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Abstract— Online learning for the legged robot locomotion
under performance and energy constraints remains to be a
challenge. Methods such as stochastic gradient, deep reinforce-
ment learning (RL) have been explored for bipeds, quadrupeds
and hexapods. These techniques are computationally intensive
and thus difficult to implement on edge computing platforms.
These methods are also inefficient in energy consumption and
throughput because of their reliance on complex sensors and
pre-processing of data. On the other hand, neuromorphic com-
puting paradigms, such as spiking neural networks (SNN),
become increasingly favorable in low power computing on
edge intelligence. SNN has exhibited the capability of perform-
ing reinforcement learning mechanisms with biomimetic spike
time-dependent plasticity (STDP) of synapses. However, training
a legged robot to walk in the synchronized gait patterns generated
by a central pattern generator (CPG) in an SNN framework has
not yet been explored. Such a method can combine the effi-
ciency of SNNs with the synchronized locomotion of CPG based
systems — providing breakthrough performance improvement of
end-to-end learning in mobile robotics. In this paper, we propose
a reinforcement based stochastic learning technique for training
a spiking CPG for a hexapod robot which learns to walk using
bio-inspired tripod gait without prior knowledge. The whole
system is implemented on a lightweight raspberry pi platform
with integrated sensors. Our method opens new opportunities for
online learning with limited edge computing resources.

Index Terms— Central pattern generator, spiking neural net-
works, spike time-dependent plasticity, stochastic reinforcement-
based STDP, robotic locomotion.

I. INTRODUCTION
HYTHMIC activities like walking or breathing require
temporally correlated muscle movements. Neuronal cir-
cuits in the spinal cord called Central Pattern Genera-
tors (CPG) cause coupled firing of motor neurons to actuate
the limbs in a temporally correlated fashion [1]. The CPGs
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of animals and insects enable various gaits with seamless
transitions between gaits and such biological systems can
adapt the biomechanical interactions between the body and the
environment [2]. This is controlled by both the brain as well as
the central nervous system with co-ordination across various
muscle groups [2]. The brain gathers the information from
the sensory neurons, processes it with different cortices and
modulate the CPG, constituting an end-to-end feedback system
between sensing, spike-based processing and actuation [3].
The vestibular system in cockroaches, for example, is respon-
sible for bio-circuitry that controls such pattern generation
during walking [3]. Further, [4] studies the variation in the
walking gait generated with gravitational forces acting upon
the insect establishing a strong connection between CPG and
gravity sensors in insects. The CPG also gets modulated by the
information from the visual cortex to alter the gait to achieve a
particular goal, such as tracking prey or approaching a source
of food. These biological feedback systems can be inspirations
of locomotion control in autonomous robots. Specifically,
spiking neural networks (SNN) provide a computational tool
for modelling the mechanism of CPG, which we define as
Spiking-CPG (SCPG) in this work.

One of the key advantages in such systems comes from
the low-power spiking neural network architecture used in the
end-to-end decision making. Neuromorphic implementation
of SNNs for cognitive tasks makes them strong candidates
for edge-robotic platforms [5], [6]. Apart from the energy-
efficiency, CPG controlling each leg independently enables
decentralized control in the system. This is in sharp contrast
to more traditional centralized control that can control global
dynamics. Therefore, it results in the reduction of dimensional-
ity of the sensing and control models and decreases the latency
of processing [7]. This coupling of distributed computing and
energy-efficiency with closed-loop architecture makes them
candidates for control systems in edge-robots.

Electronic implementations of CPG have been tried out for
legged robots for locomotion and prosthetic systems [8]-[10].
Fig. 1(a) shows a hexapod robot with a generic model of the
spiking CPG (Fig. 1(b)) generating locomotion in this robot.
Each leg is connected to one neuron and the spikes fired by
the neurons trigger the motion of corresponding legs. Thus,
the task of generating motion boils down to programming
the desired spiking activity in the CPG. In previous work,
a CPG based on digitized spiking neural network (SNN) has
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Fig. 1. (a) Hexapod robot with labeled neurons for mimicking the CPG
(b) Generic SCPG model. Each neuron corresponds to a leg. Spiking of
a neuron causes motion of the corresponding leg (c) Proposed algorithm
converting visual and gyroscope inputs to rewards for reinforcement-based
training of the SCPG. G gy is the gyro sensor’s orientation vector (d) Office
environment for demonstration. The robot without any prior knowledge of the
spiking pattern required for walking learns to walk forward using tripod gait
(e) SCPG spiking as the algorithm progresses. The spiking is random in the
exploration phase where the SCPG tries out different combinations until it
gets latched to the correct tripod gait showing convergence.

been proposed and implemented on an FPGA [9]. However,
the generated patterns are pre-programmed, and the weights of
the neural networks are reversed engineered form the patterns
in known walking gaits. An evolutionary algorithm-based
approach is also proposed for gait learning of hexapod
robot [11] with offline training. A setup exploring imitation
learning on with learning the gait pattern from pre-trained
teacher robot is demonstrated [12]. There are a few previous
publications on SNNs that focus on reinforcement learn-
ing [13], [14]. However, most of these attempts focus solely on
the decision making and task planning of wheel robots. Thus,
SNN based CPG with autonomous learning ability for legged
robots has not been fully explored. The key factor unexplored
in the field is the coupling between the sensory inputs like
a gyroscope and visual data to the locomotion which forms
the basis of end-to-end processing. An interesting task which
lies unexplored comprises of enabling the agent to learn to
walk or run autonomously without any prior knowledge of
correct spiking pattern required for generating a stable forward
motion.

In this work, we demonstrate an end-to-end SNN based
CPG carrying out online processing of sensory information

and learning of gait generation in hexapod robots. We use gyro
sensor and camera as the sensory inputs to provide reward
signals, which either reinforce (i.e, potentiate) or penalize
(i.e., de-potentiate) the SNN weights to stochastically learn
the correct gait for locomotion. This online learning is seen
to autonomously result in bio-observed tripod gait in most
of the cases. In some cases, convergence to non-bio-observed
intermediate gaits is observed. These sub-optimal gaits still
cause forward motion but at a slower speed. To the best of our
knowledge, this is the first work that describes online learning
for locomotion in robots using spiking network dynamics
which may find potential application in edge robotics or other
low power embedded systems.

II. PROPOSED SPIKING CPG SYSTEM:
ALGORITHM AND HARDWARE

The proposed system consists of a spiking CPG driven
by input neurons, camera and gyroscope. The camera and
gyroscope serve as the sensory inputs to the system for
generating the rewards. The weights are modulated using the
rewards, similar to previously used for spiking reinforcement
learning scheme [15]. The CPG finally controls the locomotion
of the hexapod robot. The SNN of CPG has to be trained
to generate a sequence of leg motions so that the balance is
maintained while walking, and thus prevent the robot from
either falling or collapsing on its side. This embodies the
notion of “learning to walk” which is a fundamental task
accomplished by all legged organisms.

A. Network Structure

In our prototypical design, fully connected neurons form
the SCPG network. The neurons obey leaky-integrate and
fire (LIF) dynamics. Each neuron is connected to one of the
legs and the firing of the neuron causes the corresponding
leg to move. The movement consists of lifting, turning and
landing of the leg, which are controlled by two servos on the
hip and knee joint of each leg. However, we do not need to
individually control this sequence of actions. Once the SCPG
neuron corresponding to a leg fires, the series of actuations
(e.g., lift, turn and land) follow one after another. An input
neuron (N;,) and a gyroscope activated neuron (Ngy.,) are
connected to all CPG neurons. All neurons are excitatory. The
CPG neurons have a refractory period of 2 time units. The
LIF dynamics of the neurons are expressed below,

Vilt+1] = %"‘Zwijsi[t] (1)

if Vilt] > Vg then S;lt+11=1, V[t +11=0 (2)

The leakage current is modelled with a decay factor a
(Equation (1)). When the membrane potential exceeds the
spiking threshold V,j,, a spike is fired and the membrane
potential is instantly reset to the resting potential, which is
zero (Equation (2)). A pre-synaptic spike, S; results in the
increment of the membrane potential of the post-synaptic
neurons V;. The synaptic weights (W;;) scale the inputs
from the presynaptic neurons (i’ neuron) to the post-synaptic
neuron (' neuron) as shown in equation (1). With spiking of
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Fig. 2.
input neuron fires (b) This triggers neuron N 35 to fire in the next time
instance making the corresponding legs move. (c) The internal connections
in the SCPG make the remaining three neurons fire in the next time instance
and the cycle repeats.

Desired spiking pattern for forward motion (tripod gait) (a) The

a pre-neuron, the input current is fed into the post-neuron in
the immediate next cycle. Thus, we do not add any synaptic
delay. Therefore, the membrane voltage is increased by the
pre-synaptic spikes in the immediate next cycle. These simple
discretized dynamics is voltage-based and easy to emulate
on a digital hardware platform. Such a method bypasses the
computation of time-delayed membrane current and enables
a simpler model that can be implemented on a low-power
computing platform. The CPG is implemented on a Raspberry
Pi 3 B+ single-board computer, mounted on an Adeept
Raspclaws hexapod.

The desired activity of neurons for tripod gait is shown
in Fig. 2. The input neuron excites the network at t = 0. This
now triggers the neurons in the SCPG to spike at t = 1. These
neurons, in turn, trigger the other neurons in the CPG to spike
at t = 2. The correct spiking pattern generates the tripod gait
in which alternate legs move in two consecutive cycles. Thus,
the input neuron keeps firing with a period of three time units
triggering the CPG at the end of every gait instance. The gyro
neurons Ny fires when at any step the robot loses balance.
The reasoning behind this is explained in the next section.

B. Overview of the Algorithm

The algorithm described below computes the neural dynam-
ics to uncover the spiking patterns of the CPG neurons. The
spiking of the input neurons makes different combinations of
legs to move. The algorithmic framework receives sensory
inputs from the camera and the gyroscope (Fig. 3(a)) at the
beginning and the end of every step; and checks if balance
maintained and the forward motion is achieved. A positive
reward is generated when the system determines that both
balance and forward motion have been maintained. The reward
is stochastically modulated to achieve weight updates.

Fig. 3 shows the block diagram that explains the algorithm.
Every step is initialized by reading the gyroscope and cap-
turing an image using the system camera. Next, we com-
pute the neuronal spiking of CPG neurons by evaluating the
LIF dynamics. The legs corresponding to the spiking CPG
neuron(s) is(are) activated. The motion of a leg comprises
of lifting-moving-landing actions carried out by two servos
that drive the leg. Because each leg goes through the same
sequence of actions when triggered, a single neuron activates
both servos in a leg instead of the assignment of one neuron for
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Fig. 3. Block diagram of the algorithm (a) The algorithm receives data from
sensory inputs to drive locomotion of the hexapod which in turn generates
new sensory inputs for close-loop processing (b) Every step is initialized
with a gyroscope reading and an image of the surroundings (c) LIF neuronal
dynamics compute the spiking of the neurons for that time instance (d) New
sensory inputs are read when the legs are moved. If the desired result is
achieved a positive reward is given and vice-versa (e) The weights are updated
according to the calculated rewards with y being the learning rate and the
next cycle continues.

each servo. This simplifies the design significantly by reducing
the number of neurons by half and the number of synapses
by a factor of four. During activation, the legs are lifted and
when they are half-way in the air, another gyroscope reading is
captured to check if the balance is preserved. If the balance is
lost, the legs are restored to the initial position without moving
forward as this is guaranteed to give an erroneous gait. On the
other hand, if the balance is preserved, the legs move forward
causing a forward motion.

After completing the step, an image is captured using the
camera. The photo-metric difference between the initial and
final images indicates if a forward motion has occurred or not.
The gyroscope and image differences are used to compute the
reward for weight updates. Algorithm 1 shows the pseudo-code
for the proposed algorithm.

The gyroscope driven neuron (Ngy-,) mimics the biological
modulation of CPG from the vestibular system. If the balance
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Algorithm 1 Learning to Walk

1: Initialize weights randomly W;,, Wgyro, Wepc

2: Initialize CPG neuron voltages, Vcpg[0] = 0

3: Initialize Spikes Si, =1, Sgyr0 =0, Scpg =0

4: for time =1to T do

5:  Read camera (Imageini;) and gyroscope (Giniriar) for
initial reading

6: for neuron =1 to 6 do

7: I = WinSin + WGyroSGyro + WercScpc

8

9

Vaeuronlt] = Vaeuronlt — 11/a + 1
if (Vieuronlt] > Vrnresn) then

10: Update Spike, Scrg = 1, Vaeuronlt] =0
11: Move Corresponding Leg

12: end if

13:  end for

14:  Read camera and gyro sensor for final reading
15:  Calculate reward

16:  Update weights

17: end for

is lost, Ngy,, fires a spike in the next time instance. Losing
balance requires an exploration of more alternatives for iden-
tifying a favourable combination of CPG firing. Spiking of
Ngyro provides additional stimulation to the CPG to compen-
sate for the loss of balance. This stimulation is in addition to
the reward generated for altering the synaptic weights.

C. Reward Calculation

Both sensory inputs generate their rewards depending upon
the performed action. The gyroscope reward (Rewardgy,o)
indicates the stability achieved by the robot while performing
the step. Lesser the difference between the initial and final
orientations of the gyroscope as shown in Fig. 3, higher is the
goodness of the action and the reward. Algorithm 2 shows the
reward generation scheme for the gyroscope. The gyroscope
readings are typically noisy and therefore cannot be used
directly as a reward value. Hence, the reward generated by the
gyroscope is discretized into two categories. If the difference
between the initial and final reading is below the threshold,
it indicates that the action is stable. Therefore, this action earns
a high positive reward from the gyroscope.

On the other hand, if the set of legs moved to cause the
robot to tilt, this results in a high difference between the initial
and final values of the gyroscope reading. Therefore this is
regarded as an incorrect action. This is further categorized
into two categories. If the total number of legs moved is
less than three, this indicates insufficient activity in the CPG.
Thus, the CPG requires more activity requiring higher weight
values. Therefore a positive reward is given for this action.
This particular case is commonly observed when two the legs
on the same side of the hexapod are simultaneously lifted,
which makes the robot to tilt. On the other hand, if more
than three legs are being simultaneously activated, then the
robot tilts and collapses. Hence, this CPG pattern needs to
be automatically suppressed. This is achieved by designing a
negative reward for this combination. The relative values of

the rewards are optimized, similar to hyperparameter tuning
in deep neural networks.

Algorithm 2 Gyroscope Reward Calculation
1: for time =1to T do

2: Ginitial = Read gyro sensor

3:  Complete the movement

4: G finat = Read gyro sensor

5. if (Gfinal — Ginitial > GThresn) then
6: balance lost
7

8

9

if (Number of legs moved > 3) then
Rewardgyro = -2

: end if
10: if (Number of legs moved < 3) then
11: Rewardgyro = +2
12: end if
13:  end if
14: if (G finai — Ginitial < GThresn) then
15: balance maintained
16: Rewardgyro = +5
17:  end if
18: end for

Apart from the Rewardgy,,, the camera also generates a
reward. This is needed to avoid the case where no move-
ment occurs in the system and the gyroscope concludes the
system 1is stable even without performing any action. Visual
reward captures images before and after the movement and
decides whether a forward motion has occurred. If the forward
motion has occurred, this results in a positive reward, while
motion in any incorrect direction provides a negative reward.
The gyro-sensor also provides acceleration reading. However,
the time integral of noisy reading for distance calculation gives
an incorrect estimation of forward locomotion, which makes
the camera an effective solution.

We have used a light-weight odometry [16] to determine if
forward motion has occurred. The method is based on deter-
mining the photo-metric error in scan-line intensity profiles
to estimate the amount of rotational and translational motion.
Scan-lines are calculated by summing up all pixel values in a
column. Equation 3 shows photometric error calculation where
the shift and subtract operation calculates the error in the
scan-line profiles. Shift corresponding to the minimum error
corresponds to the rotation given by equation 4. ¢ is the
constant converting the pixel shift to angular shift which is
dependent upon the camera resolution, field of view, intensity
etc. (equation 5). The velocity during the step is proportional
to the minimum photometric error value as per equation 6.

w—|s|

. 1 .
k J k

f(S, I]’ 1 ) = w — |S| ( Z |1n+max(s,0) - Infmin(s,O)D (3)
n=1

S, = argmin f(s, I/, 1) 4)
XE[p—w,w—p]

AO =08, (5)

v = min[vcalf(S, Ij, 1k)7 Umax] (6)

The inference of odometry algorithm is used to calculate
the visual reward. If no SCPG neuron fires and no leg moves,
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Fig. 4.  (a) Image taken before taking the step (b) Image taken after

completing the step (c) The column-wise sum of intensities of the pixel values
for both images (scan-lines) (d) Minimum of scan-line difference is calculated
for rotational matching for identifying the forward motion.

then the images are the same with a very small difference
(caused by noise) and therefore the scanlines overlap with a
very low photometric difference. Thus, if the magnitude of the
total difference between scan lines is very small, we conclude
that no motion has occurred incurring a negative reward.

In the case of motion, two cases occur. In the first case,
the correct set of legs are moved resulting in forward motion.
In this case, the odometry shows small rotation and significant
translational motion. Thus, a positive reward is given. On the
other hand, if an incorrect set of legs are moved which still
results in the preservation of balance, this results in the robot
moving along with rotation. Thus, a significant rotation along
with translation is observed. This case also results in a negative
reward.

Fig. 4 shows an example where the forward motion has
occurred with slight rotation. The pre and post motion images
are shown in Fig. 4(a,b). The resolution of the images is kept
low at 64 x 64 to save power and latency in computation. The
boxes are kept in the environment of the robot to provide basis
points. Scan lines for an image are calculated by adding up all
pixels in a column. Scan-lines corresponding to the images are
plotted in Fig. 4(c). Now, the rotation and forward motion are
calculated as described previously. Fig. 4(d) shows the total
difference in scan-lines upon shift and subtract operation. The
difference minimizes at the rotation of 3 pixels indicating the
amount of rotation as small. However, the absolute difference
in the intensity is large. This shows that the images have not
rotated much but have caused a significant intensity difference.
This is attributed to the forward motion and obtains a positive
reward.

The reward is provided as a binary value with forward
motion resulting in a reward of {+1}. Otherwise, a penalty
of {—1} is generated. This binarization makes the algorithm
robust to low resolution as shown. Additionally, this allows
high noise tolerance in the lightweight vision system. The
variable intensity of the surrounding can be calibrated in the
empirical parameter ¢ making the vision system suited for

TABLE I
HARDWARE PLATFORM

\ Ttem \ Component |

Adeept RaspClaws Hexapod Spider Robot [18]
Raspberry pi 3 Model B+ [19]
Gy-521 MPU-6050 MPU6050 gyro sensor [20]
PiCamera [21]

Locomotion Platform
Computation Platform
Vestibular Input
Visual Input

low-power applications. We note that the negative reward
generated by the movement should not be very high in
magnitude; particularly, for the first few iterations. This allows
the system and the corresponding SNN network to explore and
determine the correct CPG activation patterns. This illustrates
the very traditional exploration-exploitation conundrum typical
of all real-time learning systems [17]. We achieve a favourable
trade-off between exploration and exploitation by modeling the
reward at time instance ¢ as:

Rewardorailt] = Rewardgyro + Rewardyisuar(t/T1) (7)

A positive total reward occurs when the correct action has
taken place or when the network is inactive compared to
the desired activity. A negative reward occurs to suppress
unnecessary activity.

D. Mechanisms for Synaptic Weight Updates

Combining synaptic reinforcement with reward function has
been demonstrated previously in [15]. In neuro-biology, this
mimics the release of dopamine in the human brain that acts as
a reward for performing a certain desired action. The synaptic
updates are generated for the synapses whose pre-neurons
spike in the previous time instance. The updates are the reward
generated by the action, modulated by a random number
between zero and one. A positive (negative) reward causes
an increase (decrease) in the synaptic weight. This enables
the post-synaptic neuron to spike faster (slower) in subsequent
time instances. We encourage stochasticity in the network by
modulating the reward with a random number to avoid the
system from getting stuck in a sub-optimal firing pattern. This
also allows the system to quickly reach and converge on the
final, desired firing pattern. The change in weights is calculated
as given below (y is the learning rate). The learning rate must
be chosen carefully to enable the system to reach the desired
final state with a minimum number of learning iterations. The
weight evolution with time is given by

W;ilt + 11 = Wj;[t]1 + y x Reward;orallt] x random(0, 1)
(®)
The weight values are clipped to a maximum of Wj;g;, and

a minimum of Wj,,. In the current design Wj;ep, = 12 and
Wiow = 0 are chosen.

E. Hardware Platform and Verification

The hardware details are shown in Table I. The processor
has 4 cores and operates at 1.5GHz frequency. The demon-
stration is carried out in an indoor office environment shown
in Fig. 1.
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Fig. 5. (a) The number of legs moved at a time instance oscillates around
3 and converges to 3 in a tripod gait resulting in accumulation of high
constant reward (b) Accumulated reward with time. The reward is negative till
the network converges to correct tripod gait after which it keeps increasing.
Figure modified from [22].

III. RESULTS

A. Simulation Results

A complete modeling and simulation framework has been
set up. Fig. 5 shows the time evolution of the end-to-end
simulation of the system. As the simulation progresses with
SNN dynamics and with the different leg combinations, syn-
thesized visual/gyroscope data are captured and the reward is
calculated. The corresponding CPG patterns and the movement
of the legs are recorded. We note that the hexapod starts with
no movement. Gradually it explores two firing patterns that
correspond to moving 2 and 4 legs simultaneously. When
it finally reaches the correct tripod gait, through a series
of rewards and penalties, the synaptic weights reach their
steady-state values and the hexapod continues to walk in the
tripod gait. In steady-state three legs are actuated simultane-
ously and the hexapod maintains balance and moves forward.
Fig. 5(b) shows the total accumulated reward over time. With
both positive and negative rewards coming in, the cumulative
reward remains low until the correct gait found. It rapidly
increases after that with a constant high positive reward.

B. Hardware Demonstration

We apply the proposed method to an Adeept hexapod robot
with the hardware configuration described in section III.C.
The videos demonstrating “Learning to Walk” are available

Case 2

Casel

Fig. 6. (a) Initial position of the robot at the beginning of training (b) With
the movement of four legs, the robot loses balance making the gyroscope read
the tilted value (c) Robot is reset to the original position by taking the legs
back (d) Robot standing after learning the correct gait pattern (e) Movement
of correct set of three legs, robots preserves the balance (f) The legs are placed
forward completing the forward motion.

on Youtube. In the first demonstration video (demo-1)!, the
learning process converges to the target gait pattern at the
66" cycle. Fig. 6 shows screenshots of different instances
in the evolution of the algorithm. Fig. 6(a) shows the initial
orientation of the gyroscope in the exploration phase. When
the hexapod explores a configuration where four legs are
simultaneously lifted, as shown in Fig. 6(b), the robot loses the
balance. This makes the orientation of the gyroscope to deviate
significantly from the original position. Hence, a negative
reward is generated. In this case, the legs that were triggered
are restored to the original position (Fig. 6(c)) as this is
guaranteed to give erroneous motion. Fig. 6(d) shows the
position of the robot before it takes a step after the algorithm
has converged correctly. By simultaneously lifting the correct
three legs, the robot preserves its balance and the deviation of
the gyroscope’s reading is small. The legs are now lowered
in a forward position, and the robot moves forward. Captured
images from the initial and final position validate the forward
motion, which in turn results in a positive reward.

However, the weight updates being stochastic do not always
result in the convergence to bio-observed tripod gait. The
reward is determined by only the balance preservation and
forward motion and not by the exact combination of legs that

Demo I
youtu.be

https://www.youtube.com/watch?v=1HqelSAkAs4 &feature=
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Fig. 7. (a) Reward value with the number of legs moved. For less than 2 legs
moving, positive reward (R1) is given to encourage more spiking required
for tripod gait. A negative reward (R2) is when more than 3 legs move.
(b) Optimal combination of R1 and R2 for the highest convergence percentage.

are to be moved to cause the tripod gait. Therefore, the con-
vergence also happens to intermediate non-bio-observed gaits
that result in forward motion with balance preservation. These
are caused by a sub-optimal combination of legs causing the
motion at a slower speed. These cases correspond to weight
parameters getting stuck into local minima.

Another demonstration video (demo-2)2, shows one such
case of learning process converged to an unwanted alternative
gait pattern at the 7th cycle (0:18). This gait pattern is a local
minimum in an expected learning process. The gait also shows
maintenance of balance along with forward motion without
using the biologically observed combination of tripod gait.
The hexapod can move forward with this gait, but less efficient
when compared to the bio-inspired target gait. The occasional
tremor of servos is caused by an instantaneously insufficient
current supply.

C. Reward Generation

The reward described in the previous section takes a general
form as shown in Fig.7(a). If less than 3 legs spike simul-
taneously, the balance is preserved but the more excitation
is required for exploration of other patterns. This requires
positive reward (R1) for reinforcing the weights to explore
more combinations with three legs. On the other hand, spiking
of more than 3 SCPG neurons causes the robot to lose balance

2Demo 2
youtu.be

https://www.youtube.com/watch?v=ypWO0V23gEj0&feature=
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Fig. 8. (a) Percentage of simulations converging to the correct tripod gait
with varying learning rate. The gait pattern after correct convergence can be
seen in demo-1. Simulations not converging to the tripod gait still move with
inefficient gaits as observable in demo-2. (b) Distribution of convergence time
with learning rate. Convergence time affects the power consumed in learning.
Median convergence time is 170-time instances. (c) Weight matrices of the
SCPG before and after the learning. Convergence to tripod gait makes alternate
neurons stimulating each other. Figure is modified from [22].

acquiring a negative reward (R2). A high positive reward is
accumulated when the correct set of legs fire, thus maintaining
balance as well as ensuring forward motion. We are concerned
with finding the optimal values for R1 and R2.

100 simulations for each combination of the rewards shown
in Fig 7(b) are run to identify the fraction of simulations
converging to the tripod gait. The plot shows almost 90%
convergence for the combination shown by a green bounding
box. The red bounding box shows the case (R1 and R2 com-
bination) that results in the lowest fraction of convergence.
Since we enable stochastic updates, a monotonic trend is not
established. However, it can be noted that for intermediate
values of R1 and R2, the convergence is high whereas for
extreme values the fraction of cases where the system con-
vergences to the correct tripod gait reduce. This is because,
for very small rewards, the weight changes are too small to
cause convergence while for large rewards, the updates make
the CPG system to oscillate between multiple stable gaits,
without latching on to the correct gait. These optimal values
of R1 and R2 were determined through simulations and used
in the hardware platform.

D. Determining the Learning Rate

The stochastic updates in the algorithm are intrinsically
connected to the optimal choice of learning rate (y ). To iden-
tify the best learning rate, we simulate 100 iterations of the
algorithm with different random initial conditions for different
learning rates and with the rewards, R1 and R2 that were
described previously. This is shown in Fig. 8. Fig. 8(a) shows
the percentage of simulations converging to the correct tripod
gait. The results show that the system convergences faster as
the learning rate increases. The cases where convergence is
achieved, the robot moves forward efficiently. In cases, where
the system converges to non-tripod, non-bio-mimetic gaits,
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we still observe location albeit inefficiently. These inefficient
gaits cause the hexapod to frequently turn its direction of
motion and the hexapod fails to reliably move forward at a
constant speed.

Another important parameter controlling the energy con-
sumption of the algorithm is the time to converge for the
algorithm. Fig. 8(b) shows the convergence time for the
iterations converging correctly. Fig. 8(c) shows the weight
maps of synapses forming the connections between the CPG
the neurons before and after the completion of the learning. For
convergence to the global minima of a bio-mimetic tripod gait,
the random weights (initialization phase) among the neurons
enter into a periodic pattern such that neurons 1,3,5 drive
neurons 2,4,6 and vice versa.

E. Estimated Power Consumption for Locomotion in a
Neuromorphic Processor

The simple two-layered spiking network used in this net-
work is expected to show a high reduction in the energy
required in learning as opposed to conventional approaches
involving artificial neural networks. We envision future sys-
tems where ultra-low power MEMS [23] and PZT [24] actua-
tors, combined with ultra-low power neuromorphic algorithms
and hardware [25] can realize power and volume constrained
robots at the edge of the cloud.

To estimate the energy consumed by the algorithm, we cal-
culate the total number of spikes issued by the SCPG in the
course of learning to estimate the energy spent in learning.
We run 100 iterations of the algorithm in software to identify
the statistical convergence to the correct gait pattern. The
median of the total number of spikes issued for correct
convergence is 170. To estimate how a potential neuromorphic
ASIC will perform, we note that Intel’s Loihi [15] requires
1.7 nJ for generation a single spike. Therefore, we estimate
that the total energy consumption in the learning process on
an equivalent design is ~ 289 nJ. After the system has
learned the correct gait, the energy consumed in every step
is & 9.1 nJ. These estimates are simply meant to motivate
further work in neuromorphic ASIC design which can enable
ultra-low-power SCPG based learning for legged motion.
Along with the low energy consumption, this work also shows
an end-to-end spike driven learning system for sensor data
processing and actuation.

IV. DISCUSSION
A. Comparison With the Prior Work

The comparison Table II reveals that this is the first work
showing online learning of a gait using the sensory inputs
from the environment. It is also worth noting that the learning
occurs in the absence of any model and uses only the rewards
generated during the motion of the legs of the hexapod. The
algorithm explores the possible combinations before stabi-
lizing to the correct gait. Convergence to non-biologically
observed gaits poses interesting future research directions. It is
unclear if all non-bio-mimetic gaits are inefficient, although
we have empirically observed that to be the case. For more
complex systems with more legs, it remains to be seen in

TABLE 11
COMPARISON WITH PRIOR WORK
Reference Training Sensory Online /
Approach Feedback Offline
[9] Linear None Offline
Equation Solving
[27] Grammar None Offline
Evolution
28] Reward Olfactory + Offline
STDP Visual
[30] Equally weighted None + Offline
synapses
[31] Remote supervision None Offline
method [32]
[33] Emulating Connectome None Offline
Structure
[34] Manual None Offline
Design
This Work Stochastic Balance + Online
Reward Visual

bio-mimetic CPG results in the most efficient patterns of
actuation.

B. Biological Basis of the Model Presented

Our SCPG is triggered by two neurons namely Ny, and
Nin where Ngyro corresponds to the input signal from the
vestibular system. This mimics the principles discussed in [3]
where the authors have demonstrated the close interactions
between the vestibular system and central pattern generation in
invertebrates. Further, [4] studied the variation in the walking
gait under different gravitational forces acting upon an insect
and established a strong connection between CPG and gyro
sensors in natural organic systems. Identification of the exact
set of neurons in vestibular sensing in the housefly has also
been observed and is seen to be present outside the CPG.
[33] confirms the bio-plausibility of the proposed model, that
CPG and gyro sensors and coupled but independent. This
proposed model uses single neuron corresponding to each leg
along with a simplified view of the gyro-system. Despite its
apparent simplicity, the model is bio-plausible and we observe
how a CPG system “learns to walk” using simple rules of
reward-based learning.

Hoyt et. al. showed the natural gait at a speed in horses
consumes the least amount of oxygen corresponding to the
smallest energy expenditure [34]. This is comparable to the
observation where inefficient gaits are observed along with
the tripod gait but the motion caused by them is slower.
This unfolds another interesting idea of reward design to
incorporate the efficiency into the picture to mimic the natural
optimization that has occurred through evolution.

C. Extension to Customized Hardware

The power-efficient operation, as demonstrated with SCPG,
naturally extends its application to bio-inspired edge-robotics.
Amaravati et. al. demonstrated conventional Q-learning for
autonomous motion on a wheeled robot with tight constraints
on power consumption [35], [36]. The current algorithm and
hardware platform demonstrated here can push the boundaries
even further with legged robots. Insects also demonstrate coor-
dinated activities in swarms that have been recently mimicked
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in electronic platform [37], [38]. Extension of learning based
CPG in swarms of legged hexapods need to be explored.

V. CONCLUSION

We propose a closed-loop end-to-end spiking central pattern
generator with real-time learning based on a bio-plausible
spiking neural network. We demonstrate the proposed SCPG
on a hexapod robot and achieve autonomous online rein-
forcement learning of bio-mimetic walking gaits in an
energy-efficient manner. The computational requirement of
the proposed online learning system is light-weight and it
is implemented on a simple embedded system. Interestingly,
we note that learning process converges to the bio-observed
tripod gaits in most of the cases; while in other cases it
converges to sub-optimal gaits that still enable locomotion,
albeit inefficiently.
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