM techniques, recent publications employ power-efficient
multiply-accumulate (MAC) accelerators [18] for efficient data
processing. However, for applications in battery-operated edge
robotics, power consumption is severely constrained. Notwith-
standing the efforts for designing energy-efficient accelerators,
the total power consumption is still high for edge devices.
Thus, ultra-low-power edge robotics necessitates not only
circuit solutions but also novel algorithms that can significantly
reduce the overall system power consumption.

To address the challenge, we explore a different approach
from the prior arts. We observe that biological systems can
solve SLAM with extreme energy-efficiencies by employing
methods that are robust, flexible, and well-integrated into the
creatures’ sensory systems. Particularly, rodents have shown
this extraordinary ability to store and organize visual cues so
that a brief sequence of visual cues can globally re-localize
the animal. Furthermore, the neural recordings of the rodent
hippocampus have led to the discovery of place cells and head
direction cells which show striking correlation with mapping
tasks [26]. Place cells and head direction cells represent the
position and the head direction of a rodent, respectively.
Fig. 2 shows the excitation of place cells and head direction

Fig. 2. Excitation of (a) place cells and (b) head direction cells.

cells. In case a rodent is placed at a certain position, a
designated place cell is excited. Similarly, head direction cells
corresponding to the head direction of the rodent are excited.
In place cells and head direction cells, the energy spreads
to the adjacent cells through cell-level excitatory coupling,
thereby composing a group of excited cells. Furthermore,
neurobiological experiments on neural recordings have demon-
strated that rodents update and re-localize the position of a
group of excitation in place cells and head direction cells
considering the self-motion estimation and visual information.
In light of the spatial cognition of rodents, RatSLAM was
proposed as a bio-inspired SLAM algorithm mimicking place
cells and head direction cells of rodents [27], [28]. However,
RatSLAM, being an algorithm did not explore the connection
between bio-inspired hardware and neuro-inspired algorithms.
Instead, RatSLAM has been digitally implemented in CPUs
with high power consumption. RatSLAM and recent advances
in event-based bio-mimetic hardware inspire us to investigate
NeuroSLAM where an oscillatory-neural network can enable
an ultra-low-power implementation of SLAM.

In this article, a NeuroSLAM accelerator IC is proposed
to support ultra-low-power visual SLAM applications in edge
robotics [29]. The NeuroSLAM IC is the first bio-inspired
SLAM IC employing the principles of spatial cognition of
rodents while considering hardware-efficient designs. The
NeuroSLAM IC employs oscillator-based pose-cells and a
digital head direction cell to mimic place cells and head
direction cells in a rodent brain, respectively. An oscillator
array acts as a spiking neural network (SNN) that enables a
continuous attractor to mimic the neural activities in pose-cell
arrays. In the rest of this article, the oscillator array and SNN
are used interchangeably to describe the operation of the pose-
cell array. Furthermore, a lightweight vision system with max-
pooling is implemented to support low-power visual odometry
and re-localization. We demonstrate a test-chip performing
visual SLAM with an energy efficiency of 7.25–8.79 TOPS/W
where the power consumption is 17.27–23.82 mW,
respectively.

The rest of this article is organized as follows. Section II
introduces the nature of the spatial cognition of rodents.
Section III describes the architecture of the proposed Neu-
roSLAM accelerator IC. Section IV discusses the detailed
implementation of the NeuroSLAM front-end. Section V
delineates the mixed-signal oscillator-based pose-cell array in
the NeuroSLAM accelerator. Section VI presents the measure-
ment results. Section VII presents the conclusions drawn from
this study.
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Fig. 3. Mapping between the position of a rodent and the excited place cells
in rodent hippocampus.

Fig. 4. Path integration with wrapping connectivity in place cells.

II. SPATIAL COGNITION OF RODENTS

Place cells and head direction cells, which are arranged in
a grid, encode spatial location in rodents. Fig. 3 illustrates the
mapping between the position of a rodent in an environment
and the excited place cells in the rodent hippocampus. Owing
to the mapping between place cells and the environment,
a rodent can recognize its own position including the path that
a rodent explores. The spatial cognition of rodents comprises
path integration and re-localization with visual information.
Fig. 4 shows the path integration over time in place cells
and head direction cells. Considering visual information, path
integration occurs by exciting the corresponding place cells
and head direction cells. It is noteworthy that the number of
place cells is not sufficient to compose a one-to-one mapping
to the environment since the dimension of the environment is
virtually unlimited. Thus, place cells feature wrapping connec-
tivity to represent the environment within the limited number
of place cells. In case an excitation in place cells approaches
an edge of place cells during path integration, the excitation
is shifted to the opposite edge of the place cell array, thereby
continuously tracking the self-motion of the rodent. Owing to
wrapping connectivity, a rodent can recognize its position with
the finite number of place cells while exploring vast environ-
ments. Fig. 5 depicts the cumulative errors in path integration
and the re-localization with visual cues. While exploring
environments, rodents organize visual cues combined with the
location where the visual information is observed. In case
a rodent recognizes certain visual information that had been
observed before, the re-localization is initiated in the rodent
hippocampus. With consecutive observations of the visual
cues, a rodent eventually recognizes its correct position via
conflict resolution and updates the excitation in the place cells
and head direction cells.

Fig. 5. Erroneous path integration and re-localization with visual cues.

Fig. 6. Architecture of the NeuroSLAM.

III. PROPOSED NEUROSLAM ACCELERATOR

The NeuroSLAM accelerator employs a similar principle
for spatial cognition similar to RatSLAM [28]. Fig. 6 shows
the architecture of the NeuroSLAM accelerator. Compared to
the RatSLAM which mimicked place cells and head direction
cells by employing a 3-D pose-cell array, the NeuroSLAM fea-
tures a 2-D mixed-signal SNN-based pose-cell array coupled
with digital head-direction computation to attain the power-
and-area-efficient SLAM system. Since the pose-cell array
has wrapping connectivity, a certain pose-cell is excited for
multiple positions in the environment. Thus, an experience
map is used to represent a unique position of an agent. Fig.
7 shows the architectural block diagram of the proposed Neu-
roSLAM accelerator. The NeuroSLAM accelerator comprises
the image buffer, 1-D-image-based visual odometry, visual
template (VT) matching circuits, a VT matching classifier, two
banks of on-die SRAM for VT storage, a pose-cell controller
including a digital head direction cell (θ), and a 7 × 7 SNN-
based circularly connected pose-cell array (X, Y ) mimicking
the attractor properties of the continuous neural network. A
pose-cell is connected with adjacent pose-cells, and the edge
of the pose-cell array is circularly connected considering the
wrapping connectivity. The energy in the pose-cell array is
represented by the frequency of the oscillator in each pose-cell.
The pose-cell controller is integral to the entire process of the
NeuroSLAM accelerator. Fig. 8 shows the simplified system
timing diagram of the NeuroSLAM accelerator. The pose-cell
controller operates at 1/16 of the maximum frequency of the
oscillator that is a replica of the oscillator in the pose-cell.
Once the input image is ready at the image buffer, the visual
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Fig. 7. Top block diagram of the proposed NeuroSLAM accelerator.

Fig. 8. System timing diagram of the NeuroSLAM accelerator.

odometry and the VT matching are performed. Since the VT
matching requires a template scanning process, the processing
time is proportional to the number of stored VTs in the SRAM.
The pose-cell operations such as the energy shift and energy
injection into a designated pose-cell are performed considering
the results of the visual odometry and VT matching. The
output of each process is fed to the off-chip experience map
to compose a map. Each unit of the experience map consists
of a matched VT index, a pose-cell address, and a position of
the agent. The position of an agent in the unit is estimated by
integrating the output of the visual odometry. It is worth noting
that each process of the NeuroSLAM accelerator such as visual
odometry, VT matching, the pose-cell operations, and the
experience map management can be conducted in parallel via
pipelining with necessary flag signals, even though the parallel
operation is not illustrated in Fig. 8 for simplicity. The latency
from the pipeline stages is negligible since the latency of the
NeuroSLAM accelerator is dominantly determined by the VT
scan. Fig. 9 shows the format of the image in the VT and a
simplified diagram of visual odometry. The vision system of
the NeuroSLAM accelerator relies on 140-bit scan-line inten-
sity profiles where pixel-data are column-wise added, 4-bit
quantized, and 1-D-max-pooled. The max-pooled input image
provides the tolerance of image distortion on the NeuroSLAM
to an extent. Compared to RatSLAM which employed three
different raw images in the visual odometry and VT matching,
the NeuroSLAM accelerator employs a single raw image that
is used in VT matching (similar to RatSLAM) to compose a

Fig. 9. (a) Format of the image in the VT and (b) visual odometry.

140-bit 1-D input image and performs visual odometry and VT
matching. There is a tradeoff between image compression and
the accuracy of the SLAM results. While 1-D-max-pooling and
quantization attain low power consumption with a 64× reduc-
tion in the memory footprint, the error in the visual odometry
and the probability of false VT matches can increase. In this
work, the parameter of the max-pooling and quantization is
carefully set at the design phase, to achieve target SLAM
accuracy in addition to increased power-and-area efficiency.
The visual odometry extracts 4-bit translational velocity (v)
based on the difference between the current and the previous
input image, and 4-bit rotational velocity (ω) estimated by
the shifting index that leads to the minimum photometric
error between the two images. Thereafter, path integration is
initiated by accumulating the output of the visual odometry.
Fig. 10 shows the path integration and the virtual pose-cell
shift in the pose-cell controller. The digital head direction cell
accumulates the rotational velocity and determines the current
head direction of the agent. The head direction (θ) is quantized
to a 2-bit resolution to represent the pose-cell energy shift.
The pose-cell energy shift is initiated by accumulating the
translational velocity. In case the accumulated value of the
translational velocity exceeds a threshold of the energy shift,
the virtual pose-cell energy shift is performed considering the
head direction of the agent. Compared to RatSLAM where
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Fig. 10. (a) Path integration and (b) virtual pose-cell energy shift in the
pose-cell controller.

fractional energy shift is conducted in every frame thereby
incurring large power penalty, NeuroSLAM achieves power
efficiency leveraging the integer shift of the pose-cell energy
with the threshold. Furthermore, the virtual pose-cell shift is
employed to avoid the shift of the actual energy in the pose-
cell array. Since the energy in the pose-cell array is shifted by
integer distances, it is power-efficient to rotate the address of
the pose-cell array in view of the wrapping connectivity than
to shift the actual energy in the pose-cell array. Thus, there
is no actual energy shift in the pose-cell array during path
integration. In order to mitigate the accumulated odometry
errors during path integration, loop closure in the SLAM is
tracked via VT matching where a new image needs to be
compared to every stored VT. A VT consists of a 140-bit input
image, the pose-cell address where the maximum excitation is
located, and the 2-bit head direction when the VT is stored.
A VT matching circuits determine whether an input image has
been observed or not while employing parallel VT matching
with dual thresholds and dynamic indexing to expedite the VT
matching process. In case the input image is matched with a
stored VT, energy is injected into the pose-cell and the digital
head direction cell which are concatenated with the matched
VT while considering the virtual pose-cell shift. Otherwise,
a new VT is stored in the memory. When the VT match occurs
and the maximum energy in the pose-cell array is located at
the pose-cell address concatenated with the matched VT, loop
closure occurs in the experience map where error correction
leads to a redistribution of the distance error across the entire
loop [28]. It is worth noting that there is no update on the pose-
cell address retained in the SRAM during loop closure. The
visual odometry generates a similar amount of deterministic
errors while exploring the same path. The pose-cell addresses,
which are generated during exploration of a previously-visited
path, are the same as those stored during the first exploration.
It helps avoid unnecessary energy injection and corresponding
competition in the pose-cell array while retrieving the updated
position of an agent from the experience map.

IV. IMPLEMENTATION OF THE NEUROSLAM FRONT-END

The NeuroSLAM accelerator achieves the power-efficient
bio-inspired SLAM operations while implementing a
hardware-friendly front-end. The 1-D-image-based visual
odometry enables the NeuroSLAM accelerator to achieve
the low-power self-motion estimation for edge devices.

Fig. 11. (a) Functional diagram and (b) block diagram of the visual odometry.

Furthermore, the VT matching circuits with parallel and
dual-threshold VT matching, and dynamic indexing expedite
the template scanning process while reducing the number of
memory access.

A. Visual Odometry

Fig. 11 shows the functional and block diagram of the
visual odometry system. The visual odometry extracts the 4-bit
translational and rotational velocity with 140-bit input images.
The translational velocity is estimated by the photometric error
of two consecutive images. The rotational velocity is estimated
by the shifting index that the lowest photometric error occurs
between two consecutive input images because the rotation of
the agent exhibits a bitwise shift of the input image. Since
the input image consists of 35 elements with 4-bit quantized
grayscale image, the visual odometry shifts the image in the
unit of 4 bits. The photometric error for each shifting index
is extracted in parallel. Considering the shifting index, the
number of elements used in extracting the photometric error
varies from 27 (= 35-|-8|) to 35. Thus, the normalization
of the photometric error is employed to compare the pho-
tometric error considering the number of elements. In the
normalization of the photometric error, a lookup table is used
to avoid division operations in the digital block. Then, the
4-bit minimum photometric error and its 4-bit signed shifting
index are fed to path integration block as the translational and
rotational velocity. In case the minimum photometric error
is exceedingly large due to an abrupt change of the input
image, the visual odometry ignores the result as an error. Since
the NeuroSLAM is a 5-degrees of freedom (DOF) SLAM
architecture, the tilt of a camera, roll in 6 DOF, may incur
errors in extracting rotational velocity. The proposed visual
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Fig. 12. Block diagram of the VT matching circuits.

Fig. 13. Block diagram of the dual-threshold VT matching circuit.

odometry can extract rotational velocity unless a camera is
severely tilted. We empirically determine that the camera can
tolerate about 6◦ of tilt error, considering the aspect ratio of
each section of 1-D-max-pooling.

B. Visual Template Matching Circuits

The VT matching circuits minimize power consumption
and latency via parallel and dual-threshold VT matching,
and dynamic indexing. Fig. 12 illustrates the parallel and
dual-threshold VT matching. The parallel VT matching is
employed to expedite the VT matching. The parallel VT
matching circuit extracts the photometric error (�VT) between
the input VT and two stored VTs simultaneously. Then, the
lower photometric error and its VT index are fed to the
dual-threshold VT matching circuit. The dual-threshold VT
matching controls the template scanning process based on the
photometric error. Fig. 13 shows the block diagram of the
dual-threshold VT matching circuit. In case an input image is
matched with a VT with a lower difference than the low VT
matching threshold (THLOW), the template scanning process
is immediately halted and the matched VT is returned while
reducing further memory access. Otherwise, the full scan of
the VT is conducted. Then, the VT matching circuits determine
whether a new VT should be generated or not. In case the
minimum photometric error during the full VT scan exceeds a
high VT matching threshold (THHIGH), a new VT is appended,
thus reducing the total memory usage compared to employing
a single threshold THLOW. If THLOW < �VT < THHIGH

for every VT, the best matched VT index is returned with
a full scan of stored VTs. During template matching, the
dynamic indexing is also exploited to shorten the scanning
process. Fig. 14 depicts the dynamic indexing during the VT

Fig. 14. (a) Dynamic indexing in the template matching and (b) simulation
results of the memory access with the dual thresholds and dynamic indexing.

scan and its simulation results. Since a VT is stored in the
SRAM sequentially, the vicinity of the last matched VT may
contain a similar image to the next input. We exploit the
fact that once the agent observes a previously seen visual
cue (i.e., VT match at index [ j ]), the probability of a VT
match for the next input is high near the index [ j ], by starting
the VT search at the index [ j ]. The simulation results of
the memory access compared to the baseline without dual
thresholds and dynamic indexing are shown in Fig. 14. The
dual thresholds and dynamic indexing enable the NeuroSLAM
to reduce the number of memory accesses to 63% of the
baseline. In particular, the dynamic indexing is efficient while
exploring an unknown area. Since the probability that a newly
generated VT is likely to match with the next input, it can
dramatically shorten the scanning process.

It is noteworthy that there is no global reallocation of
VTs in the SRAM for each visited scene. Instead, multiple
local VT groups for certain scenes are composed when an
agent explores a certain area multiple times, since VTs are
stored sequentially. Alternatively, we can also employ a global
reallocation of VT. If we do use a global reallocation policy,
the probability that the immediate VT match occurs increases
since all the images stored at a certain scene are placed in the
vicinity of a certain index. However, the overhead in sorting
VTs is inevitable. In particular, the overhead may hinder an
agent from supporting online SLAM since a continuous sorting
of VTs is required. From our simulations and empirical results,
we note that local VT groups provide an effective tradeoff,
reducing the total number of memory accesses without any
requirement of global sorting.

V. MIXED-SIGNAL OSCILLATOR-BASED

POSE-CELL ARRAY

Localization in the NeuroSLAM accelerator is performed
through a bio-mimetic 7 × 7 SNN-based pose-cell array.
An oscillator-based pose-cell represents the energy of the
pose-cell as the frequency of the oscillator. Each pose-cell is
connected with adjacent pose-cells and exhibits the dynamics
of continuous attractor networks (CANs).

A. CANs in the Pose-Cell Array

A CAN is a well-known model to mimic the behavior of
place cells and other neural activities [30]. A CAN has an array
of units of a neural model with weighted connections. The
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Fig. 15. (a) CAN in the pose-cell array and (b) functional diagram of the
oscillator-based pose-cell.

neural unit in CANs performs MAC operations considering
the energy of adjacent units and the weight. The main feature
of CANs is that the connection is recurrent. The recurrent
connections lead to continuous-time operations in CANs and
result in convergence. The weight of the connections is mod-
eled by the Mexican hat wavelet [31], the negative normalized
second derivative of a Gaussian function. Owing to excitatory
and inhibitory connections in CANs, a group of excited units,
called an attractor, exists in a converged state, and each attrac-
tor competes against the other attractors. Fig. 15 shows the
connections in the pose-cell array and the functional diagram
of the oscillator-based pose-cell. The pose-cell array employs
CANs to mimic place cells. Each pose-cell has excitatory
and inhibitory connections to its neighbors with distance-
dependent weights and circular boundary conditions to enable
continuous tracking while preventing the size of the map
from exploding. The weight distributes the energy to adjacent
pose-cells and it composes a group of excited pose-cells as
an attractor in the pose-cell array. Each attractor competes
against the other attractors due to the negative weight for
distant pose-cells. In each pose-cell, the energy from adjacent
pose-cells is accumulated as a control voltage of the oscillator
scaled by the corresponding weight. Since the lower limit of
the control voltage is ground, the pose-cell has an inherent
characteristic of a rectified linear unit (ReLU). In addition, the
threshold of the oscillator is used to maintain sparse energy
distribution in the pose-cell array by preventing insignificant
energy from incurring spurious oscillations in the pose-cell.
Then, considering the control voltage, the pulse for the next
state is generated and distributed to adjacent pose-cells.

B. SNN-Based Pose-Cell

Fig. 16 illustrates the block diagram of the oscillator-
based pose-cell. Each pose-cell features a five-stage ring
voltage-controlled oscillator (VCO) to implement rate-coded
spiking neurons, 4-bit current DACs (IDACs) for each excita-
tory and inhibitory connections, global inhibition and current

Fig. 16. Block diagram of the oscillator-based pose-cell.

boost (BST), and a 4-bit asynchronous counter (CNT)-based
pulse energy detector that encodes the pose-cell energy. The
offset current in the pose-cell is employed to adjust the dead
zone of the pose-cell caused by the threshold voltage of
the VCO. The dead zone suppresses the oscillation due to
insignificant energy at the pose-cell and significantly reducing
the total pose-cell array energy. The frequency of excited pose-
cell is proportional to the amount of its energy content. The
global inhibition and current BST assist the competition of the
attractors and the preservation of the energy distribution in the
pose-cell array, respectively. Since the total energy in the CAN
should be normalized to prevent the depletion or the saturation
of energy, RatSLAM conducts the normalization in digitally
within the digital pose-cell. In order to avoid extremely
high dynamic range of computation, such as summations and
divisions of the energy of the entire network, the NeuroSLAM
employs current BST to preserve significant energy without
the normalization. The weight in the pose-cell array is set to
gradually attenuate the energy of the attractors, which is the
global inhibition. In case the energy of the pose-cell exceeds
a certain threshold, the current BST is asserted to inject
additional energy into the pose-cell, thereby preserving the
attractor in the pose-cell array while suppressing other pose-
cells that carry insignificant energy. A pulse energy detector
is employed at the end of the pose-cell to convert the energy
of the pose-cell, i.e., the frequency of the VCO, to a 4-bit
digital signal. Compared to the functional diagram where the
pose-cell directly distributes the pulse to adjacent pose-cells
shown in Fig. 15, in the circuit implementation, the energy is
distributed in the form of 4-bit digital signals via the pulse
energy detector. If the pulse is directly fed to 25 adjacent
pose-cells, the 25 pulse energy detectors are necessary in
each pose-cell and it leads to prohibitive power-and-area
inefficiency. Thus, the pose-cell distributes the energy of the
pose-cell in a 4-bit digital signal while achieving bio-mimetic
spiking operations in each pose-cell. It is worth noting that the
proposed mixed-signal pose-cell array achieves high energy
efficiency while demonstrating the bio-mimetic characteristic
of CANs and SNNs with analog spiking signals. The absence
of any global clock allows the system to scale, while the sparse
switching of SNNs enables low power dissipation.

Fig. 17 depicts the schematics of the IDAC, the VCO,
and the pulse energy detector in the pose-cell. Each pose-cell
comprises 25 4-bit IDACs and a resistive load to accumulate
the energy from 25 adjacent pose-cells scaled by the weights.
The pose-cell contains 9 sourcing and 16 sinking IDACs for
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Fig. 17. Schematics of (a) current DAC, (b) VCO, and (c) pulse energy
detector in the pose-cell.

excitatory and inhibitory connections, respectively. The weight
of each connection is determined by the unit current of the
IDAC. The output current of each IDAC representing the
multiplication of the 4-bit input energy by the unit current is
accumulated at the node with the resistive load and converted
to the voltage (Vctrl.pre) as the final output of the mixed-
signal MAC operation. The VCO generates the frequency
proportional to the aggregate energy of each pose-cell. Since
the frequency of the VCO is converted to the 4-bit digital
energy via the CNT-based pulse energy detector, the phase
reset of the VCO is important to estimate the accurate energy
of the pose-cell. Thus, the VCO clock signal is reset to
zero phase considering the reset polarity of each VCO stage.
Furthermore, the VCO employs a pseudo-NMOS transmission
gate to linearize the output frequency over the range of control
voltages with the bias voltage of the PMOS gate (Vb) [32].
In the pulse energy detector, the rising edges of the VCO clock
signal (F.self) are counted during 16 periods of the VCO clock
signal that oscillates at the maximum frequency (F.max). Since
the pulse energy detector is based on the 4-bit clock CNT, a
clock-gating logic is employed to prevent the overflow of the
CNT in case the VCO oscillates at the maximum frequency.
The pulse energy detector uses D flip-flops (DFFs) to sample
the output of the CNT. Fig. 18 shows the flowchart and the
timing diagram of the pose-cell operation. The pose-cell array
has three states called the CNT, BST, and max detection (MD)
state in addition to the operations of the energy injection and
drain considering the VT match. In case the input VT is not
matched with the stored VTs, the flag of the energy injection
(E.inj) and the energy drain (E.drain) is not asserted in the

Fig. 18. (a) Flowchart and (b) timing diagram of the pose-cell operation.

CNT state. At the beginning of the CNT state, the energy in
the previous frame (E[k− 1]) from adjacent pose-cells is fed
to the IDAC-based MAC accelerator. The VCO generates the
frequency considering the aggregate energy (�W ·E[k− 1]).
The 4-bit clock CNT in the pulse energy detector is reset
to estimate the frequency representing the aggregate energy.
During this state, the current BST in each pose-cell is asserted
based on the energy in the previous frame. At the end of the
CNT state, the pulse energy detector samples the output of the
4-bit CNT using the DFF with the control signal of the CNT
state (CTRL.CNT) as the 4-bit energy (E.self[3:0]). In the BST
state, each pose-cell evaluates whether the pose-cell obtains
the energy worth contributing to compose the attractor. The
BST state uses the edge detector in the pulse energy detector.
At the beginning of the BST state, the VCO and the edge
detector are reset. Since the output of the VCO is reset to
the supply voltage with zero phase, the input of the edge
detector is set to ground at the reset. The output of the first
DFF (BST.PRE) is asserted when a rising edge occurs at the
clock signal. At the end of the BST state, the second DFF
samples the data as the control signal of the current BST.
Considering the fact that the rising edge occurs after a half
period of the VCO clock signal, the threshold of the current
BST is the 1/32 of the maximum frequency of the VCO. Then,
the control signal of the current BST is updated for the energy
in the current frame (E[k]) and the VCO in the pose-cell array
oscillates considering the energy. In the MD state, the energy
of the pose-cell is estimated to detect the address of the pose-
cell that has the maximum energy in the current frame. The
VCO and the 4-bit CNT are reset at the beginning of the MD
state. The output of the CNT is sampled by the DFF with the
control signal of the MD state (CTRL.MD) as the 4-bit energy
for the pose-cell controller (F.VCO[3:0]). Then, the pose-cell
controller retrieves the pose-cell address where the maximum
excitation is located for further operations such as a new VT
generation and loop closure.
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Fig. 19. Measured pose-cell activities in the pose-cell array.

Fig. 20. Measured pose-cell operation region over the current DAC control
voltages.

When a VT match occurs at the NeuroSLAM front-end,
the pose-cell controller injects energy into the corresponding
pose-cell address concatenated with the matched VT. In this
case, the flag of the energy injection and the energy drain is
asserted during the CNT state. The flag of the energy injection
is asserted only for the designated pose-cell considering the
virtual pose-cell shift. Since the flag sets the control voltage
of the VCO to the supply voltage, the VCO of the designated
pose-cell generates the maximum frequency during the CNT
state. Then, the energy is distributed to adjacent pose-cells and
this generates a new attractor in the pose-cell array. For the
other cells, the flag of the energy drain is asserted to deactivate
the current BST. It initiates a competition between the attractor
of the self-motion cues and a new attractor by lessening the
total energy of the existing attractor.

It is noteworthy that the size of the pose-cell array is
optimized considering the dimension of the environment that
the agent explores and the probability that a false VT match
occurs. Since the pose-cell array employs the wrapping con-
nectivity to encompass a vast environment, the VTs created
at different locations have the probability to contain the same
pose-cell address. In case the pose-cell address concatenated
with the falsely matched VT is the same as the current pose-
cell address that has the maximum excitation in the pose-cell
array, a false loop closure occurs and the accuracy of the

Fig. 21. Measured pose-cell frequency margin in the pose-cell operation.

SLAM result is affected. Thus, there is a tradeoff between
the area due to the dimension of the pose-cell array and the
probability of a false loop closure. In this work, we set the size
of the pose-cell array based on models of indoor environments
which is our domain of interest.

VI. MEASUREMENT RESULTS

The proposed NeuroSLAM accelerator IC is fabricated in
a 65-nm CMOS process and assembled in a QFN48 package.
The test chip allows the agent to continuously move and
acquire data, and the map is seamlessly updated, corrected, and
appended. Due to the limited speed of a serial camera-interface
in the current design, the NeuroSLAM operates at 10 frames
per second (fps) as the same as RatSLAM. However, the
NeuroSLAM architecture itself can support >100 fps. Fig. 19
illustrates the measured pose-cell activities over frames in the
pose-cell array. Each pose-cell can be stalled in its current state
and the corresponding energy can be individually readout to
provide unique observability into SNN attractor dynamics. The
pose-cell activities demonstrate one instance of the measured
competition of the 7 × 7 array where the attractor of the
self-motion cues is initially placed at (3,3). After a VT match,
a new visual cue injects energy into (6,0). Owing to the nature
of the CAN, the injected energy composes a new attractor.
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Fig. 22. (a) Measured memory access and (b) measured total memory access
compared to the baseline over frames.

With multiple VT matches, a new attractor obtains more
energy and starts to suppress the attractor of the self-motion
cues. Finally, the neuronal dynamics eventually corrects the
error accumulated due to the visual odometry. Fig. 20 shows
the measured pose-cell operation region over IDAC control
voltages. The IDAC control voltage is tuned to provide a robust
attractor (>500 MHz of pose-cell firing rate) while minimizing
spurious spiking by non-excited pose-cells and reducing the
power consumption. In case the current in the pose-cell array
is low, an attractor automatically diminishes in the pose-cell
array. In the appropriate current range, an attractor exists stably
in the pose-cell array. In case the current is excessively high,
a sparse energy distribution cannot be maintained and spurious
oscillations can occur thereby affecting the correct operation
of the pose-cell operation. Fig. 21 shows the measured pose-
cell frequency margin in the pose-cell operation. Mismatches
and random process variation among the pose-cell VCOs can
cause certain pose-cells that have a lower threshold voltage
of the VCO to fire spuriously even when they are weakly
excited. In the worst case, a spurious pose-cell can fire faster
than the pose-cell with the maximum excitation and can
incur algorithmic errors. We quantify the robustness of the
system as the pose-cell frequency margin (= frequency of
pose-cell with maximum excitation − worst case spurious
firing) and show measurements across multiple dies illustrating
the frequency margin of 200 MHz with correct operations

Fig. 23. Measured operating frequency and power consumption of the
NeuroSLAM accelerator.

Fig. 24. Measured energy efficiency and energy per MAC operation over
supply voltages of the VCO in the pose-cell array.

across the entire operating range. Fig. 22 shows the measured
memory access during the VT matching. Owing to the dual
thresholds and dynamic indexing in the template matching,
the number of memory access is dramatically reduced over
frames. In particular, the VT matching completes with only
a single memory access in many frames owing to dynamic
indexing. The latency of the VT matching scheme is reduced
to 65% compared to the baseline that does not employ the
dual thresholds and dynamic indexing. Fig. 23 shows the
measured operating frequency and power consumption of the
NeuroSLAM accelerator. Over the supply voltage of the VCO
in the pose-cell array, the pose-cell controller operates at the
frequency of 78–130 MHz. The power consumption of the test
chip is 17.27–23.82 mW under the 4-bit SNN-based pose-cell
operation. Fig. 24 shows the measured energy efficiency and
energy per MAC operation. The energy efficiency of 7.25–
8.79 TOPS/W is achieved. Furthermore, the test chip achieves
0.203 pJ/MAC. It is worth noting that the energy efficiency
increases over the supply voltages of the VCO. Compared to
digital MAC accelerators where the energy-efficiency typically
decreases in the super-threshold region [33], the mixed-signal
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Fig. 25. Measured experience map over frames with the first loop closure.

Fig. 26. Measured SLAM results of the NeuroSLAM accelerator.

oscillator-based NeuroSLAM accelerator operates more effi-
ciently over high supply voltages. That means that the Neu-
roSLAM accelerator is more efficient when higher throughput
is required. Fig. 25 illustrates the measured experience map
over frames with the first loop closure during a typical SLAM
operation. The odometry errors are accumulated during path
integration. Once the agent visits a previously explored area,
loop closure occurs and the accumulated error is corrected
over frames by redistributing the distance error across the
entire loop. Fig. 26 shows the measured SLAM results of
the NeuroSLAM accelerator. The final SLAM results are
obtained by the experience map management inherited from
RatSLAM [28]. Considering the superimposed blueprint of the
area, the NeuroSLAM successfully demonstrates the SLAM
operation with loop closure. The NeuroSLAM accelerator
composes a hybrid of metric and topological maps similar
to RatSLAM, while using relative coordinates. Compared
to metric maps [11], [18], topological maps primarily give

Fig. 27. Microphotograph of the test chip.

importance to junctions of a path, i.e., loop closure, rather than
the local accuracy of each position of an agent. The estimated
root mean square (rms) error of the SLAM results is 0.437 m.
Considering that the estimated rms error with the original
RatSLAM algorithm is 0.370 m, the NeuroSLAM accelerator
achieves the appropriate metric accuracy and energy efficiency
with a 64× reduction in the memory footprint under no false
loop closure. Furthermore, since we assume that the agent
generates and uses its own map, deterministic metric errors
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TABLE I

SYSTEM SUMMARY AND COMPARISON

dominantly caused by the visual odometry has less impact
on the exploration of the agent while using its own map.
Fig. 27 shows the microphotograph of the test chip. Table I
summarizes and compares the SLAM performance with exist-
ing solutions. In the comparison table, we have compared the
current design with other SLAM-based ASICs. Prior designs
that target SNNs allow programmable connectivity and target a
completely different application space; and hence they are not
included in Table I. The comparison table shows competitive
figures-of-merit, ultra-low power operation, and successful
system integration and deployment. An asynchronous/event-
based digital design is estimated to operate at the same
equivalent energy/power-levels for processing each frame.
However, such a digital implementation cannot achieve a
neural spiking model demonstrating actually spiking signals.
The test chip is the first bio-inspired SLAM IC with a light-
weight vision system for applications in edge robotics. Since
power consumption is a hard constraint in edge devices, the
NeuroSLAM achieves target accuracy and throughput while
meeting stringent power constraints.

VII. CONCLUSION

This article presents a 7.25-to-8.79-TOPS/W mixed-signal
oscillator-based NeuroSLAM accelerator for applications
in edge robotics. SLAM is a quintessential problem in
autonomous navigation, augmented reality, virtual reality, etc.
Furthermore, SLAM at edge devices has come into the lime-
light with the emergence of edge intelligence. In particular,
ultra-low power SLAM systems are of importance for appli-
cations in edge robotics due to battery-powered edge devices.
The design presented in this article satisfies the strict criterion
on power consumption for edge devices by incorporating a
bio-inspired SLAM architecture with the lightweight vision
system while achieving appropriate SLAM results.

The proposed NeuroSLAM accelerator IC achieves ultra-
low power consumption employing a mixed-signal oscillator-
based pose-cell array and the 1-D-image-based vision system.
The pose-cell array and the digital head direction cell are
employed to mimic place cells and head direction cells in a
rodent brain. Furthermore, a CAN with the wrapping connec-
tivity is implemented in the pose-cell array to mimic the prin-
ciples of spatial cognition in rodents, while achieving a sparse
energy distribution and the continuous tracking capability. The
lightweight vision system with a max-pooling supports low-
power visual odometry and re-localization. The NeuroSLAM
accelerator IC demonstrates correct SLAM operations and
successful loop closure. The test chip fabricated in a 65-nm
CMOS exhibits a peak energy efficiency of 8.79 TOPS/W with
a power consumption of 23.82 mW.
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