
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021 751

A Hardware-Friendly Approach Towards Sparse
Neural Networks Based on LFSR-Generated

Pseudo-Random Sequences
Foroozan Karimzadeh , Graduate Student Member, IEEE, Ningyuan Cao , Student Member, IEEE,

Brian Crafton , Student Member, IEEE, Justin Romberg , Fellow, IEEE,

and Arijit Raychowdhury , Senior Member, IEEE

Abstract— The increase in the number of edge devices has led
to the emergence of edge computing where the computations
are performed on the device. In recent years, deep neural net-
works (DNNs) have become the state-of-the-art method in a broad
range of applications, from image recognition, to cognitive tasks
to control. However, neural network models are typically large
and computationally expensive and therefore not deployable on
power and memory constrained edge devices. Sparsification tech-
niques have been proposed to reduce the memory foot-print of
neural network models. However, they typically lead to substan-
tial hardware and memory overhead. In this article, we propose
a hardware-aware pruning method using linear feedback shift
register (LFSRs) to generate the locations of non-zero weights in
real-time during inference. We call this LFSR-generated pseudo-
random sequence based sparsity (LGPS) technique. We explore
two different architectures for our hardware-friendly LGPS
technique, based on (1) row/column indexing with LFSRs and
(2) column-wise indexing with nested LFSRs, respectively. Using
the proposed method, we present a total saving of energy and area
up to 37.47% and 49.93% respectively and speed up of 1.53×
w.r.t the baseline pruning method, for the VGG-16 network on
down-sampled ImageNet.

Index Terms— Sparsity, sparse neural network, LFSR, DNN
accelerator, linear feedback shift register.

I. INTRODUCTION

EVER-INCREASING number of edge devices such as
mobile, wearable and Internet of Things (IoT) devices

require computations to be performed close to the source of
the data on the edge [1], [2]. This is critical due to the fact that
sending/receiving data to/from a centralized server increases
both the latency as well as the cost of communication. Edge
computing can enable real-time data analysis locally which

Manuscript received May 14, 2020; revised August 24, 2020 and
October 17, 2020; accepted November 4, 2020. Date of publication Novem-
ber 19, 2020; date of current version January 12, 2021. This work was
supported by the Semiconductor Research Corporation under Grant Joint Uni-
versity Microelectronics Program (JUMP) Center for Brain-inspired Comput-
ing Enabling Autonomous Intelligence (C-BRIC) 2777.004, Grant 2777.005,
and Grant 2777.006. This article was recommended by Associate Editor
C. H. Chang. (Corresponding author: Foroozan Karimzadeh.)

The authors are with the Department of Electrical and Computer Engi-
neering, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
fkarimzadeh6@gatech.edu; arijit.raychowdhury@ece.gatech.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2020.3037028.

Digital Object Identifier 10.1109/TCSI.2020.3037028

mitigates the latency and increases privacy of the data. It is
also important where we need accurate and fast computation to
generate results under strict latency constraints. Over the past
several years, a trend toward embedded computing of artificial
neural networks (ANN) in edge devices have emerged [1].
ANN models such as deep neural networks (DNN) which are
typically very large, have gained remarkable performance in
data analysis. However, it is hard to deploy these models on
edge devices since they are resource constrained [3].

ANNs have achieved state-of-the-art performance in
various machine learning applications, such as computer
vision [4]–[6], natural language processing [7] and health
care [8], [9] etc. Not only ANNs’ model have shown a
remarkable progress in improving accuracy over time, but
also grown gradually to larger and more complex mod-
els. For instance, LeNet-5 [10], a classical convolutional
neural network (CNN), developed in 1998 with less that
500K parameters for handwritten digits classification, while
VGG-16 [11], the winner of ImageNet competition in 2014,
has more than 90M parameters.

Although the aforementioned networks are powerful, due to
their large size, it is hard to accommodate large networks on
an on-chip memory and an external DRAM memory is often
required. In addition, large and over-parameterized ANNs are
computationally expensive and consume considerable amount
of memory and energy. For example, in 45nm CMOS process,
accessing an external DRAM consumes 3 order of magnitude
more energy that accessing the on-chip SRAM [12].

A growing body of research has been devoted to improve the
efficiency of DNNs for inference and edge devices [12]–[16].
It has been shown that DNNs are mostly over-parameterized
and hence parts of the network are redundant [17]. Model
compression via pruning and sparsity can reduce the size of
DNNs while preserving the accuracy [12], [14], [18]–[20] and
therefore it can enable DNNs to fit to an on-chip SRAM.
However, sparse networks add a level of irregularity to the
network and the resultant sparse matrix of weight/activation
lacks structure [21], [22]. Therefore, platforms such as GPUs
and ASICs cannot efficiently take advantage of the sparse
representation of those networks [14].

In this article, we develop LGPS, a hardware-aware prun-
ing method to accelerate the DNNs by shrinking the size

1549-8328 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8849-7784
https://orcid.org/0000-0002-5323-1051
https://orcid.org/0000-0002-0227-0421
https://orcid.org/0000-0002-6616-197X
https://orcid.org/0000-0001-8391-0576

752 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021

of DNNs and reducing the required memory footprint to make
them deployable on mobile applications and edge devices.
The goal is to reduce the size of DNNs while preserving
the test accuracy. We use an on-die linear feedback shift
register (LFSR) using a known input seed, to generate a pseudo
random sequence (PRS) that acts as the indices of non-zero
weights in the sparse network. In the training step, The weights
specified by the generated PRS are regularized in an iterative
process to force them to zero. In the next step, the zero
weights are pruned. Finally, the sparse network is retrained
so that the model can compensate for the pruning process.
During inference, the same LFSR are utilized to generate the
same PRS in real-time as the addresses of the sparse matrix
to calculate multiplication/accumulation between the sparse
weight matrix and input/activation vector. The advantage of
the proposed method is that we no longer need to save the
remaining weights’ addresses in memory and can reduce a
considerable amount of storage/memory foot-print and energy
consumption during inference.

The rest of the paper is as follows: a comprehensive
literature review is provided in Section II. Our method is
explained in Section III and experimental results are pro-
vided in Section IV. Finally, Section V is dedicated to the
conclusion.

II. RELATED WORKS AND MOTIVATION

In this section, we explore the prior works that have been
done on pruning and sparisification of ANNs. Then, the chal-
lenges associated with existing models and the motivation
behind the proposed method are presented.

A. State-of-the-Art ANNs

Fully connected (FC) MLP (multi-layer perceptron) and
CNNs are among the State-of-the-art ANNs. These networks
usually have a lot of parameters that should be trained.
The number of parameters of four state-of-the-art networks
including LeNet-300-100, LeNet-5 [10], AlexNet [4] and
VGG16 [11] are illustrated in figure 1. LeNet-300-100 is a
FC network while the rest of them are CNNs. Figure 1 shows
that a considerable number of parameters are related to the
FC layers. For example, the number of FC connections in
VGG-16 are 10× more than that of convolutional connections.

B. Sparse Neural Network

There are several prior research that have demon-
strated there are significant redundancies in most of DNN
models [12], [17] which result in using extra power and storage
resources. As such, various model compression techniques
such as Deep Belief Network (DBN) [23], regularization [24],
Auto Encoder [25] have been developed to prune the redundant
parameters and make DNNs more efficient without losing
accuracy. Reference [26] proposed a method to compress the
network by using 8-bit fixed point integer for weights value
instead of 32-bit floating point representations. Reference [13]
presented a method to prune the network followed by weight
sharing to reduce the number of bits required to represent the
weight and the activation values comparable to the original
network.

Fig. 1. Number of parameters in FC vs convolutional layers for baseline
networks consists of LeNet 300-100, LeNet-5, AlexNet and VGG-16. The
vertical axis is in logarithmic scale.

In general, we can divide pruning methods into two cat-
egories: (1) structured pruning, (2) unstructured pruning.
Unstructured pruning is based on a criteria (e.g. magni-
tude, threshold, etc.) that element-wise prune the weight
connections. Threshold-base pruning was applied to DNNs
in [12], resulting 9× and 13× model size compression on
AlexNet and VGG-16, respectively. In another method called
Deepcompression [13], threshold-based method followed by
weight sharing and Huffman coding are applied to compress
DNN networks which achieves 49× memory saving on VGG
network. Moreover, 20× model size reduction is achieved
by applying magnitude-based pruning to Long Short Term
Memory (LSTM) hardware [27]. In addition, [28] proposed
a dynamic pruning approach. In this method, instead of per-
manently pruning a connection, some pruned connections are
allowed to regain their importance and regrow during an itera-
tive training process. Although unstructured and element-wise
pruning results in higher parameter reduction, these meth-
ods incur considerable index memory and irregular memory
access, hurting both performance and power. Several DNN
accelerator have been developed to cope with the irregularity
caused by unstructured pruning [3], [14]. However, as men-
tioned before, they need to store the addresses related to the
location of random weights that have been kept after training.

On the other hand, the idea of structured pruning is to
avoid irregular model compression in the obtained weight
matrices after pruning [29]–[31]. Several research have been
done to structurally prune DNNs by pruning the structural
component such as the entire or parts of layers and filter
channels based on calculating their importance with respect to
the test accuracy [32], rank of the filters [33], [34], or ranked
them based on the contribution of each filter to the next layers’
activation [35] or through regularization [36], [37] and [24].
In [38], a block-wise sparsity technique called coarse-grain
sparsification (CGS) to prune multilayer perceptrons (MLPs)
is presented. However, the results demonstrate limited weight
compression of 4×. In [39], energy-efficient LSTM recur-
rent neural network (RNN) accelerator is proposed by using
an hardware-centric network compression technique called

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

KARIMZADEH et al.: HARDWARE-FRIENDLY APPROACH TOWARDS SPARSE NEURAL NETWORKS 753

hierarchical coarse-grain sparsity (HCGS). To compress the
network, each weight layer passes through several level of
CGS using various block size. By using HCGS-based block-
wise recursive weight compression, the author demonstrated
that LSTM networks can be compressed 16× while obtaining
minimal accuracy loss. Using CGS for sparsification of a
networks leads to decrease memory footprint and energy
required for running inference. However, the performance of
this method is highly dependent to the size of the block.
Also, the value of the dropped blocks keep to be zero during
the training which might negatively affect the large networks
where the remaining weights could not fine-tune the effect
of pruning. In addition, in the inference, the address of
the selected blocks should be saved. In another work, [40]
pruned the network by choosing a global percentage k and
removing all the k% synapses that have the smallest weight
magnitudes across all the network’s layers. Reference [41]
performed pruning by defining different pruning criteria using
correlation-base pruning rather than magnitude-base pruning.
In [42], FC layers are pruned by solving a least squares
problem in which the difference between activation of the
pruned and original networks is minimized.

On the hardware side, several accelerators and hardware
architecture have been designed to exploit sparsity of pruned
neural networks. The Cambricon-X architecture [14] takes
advantage of the sparse network by proposing an indexing
method to skip the zero weights. SCNN [15] is another
architecture that proposes a new dataflow by encoding and
maintaining non-zero weights and activations and efficiently
delivering them to a multiplier array. EIE architecture [3]
proposed a DNN accelerator and an indexing framework to
accelerate the mathematical calculation of a sparse network for
the compression method called deep compression [13] where
pruning, quantization and Huffman encoding are employed
to compress the network. The Eyeriss architecture [21] is
designed to run compact DNNs by introducing a hierarchical
mesh which is a flexible on-chip network that can be adapted
to different data types and improves the utilization of the
memory resources.

1) Baseline Pruning Method: In this section a baseline
method is explained and the comparative results are shown
in Section IV. The state-of-the-art baseline pruning method is
introduced by Han et al. [12] in 2015. The method consists of
three steps including training the network, pruning redundant
weights and retraining the remaining connections. In the first
step, the ANN is trained using the standard back propagation
method with random initial inputs. In the next step, the weights
(i.e synapses) which are less than a predefined threshold value
(equal to the multiplication of a quality parameter by the
standard deviation, std , of a layer’s weights) are pruned. This
step is repeated iteratively for several epochs until no weights
can be further removed. Finally, after several iterations of
retraining the remaining weights are performed to fine tune
the new network. The main motivation of this method is that
the small weights have less or no contribution to the overall
performance of a neural network.

2) CGS and SIMD Aware Pruning: In addition to the
baseline method, we compared LGPS with two other methods

recently proposed. In the first one, a block-wise pruning
method called Coarse Grain Sparsity (CGS) was introduced
in [38]. In this method, a sparse network is achieved by
dropping large blocks of weights during training instead of
element-wise pruning. Those blocks are selected randomly and
the corresponding connections set to zero in initialization step
and remain zero until the end of training. The idea behind this
method is to reduce the number of addresses (or indices) of the
sparse connections that should be stored in a on-chip memory
by storing the block addresses instead of element-wise indices.
In the second method, called SIMD-aware pruning [43],
the elements of weight matrix are divided into groups. In the
pruning step, the Root-Mean-Square (RMS) of each group is
calculated and groups with RMS value bellow a threshold are
prunned. Finally, the pruned network is retrained for several
epochs.

C. Motivation for LGPS

It has been shown that ANNs can be trained using less
number of neurons and synapses [17] by sparsifying the
network and removing the redundant weights. The large neural
networks consume considerable amount of memory resources
and power which makes it hard to deploy on battery and
memory constrained edge devices. Therefore, model com-
pression through pruning and sparsity is one solution to
shrink the network size while preserving the classification
accuracy. Although the baseline pruning method [12] has good
performance from an algorithm perspective, from hardware
prospective, it requires as high as 2× memory foot-print (for
storing values and address indices in memory) compared to
the model size. In the CGS method, the number of indices is
reduced by limiting the sparification to the block size, but it
presents an inherent trade-off between the degree of pruning
and the number of block indices that need to be stored.

On the other hand, sparse networks add a level of irregular-
ity to the network which makes it even harder to run them on
hardware platforms such as GPUs or CPUs. This irregularity
comes from the fact that the network’s weights are pruned
randomly. The existing hardware platforms such as GPU and
CPU do not support efficient sparse networks with irregular
weight orders. State of the art DNN accelerators also cannot
take full advantage of the lower memory footprint of sparse
networks [14].

Therefore, these observations motivate us to develop a
hardware-aware pruning method and accelerator to remove
the redundant connections and take advantage of a sparsity
network and also reduce the memory footprint of storing the
non-zero indices. We expect our approach to be an enabler
for deploying state-of-the-art neural networks on edge devices
and mobile platforms.

III. PROPOSED LFSR-GENERATED PRS BASED

SPARSITY (LGPS) METHOD

In this article, we present a hardware-friendly pruning
method, namely LGPS. During the training step in consists
of the following steps:

1) In the first step of the training algorithm, a pseudo-
random sequence (PRS) is generated that acts as the

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

754 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021

Fig. 2. LGPS method consists of four main steps: generating indices using
LFSR topology, training the network with regularization of the specified
weights using LFSR, pruning redundant weights and retraining the remaining
connections.

indices to sparsify the synapses. The PRS can be gener-
ated on-die using linear feedback shift register (LFSR).
We show that the expressibility of the network and
the accuracy of the model are not compromised in the
process.

2) Next the network is trained with regularization of the
specific synapses whose addresses (or indices) are not
covered by the PRS. Only the indices that are produced
by the PRS are not regularized. All the regularized
parameters are forced to zero.

3) Prune the regularized connections and retrain the
remaining connections (whose indices are covered by
the PRS). (figure 2).

Generating the locations of the zero weights in the connectivity
matrix by using a PRS provides good performance, and also
making it easier to generate the indices on the fly, without
the need to be stored in a separate memory sub-bank. During
deployment, the non-zero weights of the pruned network,
the seed of the PRS and the structure of the LFSR are shared
with the edge device. During inference, the following steps
are executed:

1) The structure of the LFSR and the seed of the PRS
provides the same bit-wise stream of the same PRS that
was used during training.

2) The non-zero weights are read sequentially and the
corresponding address is matched with the PRS value.
This allows the correct activation to be multiplied with
the correct weight.

3) All the non-zero weights are covered and the final result
of the classification problem is generated.

A. Linear Feedback Shift Register (LFSR) Based PRS
Generation

LFSR [44] is a common topology to generate pseudo
random bit sequences. The block diagram of a general LFSR
is shown in figure 3. It consists of a cascade of n flip-flops
followed by linear feedback using a couple of exclusive-or
(XOR) gates (ci). The value used to initialize the LFSR is
called input seed (si). The mathematical formula to calculate
the LFSR output sequence is shown in Eq. 1.

s j =
n∑

i=0

ci s j−i , j ≥ n (1)

where s j is the output sequence.

Fig. 3. A general LFSR topology with n flip-flops.

The main advantages of using the LFSR topology to gen-
erate PRS are:

1) The hardware implementation is simple and compact.
2) The PRS is generated in real-time within a clock cycle

and does not require any memory foot-print.
3) The generated PRS has useful statistical properties that

preserves the rank of the generated connectivity matrix
[45] (to be elaborated further in section IV).

4) The maximum PRS length without repetition (equal to
2n − 1) can be achieved as long as the characteristic
polynomials is primitive [45].

In this article, we propose two different indexing schemes
to prune the networks using LFSR. In the first method
(called LGPS-I), we use two separate LFSRs with differ-
ent input seeds to generate indices for rows and columns
separately. The row indices encode the addresses of input
vector elements while the column indices indicate the address
of the output vector. In the second indexing approach
(called LCPS-II), we use one LFSR to generate random indices
for each column of weight matrix. To generate a different
PRS within each column we utilize another LFSR to generate
different random input seed for each column and ensure that
we preserve the rank of the sparse matrix. Finally, for both
approach, to keep the generated indices within the range of the
row/column length, we multiply the generated index to the size
of the row/column and keep the most significant bit (MSB)
as the desired index. The process of generating the addresses
using LFSR is summarized in figure 4a.

B. Training LGPS With a PRS Based Regularization

After generating the PRS using the LFSR, we use them
as the indices for the connection matrix that needs to be kept
and the remaining connections will be regularized and pruned.
A fully connected (FC) layer of a deep neural network (DNN)
with input (x), weight matrix (W) and vector of bias (b)
performs the following function. The following formulation is
based on our first indexing approach i.e. row/column indexing.
The second method for PRS generation can also be similarly
formulated and omitted here for brevity.

Z = W T x + b (2)

a = σ(Z) (3)

where T is a transpose function, σ is a non-linear activation
function which is typically chosen to be a Rectified Linear
Unit (ReLU) [46]. To simplify the above equations, we can
merge vector of b with W . This can be done by appending b
as an additional column to the end of matrix W . Then the

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

KARIMZADEH et al.: HARDWARE-FRIENDLY APPROACH TOWARDS SPARSE NEURAL NETWORKS 755

Fig. 4. High-level illustrations of our proposed DNN accelerator architec-
ture for inference. The architectures of (a) LFSR Block, (b) LGPS-I and
(c) LGPS-II.

above equations can be rewritten and calculated element-wise
as follow:

a = ReLU

(
n−1∑
d=0

Wdexe

)
(4)

where d and e are the indices of the original weight matrix
corresponding to the rows and columns, respectively.

In the next step, the specific connections (weights) selected
based on LFSR indexing are trained without regularization and
the remaining connections are regularized to be zero during
the training step. We have investigated the use of both L1 and
L2 regularization methods to penalize the target connections
(figure 8). L1 regularization results in more weights to be
near zero which gives better performance in terms of accuracy
after pruning without performing another retraining step [12].
On the other hand, L2 regularization gives the best retraining
results. Regularization also prevents over-fitting as the PRS
selects a random subset of target synapses.

In the regularization methods, a regularizer component is
added to the cost function (J). Here, we show the for-
mula for L2-regularization in Eq.5. In addition, weights
will be updated during back propagation process as shown

in Eq. 6.

J (W [l], b[l]) = 1

m

m∑
d=1

L(ŷ(i), y(i)) + λ

2m

L∑
l=1

||W [l]
!i ! j ||2F

(5)

where !i and !j are the weights related to row and column
indices that should be regularized to be zero. In other words,
these indices are the one that are not covered by PRS from
LFSR.

W [l+1] =
⎧⎨
⎩ W [l][1 − αλ

m
], if d, e �= i, j

W [l] − αdW [l], if d, e = i, j
(6)

where i, j, L and α are correspond to the row and col-
umn indices generated from LFSR, the layer’s number in
the network, and the learning rate, respectively. λ is the
regularization parameter and can be tuned where larger λ
penalize the weights values more and make them closer to
zero.

C. Pruning and Retraining

Regularization makes selected weight values to be zero
or very close to zero. However, in order to design a DNN
accelerator for LGPS, we need to make sure that the selected
weights are exactly equal to zero. Therefore, we add a pruning
step to guarantee that all the selected weights are zeroed-out.
The computation of activation function with the LFSR based
pruning method shown in Eq. 4 becomes

a = ReLU

⎛
⎝n−1∑

j

Si j x j

⎞
⎠ (7)

where S is correspond to the sparse weight matrix. Finally,
the pruned network is retrained iterativly for several epochs
to compensate for the pruned connections and fine-tune the
remaining ones.

D. DNN Compression and Hardware Architectures

We design an efficient DNN hardware accelerator to per-
form inference on the proposed sparse networks. After train-
ing the neural network using LGPS, the compressed model
is ready to be deployed. As mentioned before, a baseline
pruning technique to sparsify networks add irregularity to the
structure which makes it hard for the state-of-the-art DNN
accelerators to fully take the advantage of the reduced memory
footprint [14]. The main advantage of using LGPS method is
that we generate the indices of the unpruned connections in
real-time during inference and as a result only the non-zero
weights need to be stored. We implement the hardware design
of LGPS, baseline, the CGS and SIMD methods to com-
pare and contrast the advantages and limitations of them.
The architecture of the LFSR based indexing LGPS-I and
LGPS-II architecture are illustrated in figure 4. In addition,
the architecture of the baseline design and CGS methods
are shown in figure 5 for completeness. The block diagrams
illustrate the difference in hardware resources/operations in
the proposed methodologies, baseline and CGS methods to

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

756 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021

Fig. 5. High-level illustrations of DNN accelerator for inference. The
architectures of (a) baseline and (b) CGS method.

infer from a sparse FC network, with N input neuron,
M output neuron and sp as the level of sparsity (i.e number
of zeros). The detailed explanation of these methods are as
follow:

The hardware design of the two proposed methods is
demonstrated in figure 4b and 4c, respectively. We describe
the architecture in the next two subsections.

1) LGPS With Row/Column Indexing Using LFSR
(LGPS-I): In this scheme (figure 4b), we call LGPS-I, LFSR
block1 is used to generate the PRS as an index for each of the
input neurons. The way the PRS (as an index) is generating
inside LFSR Block is shown in figure 4a. Since the range of
generated PRS is between 1 and 2N − 1, to keep the range in
the number of input neurons, the generated PRS is multiplied
to the length of input neurons (m). Then, the most significant
bits (MSBs) of the calculated value in binary form is selected.
This scales the generated number within range m ≤ 2N − 1.
If we do not perform this scaling, a PRS number greater
than m can be generated and results in unused cycles, that
reduces the throughput. Next, the generated index is used to
select the right input to be multiplied to the corresponding
weight value in the sparse weight matrix (S). The result of
multiplication/accumulation is stored in the output buffer
where the address comes from the second LFSR block with
different input seed. Again the output of the LFSR block 2
(j) is calculated based on the process showed in 4a. This time
the PRS generated by LFSR is multiplied to the column length
(N) in order to keep the range of the indices (j) between
1 to N . In order to calculate the output neuron using this
architecture, the output of multiplication/accumulation should
write and store in the output buffer until the result for one
input column is calculated which is referred to the output
neuron. This leads to the extra reads and writes to/from
memory. The exact number of memory reads from the input
and the output buffer depend on the number of multiply and
accumulate units and also the model size.

2) LGPS With Column-Wise Indexing Using Nested-LFSRs:
To solve the problem of extra reads and writes in the
aforementioned architecture, we introduce a slightly modified
architecture based on column-wise indexing to generate a
sparse network using nested-LFSRs. We call this LGPS-II.
In this second methodology, we introduce a column-wise
indexing approach using one LFSR to generate indices in
the size of input column. Block-diagram of this approach is
illustrated in figure 4c. Column indices are generated using
the LFSR block 1 introduced in Figure 4a. The input seed is
generated randomly using LFSR block 2. The reason behind
using LFSR block 2 is to generate different input seeds for
each column which cause different PRSs for each column.
This will help to preserve the rank of the sparse matrix during
training. Finally, the multiplication-accumulation of input and
sparse weight matrix is performed column-wise and the value
of each output neuron is calculated without the need to store
them in the output buffer each time. The advantage of this
approach is that it reduces the number of read/write from/to
the output memory. In addition, this approach aids parallel
processing as the indices for each column are generated in
parallel and are uncorrelated to the others. We can take
advantage of this by distributing over multiple sub-arrays
during inference.

3) DNN Accelerator for Benchmarks: To accelerate the
multiplication-accumulation of baseline algorithm, the weight
matrix is typically compressed to three vectors that should be
saved in the memory (Figure 5a). The first, a vector (S) con-
sists of non-zero values of each column of weight matrix W .
The second, vector (z), that has equal length to vector S, which
includes the addresses of each entry in S. Third, a pointer
vector (p) which keeps track of each column and points to the
beginning of each column’s vector, is used. In addition, the bit-
width of each entry of S and z is designed to be four-bit or
eight-bits, which leads to additional memory usage, since the
index is represented in with a half-byte or one-byte resolution.
We have denoted this ratio parameter as α. For example, when
using a four bit-width representation, if more than 24−1 zeros
appear before a non-zero entry, a zero is added to the vectors S
and z. This will result in a larger memory foot-print to store
the sparse weight matrix.

The architecture of CGS method is demonstrated in
figure 5b where the sparse weight matrix (S) and the addresses
of the remaining blocks (I) should be stored in memory. The
size of the block size (B) is defined during training. As an
example the block size B can be 64 × 64. A selector and
corresponding logic is required to choose the correct input
for multiplication to the sparse weights. The final benchmark,
SIMD method, also stores the sparse weight values, a vector
containing the number of column for the first element of
each group and a vector containing the row index of the first
non-zero element in each row.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results of
the algorithm and hardware implementation of LGPS-I and
LGPS-II compared to the baseline, CGS and SIMD methods.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

KARIMZADEH et al.: HARDWARE-FRIENDLY APPROACH TOWARDS SPARSE NEURAL NETWORKS 757

A. Benchmark Methods

We used three state-of-the-art pruning methods to compare
the algorithmic results. In the first method [12] (baseline),
the connections that have the values less than a predefined
threshold are pruned. The threshold is determined by the
standard deviation of the weights multiplied by a set of hyper-
parameters. We choose the hyper-parameters by trial and error
and this leads to fine-tuning of the level of sparsity. In the sec-
ond methodology (CGS method) [38], a pruning method is
proposed to randomly drop the weights in a coarse-grain
block-wise basis. Note that all blocks along a row or a column
should not be pruned in order to keep all the neurons during
training. We choose learning rate of 0.01 for training. In the
third method (SIMD) [43], the weight matrix is divided to
groups of size two, and the groups that have RMS less than a
threshold are pruned away.

B. Simulation Results for the Proposed Pruning Algorithm

To demonstrate the effectiveness of our proposed method-
ologies, we evaluate the results on both FC networks and
CNNs using different datasets consists of MNIST, Cifar10 and
down-sampled ImageNet and ImageNet (original size). For
FC networks, we have used LeNet-300-100, and FC networks
with different hidden layer sizes, we also utilized LeNet-5 and
VGG-16 as CNNs. It should be noted that in order to use
downsampled ImageNet, we modified the VGG16. Finally,
we evaluate the pruning method on MobileNet, as an example
of a network that is designed to run on mobile devices, using
original ImageNet. The details are explained in the following
part, IV-B2. Training step for each network is implemented on
Tensorflow platform and carried out on Nvidia GTX 1080 Ti
GPUs. It should be noted that we mainly focused on pruning
FC layers’ weights as they consume the maximum amount
of memory resources. Moreover, there are fewer opportunities
of effective hardware mapping of FC layer computations than
convolution layers [47]. As shown in figure 1, large DNNs
are over-parameterized; this is mainly because of the large
number of connections in fully connected layers of these
networks that do not contribute to an output activation. As an
example, about 89% of VGG-16 parameters are in the FC
layers. The test accuracy, number of parameters and the rate
of compression of different networks including fully connected
networks with different hidden layers on MNIST dataset,
LeNet-5 on MNIST, VGG-16 on downsampled ImageNet
and MobileNet on original ImageNet dataset are reported in
Table I. These results show there are redundancy in number
of parameters in neural networks and the weights can be
heavily pruned while preserving the accuracy. LeNet 300-100,
LeNet-5 and modified VGG-16 can be compressed, while
preserving the accuracy, compared to the unpruned network by
11×, 12× and 7×, respectively. We also evaluated our method
on MobileNet which is designed for mobile applications and
has significantly reduced number of parameters. We have
achieved 1.34× compression rate on this network.

1) Results on MNIST Dataset: In this section we have
demonstrated the pruning results of various ANNs on MNIST.
Figure 6 illustrates the accuracy (mean ± std) of our pruning

TABLE I

NUMBER OF PARAMETERS, PRUNING (USING LGPS METHOD)
AND REFERENCE ACCURACY AND RATE OF COMPRESSION

FOR DIFFERENT NETWORKS

Fig. 6. The accuracy (mean ± std) vs sparsity percentage of LGPS-I
and LGPS-II on MNIST dataset for 10 trials and two different networks:
(a) LeNet-300-100 and (b) LeNet-5.

algorithms, LGPS-I and LGPS-II on MNIST dataset for
10 trials. We evaluated them on two different networks
including LeNet-300-100 and LeNet-5. The first network,
LeNet-300-100, is a fully connected network with two hidden
layers of length 300 and 100 neurons each. The second one,
LeNet-5, is a convolutional neural network with two convolu-
tional layers followed by two fully connected layers of sizes
120 and 84 neurons. The results show that our pruning method
can prune the networks more that 90% while preserving the
accuracy. In addition, LGPS-I and LGPS-II perform equally
well for both networks and different sparsity levels. As such,
for the software evaluations of our method, we just present the
results for LGPS-I. LGPS-II shows similar algorithmic results.
This is because the LFSR generated random numbers maintain
the rank of the connectivity matrix, which in turn preserves
the expressibility of the matrix [48]. To evaluate this property,
we compare the ranks of the unpruned networks, LGPS,
baseline (threshold pruning) and CGS method using block size

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

758 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021

TABLE II

RANK OF FULLY CONNECTED LAYERS OF A FULLY CONNECTED (FC)
NETWORK WITH TWO HIDDEN LAYERS OF SIZE 512 EACH AND

LENET-5 ON MNIST IN THREE DIFFERENT SPARSITY RATES

OF UNPRUNED NETWORK, LGPS-II, BASELINE AND CGS
METHOD (WITH BLOCK SIZE: 64 × 64). (LGPS-I GAIN

SIMILAR RESULTS AS LGPA-II)

Fig. 7. The comparison between different regularization parameters (λ) for
LGPS-I with/without retraining.

of 64 × 64. The results for 40%, 75% and 95% sparsity rate
demonstrated in Table II. Based on our observation, rank of the
weight matrix does not get affected by pruning the networks
using our hardware-aware methodology. In fact, the proposed
method preserve the rank of weight matrix closer to the
dense matrix (before pruning). Therefore, we conclude that
the expressibility of the weight matrices as well as the overall
accuracy of the ANNs remain unchanged. However, ranks of
matrices in baseline and CGS method have drastically reduced.
The reason behind this reduction is that in the baseline,
the lower weights’ value that have been pruned are mainly
belong to the border of the image as the handwritten letters in
MNIST dataset where positioned in the middle of the image.
In addition, in CGS method, dropping the weights in a block-
by-block basis reduces the rank reduction, in particular for
higher levels of sparsity.

Moreover, the proposed method is evaluated based on
different regularization parameters (λ) to find the best λ to
prune the network while preventing over-fitting. We choose
different λ values equal to.1, 2 and 10 to evaluate the effects
of L2 regularization on network pruning with and without
retraining. Based on the results (figure 7), we choose a
medium value of λ = 2 for an optimal trade-off between the

Fig. 8. The comparison between L1 and L2 regularization methods
with/without retraining for LGPS-I.

rate of pruning and preventing over-fitting. Lower values of
λ cause the network to over-fit while a faster pruning rate that
uses a higher value of λ reduces test accuracy. It should be
noted that LGPS-II is shown the similar results. In addition,
we investigate the effects of L1 and L2 regularization on
pruning (figure 8). We chose L2 regularization to prune the
networks because it shows better performance with retraining
step.

2) Results on Cifar10 and ImageNet Datasets: Cifar 10 is
a set of images with 10 different classes. The results of
LeNet-5 on Cifar10 for our method in comparison with the
baseline is demonstrated in figure 9c. The results demonstrates
that LGPS-I can achieve the same result as baseline even in
more complex datasets. Also, the baseline method has higher
standard deviation compared to LGPS-I in 5 trials. LGPS-II
also achieved no accuracy loss during pruning up to 90%
sparsity rate. The last dataset that we evaluate our method is
the ImageNet dataset [49]. This dataset contains 1000 different
classes. The only pre-processing that we have done on this
dataset is a single crop with no rotation and we have not
performed any other pre-processing or augmentation. The
largest batch size, 32 images/batch, used for implementation.
We tested MobileNet [50] on ImageNet dataset and the result
of accuracy in different sparsity rates of the FC layer illustrates
in figure 9e. Finally, we tested our method on VGG-16
network which is a large and complex network. ImageNet
dataset is used but initially down-sampled it to 64 × 64 [51].
The reason that we used down-sampled ImageNet is that the
network is converged faster since the images are smaller.
Second, to show that the pruning method is also work on low
resolution images which is sometimes the case in the captured
images from edge devices. It should be noted that, in order to
fit to the spatial size (i.e. 64×64) of down-sampled ImageNet,
we have modified VGG-16 by just changing the FC layer size
to 2048 and eliminating the last pooling layer. This is due to
the fact that the feature size should maintain enough spatial
coverage before each pooling layer. The results are illustrated
in figure 9d which demonstrate that the proposed pruning
method based on LFSR indexing can prune the network while
preserving the accuracy as the level of sparsity changes.

In addition, we compare the accuracy of LGPS-I with
CGS method on different networks including MNIST on

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

KARIMZADEH et al.: HARDWARE-FRIENDLY APPROACH TOWARDS SPARSE NEURAL NETWORKS 759

Fig. 9. Accuracy error (%) of LGPS-I in comparison with the baseline
method on different sparsity rates. LGPS-II shows similar algorithmic results
as well.

FC network with two hidden layers of size 512 (figure 10a),
Cifar10 on LeNet5 (figure 10b) and VGG16 on downsampled
Imagenet (figure 10c). The results of CGS method differ-
ent block sizes from 1 × 1, 2 × 2, etc, on MNIST and
Cifar10 datasets show that as the size of blocks increases,

Fig. 10. Accuracy error (%) of LGPS-I in comparison with the CGS method
on different sparsity rates and block sizes (CGS, block size). LGPS-II shows
similar algorithmic results as well.

the accuracy drops. The results demonstrate that LGPS can
preserve the accuracy better in different sparsity rates. In addi-
tion, the results of LGPS-I compared to SIMD method is
demonstrated in figure 11. LGPS-I can preserve the accuracy
in different sparsity rates in comparison to SIMD method.
LGPS-II shows similar algorithmic results as well, for exam-
ple, it achieved 98.2% accuracy in 90% sparsity rate when
using LeNet-5 network on MNIST.

C. Comparison of Hardware Implementation in 65nm CMOS

In this section, the results of hardware implementation for
the baseline and LGPS-I and LGPS-II are demonstrated to
estimate key hardware metrics. The baseline and LGPS-I,
LGPS-II and CGS architectures have been synthesized

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

760 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021

Fig. 11. Accuracy of LGPS-I and SIMD for LeNet-5 on MNIST and modified
VGG-16 on downsampled ImageNet in different sparsity rates.

Fig. 12. Total memory required for baseline method (contains indices, pointer
and overhead) and LGPS-I for 4, 6 and 8 index bit precision with different
sparsity levels. Vertical axis is in Logarithmic scale. LGPS-II shows similar
algorithmic results as well.

TABLE III

HARDWARE PARAMETERS

using 65nm CMOS technology. The hardware accelerators
are synthesized with Synopsis Design Compiler. The mea-
surements are combinations of synthesized module results and
calculations. To make fair comparisons, only single MAC unit
computation and full-on-chip SRAM architecture are imple-
mented. Table III represents the implementation parameters.

Fig. 13. Total memory required for CGS method for different block
sizes (contains indices, pointer and overhead) and LGPS-I with different
sparsity levels. Vertical axis is in Logarithmic scale. LGPS-II shows similar
algorithmic results as well.

Fig. 14. Accuracy vs total memory required for baseline method (contains
indices, pointer and overhead), LGPS-I and CGS method for 8-bit index
precision with different sparsity levels on (a) fully connected network with
two hidden layers of size 512 each and MNIST dataset.

Memory bank sizes are different sizes of synthesized SRAM.
The on-chip SRAM can be much larger than these sizes by

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

KARIMZADEH et al.: HARDWARE-FRIENDLY APPROACH TOWARDS SPARSE NEURAL NETWORKS 761

Fig. 15. The measured area (mm2) of the overall systems consists of accumulator, multiplier, and input/output buffers for baseline method, LGPS-I and
LGPS-II, CGS (block size 4 × 4) and SIMD methods. Measurements performed for three different networks (LeNet-300-100, LeNet-5 and modified VGG-16)
at various sparsity and 4-8 bit-width indexing precision.

Fig. 16. An example of the breakdown of area among memory, index vs.
logic, for LGPS-II, and baseline and CGS method on Lenet300-100 network
with 90% sparsity.

having more of them. The pre-layout analysis shows that
the required memory-footprint of LGPS-I can be reduced
by 1.51× to 2.80× compared to the baseline method. The
results for the baseline method with 4, 6 and 8 bit-width
representation of the index and the proposed LFSR-based
indexing are illustrated in figure 12. It should be noted that
LGPS-II shows similar results in terms of required memory
as well. In addition, the comparison between the required
memory of LGPS-I and CGS method with four different block
sizes are illustrated in 13. The index bit-with are chosen to be
8 bit. The results show that LGPS-I requires 2×, 1.2×, 1.07×
and 1.002× less memory compared to the CGS with 1 × 1,
2 × 2, 4 × 4 and 64 × 64 block sizes, respectively. Although
the required memory of LGPS-I and CGS with block size
64 × 64 are very close, CGS could not preserve the accuracy
in higher block sizes (Figure 14). The comparison between the
accuracy versus the total required memory of LGPS-I, baseline

TABLE IV

MEASURED LATENCY (ms) OF THE OVERALL SYSTEM

FOR OUR LGPS-I, LGPS-II, BASELINE AND CGS

and CGS is shown in figure 14. The memory calculation is
done on (a) fully connected network with two hidden layers
of 512 neurons each on MNIST and (b) the modified VGG-16
network on downsampled ImageNet with 23M parameters.

In addition to memory measurement, the overall system
(memory, multiplier, accumulator and input/output buffers)
parameters consists of area and power of the two proposed
architecture in comparison to baseline, CGS and SIMD meth-
ods are also measured. For CGS method, we chose block size
of 4 × 4 as it shows close accuracy percentage compared to
LGPS. Figure 15 illustrated the area measurements for three
different networks including LeNet-300-100, LeNet-5 and

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

762 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021

Fig. 17. The measured power (W) of overall systems consists of accumulator, multiplier, and input/output buffers for baseline method, LGPS-I and LGPS-II,
CGS (block size 4 × 4) and SIMD methods methods.Measurements performed for three different networks (LeNet-300-100, LeNet-5 and modified VGG-16)
at various sparsity and 4-8 bit-width indexing precision.

Fig. 18. The relative execution time of overall systems during inference of
LGPS-I and LGPS-II with respect to baseline method on LeNet-300-100,
LeNet-5 and modified VGG-16 at sparsity rate of 90% and 4 bit-width
indexing precision.

modified VGG-16 at 4 and 8 bit-width index precisions. The
results demonstrate that LFSR based indexing has considerable
advantages over baseline method in terms of area saving. Our
proposed method can save up to 50% area even in large and
complex network like modified VGG-16. Figure 16 illustrates
an example of the breakdown of area among memory, index
vs. logic, for LGPS-II, and baseline and CGS method on
Lenet300-100 network with 90% sparsity.

The power measurements of the three networks are also
demonstrated in Figure 17 and a maximum of 37.03% power

TABLE V

MEASURED PERFORMANCE (NUMBER OF FRAMES PROCESSED
PER ms) OF THE OVERALL SYSTEM FOR LGPS-I,

LGPS-II, BASELINE AND CGS

savings across various sparsity rates and indexing bit-widths
are reported. Although significant power savings are reported
for both of our proposed methods, it should also be noted that
in some of the cases (Figure 17, a,b and c) of the LGPS-I,
the measured power in slightly higher than the baseline. This
is because row/column LFSR indexing introduces additional
output buffer access (2 cycle read and 1 cycle write) which
increases the power usage. This additional numbers of read
and write are calculated and included in our design and results.
We address this problem by introducing LGPS-II. In this case,
we reduce the number of read and write to/from memory by
performing the multiplication/accumulation for each column
and then saving the final result in the memory, which reduces

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

KARIMZADEH et al.: HARDWARE-FRIENDLY APPROACH TOWARDS SPARSE NEURAL NETWORKS 763

the power consumption significantly. We also evaluate the
execution time of LGPS-I and LGPS-II with respect to the
baseline method during inference. The relative execution time
of overall systems on LeNet-300-100, LeNet-5 and modified
VGG-16 at sparsity rate of 90% and 4 bit-width indexing
precision is illustrated in figure 18. The results shows that our
methods improve the execution time. LGPS-II is 1.53× faster
that the baseline pruning method. In addition, we evaluate the
latency (in ms) and performance (number of frames processed
per second) of the two proposed architecture, the baseline and
CGS. The results are shown in Table IV and V.

V. CONCLUSION

In this article, we propose a DNN accelerator for sparse
network generated by LFSR-based indexing. We investi-
gate the performance of two different LFSR-based indexing
methods including row/column wise indexing (LGPS-I) and
column-wise nested-LFSR based indexing (LGPS-II). The
advantage of our proposed LFSR-based pruning is that we
solve the problem of irregular sparse network and we no longer
need to store the address of the unpruned weights. The propose
method enables us to deploy large DNNs on inference and
edge devices due to the significant reduction both in memory
foot-print and access energy. We have shown that LGPS can
preserve the accuracy while pruning DNNs, and can achieve a
maximum of 37.35% power savings and 49.84% area savings
across varying sparsity rates.

Smaller machine learning models are easy to deploy and
update [13]. In this article, we show that the proposed meth-
ods can prune a large class of neural network models and
drastically reduce their size compared to the sate of the art.
This facilitates not only deployment of the models as well as
the memory required to store the model on the edge devices.
For example, Figure 14 shows the advantage of LGPS as
we can now compress LeNet-300-100 and modified VGG-16
to less than 1MB and 100MB storage memory, respectively.
We expect such techniques to be practical solutions towards
deploying ML models on the edge.

REFERENCES

[1] M. Verhelst and B. Moons, “Embedded deep neural network processing:
Algorithmic and processor techniques bring deep learning to IoT and
edge devices,” IEEE Solid State Circuits Mag., vol. 9, no. 4, pp. 55–65,
Fall 2017.

[2] Y. Huang, X. Ma, X. Fan, J. Liu, and W. Gong, “When deep learning
meets edge computing,” in Proc. IEEE 25th Int. Conf. Netw. Protocols
(ICNP), Oct. 2017, pp. 1–2.

[3] S. Han et al., “EIE: Efficient inference engine on compressed deep neural
network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2016, pp. 243–254.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[5] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis,
“Deep learning for computer vision: A brief review,” Comput. Intell.
Neurosci., vol. 2018, pp. 1–13, Feb. 2018.

[6] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang, and S. Wang, “Image
and video compression with neural networks: A review,” IEEE Trans.
Circuits Syst. Video Technol., vol. 30, no. 6, pp. 1683–1698, Jun. 2020.

[7] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing [Review Article],” IEEE
Comput. Intell. Mag., vol. 13, no. 3, pp. 55–75, Aug. 2018.

[8] R. Boostani, F. Karimzadeh, and M. Nami, “A comparative review on
sleep stage classification methods in patients and healthy individuals,”
Comput. Methods Programs Biomed., vol. 140, pp. 77–91, Mar. 2017.

[9] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning
for healthcare: Review, opportunities and challenges,” Briefings Bioinf.,
vol. 19, no. 6, pp. 1236–1246, Nov. 2018.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[12] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 1135–1143.

[13] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,” 2015, arXiv:1510.00149. [Online]. Available:
http://arxiv.org/abs/1510.00149

[14] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural net-
works,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO). Taoyuan, Taiwan: IEEE Press, Oct. 2016, p. 20.

[15] A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. ACM/IEEE 44th Annu. Int.
Symp. Comput. Archit. (ISCA), Jun. 2017, pp. 27–40.

[16] Z. Chen, Z. Chen, J. Lin, S. Liu, and W. Li, “Deep neural network
acceleration based on low-rank approximated channel pruning,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 4, pp. 1232–1244,
Apr. 2020.

[17] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas, “Pre-
dicting parameters in deep learning,” in Proc. Adv. Neural Inf. Process.
Syst., 2013, pp. 2148–2156.

[18] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML
for model compression and acceleration on mobile devices,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 784–800.

[19] X. Ding et al., “Global sparse momentum SGD for pruning very
deep neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 6382–6394.

[20] Z. Chen et al., “Exploiting weight-level sparsity in channel pruning
with low-rank approximation,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2019, pp. 1–5.

[21] Y.-H. Chen, T.-J. Yang, J. S. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308, Jun. 2019.

[22] J. Li et al., “SqueezeFlow: A sparse CNN accelerator exploiting
concise convolution rules,” IEEE Trans. Comput., vol. 68, no. 11,
pp. 1663–1677, Nov. 2019.

[23] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model
for visual area v2,” in Proc. Adv. Neural Inf. Process. Syst., vol. 2008,
pp. 873–880.

[24] F. Karimzadeh, N. Cao, B. Crafton, J. Romberg, and A. Raychowdhury,
“Hardware-aware pruning of DNNs using LFSR-generated pseudo-
random indices,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
Oct. 2020, pp. 1–5.

[25] M. Ranzato, C. Poultney, S. Chopra, and Y. L. Cun, “Efficient learning
of sparse representations with an energy-based model,” in Proc. Adv.
Neural Inf. Process. Syst., 2007, pp. 1137–1144.

[26] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on CPUs,” in Proc. Deep Learn. Unsupervised Feature Learn.
Workshop, NIPS, 2011.

[27] S. Han et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays (FPGA), 2017, pp. 75–84.

[28] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
DNNs,” in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1379–1387.

[29] H. Mao et al., “Exploring the regularity of sparse structure in convo-
lutional neural networks,” 2017, arXiv:1705.08922. [Online]. Available:
http://arxiv.org/abs/1705.08922

[30] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance
estimation for neural network pruning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 11264–11272.

[31] J. Kepner and R. Robinett, “RadiX-net: Structured sparse matrices for
deep neural networks,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp. Workshops (IPDPSW), May 2019, pp. 268–274.

[32] S. Chen and Q. Zhao, “Shallowing deep networks: Layer-wise pruning
based on feature representations,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 12, pp. 3048–3056, Dec. 2019.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

764 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021

[33] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1389–1397.

[34] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method for
deep neural network compression,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 5058–5066.

[35] Z. Zhuang et al., “Discrimination-aware channel pruning for deep neural
networks,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 875–886.

[36] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 2074–2082.

[37] R. Yu et al., “NISP: Pruning networks using neuron importance score
propagation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 9194–9203.

[38] D. Kadetotad, S. Arunachalam, C. Chakrabarti, and J.-S. Seo, “Efficient
memory compression in deep neural networks using coarse-grain sparsi-
fication for speech applications,” in Proc. 35th Int. Conf. Comput. Aided
Design, Nov. 2016, pp. 1–8.

[39] D. Kadetotad, V. Berisha, C. Chakrabarti, and J.-S. Seo, “A 8.93-
TOPS/W LSTM recurrent neural network accelerator featuring hier-
archical coarse-grain sparsity with all parameters stored on-chip,” in
Proc. IEEE 45th Eur. Solid State Circuits Conf. (ESSCIRC), Sep. 2019,
pp. 119–122.

[40] A. Marchisio, M. A. Hanif, M. Martina, and M. Shafique, “PruNet:
Class-blind pruning method for deep neural networks,” in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Jul. 2018, pp. 1–8.

[41] Y. Sun, X. Wang, and X. Tang, “Sparsifying neural network connections
for face recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 4856–4864.

[42] L. Mauch and B. Yang, “A novel layerwise pruning method for
model reduction of fully connected deep neural networks,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2017,
pp. 2382–2386.

[43] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing DNN pruning to the underlying hardware par-
allelism,” ACM SIGARCH Comput. Archit. News, vol. 45, no. 2,
pp. 548–560, 2017.

[44] R. Mita, G. Palumbo, S. Pennisi, and M. Poli, “A novel pseudo random
bit generator for cryptography applications,” in Proc. 9th Int. Conf.
Electron., Circuits Syst., vol. 2, 2002, pp. 489–492.

[45] T. W. Cusick and P. Stanica, Cryptographic Boolean Functions and
Applications. New York, NY, USA: Academic, 2017.

[46] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti
6.0: A tool to model large caches,” HP Laboratories, vol. 27, p. 28,
Apr. 2009.

[47] M. Verhelst and B. Murmann, “Machine learning at the edge,” in Proc.
NANO-CHIPS. Cham, Switzerland: Springer, 2020, pp. 293–322.

[48] J. Gu, Z. Zhao, C. Feng, M. Liu, R. T. Chen, and D. Z. Pan, “Towards
area-efficient optical neural networks: An FFT-based architecture,”
in Proc. 25th Asia South Pacific Design Autom. Conf. (ASP-DAC),
Jan. 2020, pp. 476–481.

[49] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[50] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[51] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recur-
rent neural networks,” 2016, arXiv:1601.06759. [Online]. Available:
http://arxiv.org/abs/1601.06759

Foroozan Karimzadeh (Graduate Student
Member, IEEE) received the B.S. degree in
electrical and computer engineering and the M.Sc.
degree in biomedical engineering from Shiraz
University, Iran, in 2013 and 2016, respectively.
She is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
Georgia Institute of Technology, under the
supervision of Dr. Raychowdhury. Her main research
interest includes developing novel algorithms and
hardware for energy efficient machine learning
techniques.

Ningyuan Cao (Student Member, IEEE) received
the B.S. degree in electrical engineering from Shang-
hai Jiaotong University, Shanghai, China, in 2013,
and the M.S. degree in electrical engineering from
Columbia University, New York City, USA. He is
currently pursuing the Ph.D. degree with the School
of Electrical and Computer Engineering, Georgia
Institute of Technology.

From June 2014 to May 2015, he was a Staff
Research Associate with the Columbia Integrated
Circuit Laboratory (CISL), Columbia University.

His research interests include low-power machine learning ASIC design,
wireless sensor SOC design, and so on. These interests are directed
towards enhancing computation, communication, and control performance on
resource-constrained edge devices using advanced circuit and architecture
technology. His on-going Ph.D. research has so far resulted in numerous
top-tier IEEE journals/conference publications, including ISSCC, JSSC, TIE,
ISCAS, TCAS-I, IMS, Sensors, and so on. He will continue his exploration in
the fields to enable next-generation edge intelligence, including brain-inspired
edge computation, hardware security, and RF ML systems.

Brian Crafton (Student Member, IEEE) received
the B.S. degree in computer engineering from North-
eastern University, Boston, MA, USA, in 2017.
He is currently pursuing the Ph.D. degree with the
Georgia Institute of Technology under the super-
vision of Dr. Raychowdhury. He held various
internship positions with Advanced Micro Devices,
Boxborough, MA, USA, and Intel, San Francisco,
CA, USA. His research interest includes in-memory
and near-memory computing for energy efficient
machine learning.

Justin Romberg (Fellow, IEEE) received the
B.S.E.E., M.S., and Ph.D. degrees from Rice Uni-
versity, Houston, TX, in 1997, 1999, and 2004,
respectively. From Fall 2003 to Fall 2006, he was a
Post-Doctoral Scholar in applied and computational
mathematics with the California Institute of Technol-
ogy. He spent the Summer of 2000 as a Researcher
at Xerox PARC, the Fall of 2003 as a Visitor at
the Laboratoire Jacques-Louis Lions, Paris, and the
Fall of 2004 as a fellow at the UCLA’s Institute for
Pure and Applied Mathematics. In the Fall of 2006,

he joined the Georgia Tech ECE Faculty. He is currently a Professor with
the School of Electrical and Computer Engineering, Georgia Institute of
Technology. In 2008, he received the ONR Young Investigator Award, and
the PECASE Award and the Packard Fellowship, in 2009. In 2010, he was
named as a Rice University Outstanding Young Engineering Alumnus. From
2006 to 2007, he was a Consultant for the TV show “Numb3rs.” He was an
Associate Editor of the IEEE TRANSACTIONS ON INFORMATION THEORY

from 2008 to 2011 and the SIAM Journal on Imaging Science from 2013 to
2018. He has been an Associate Editor of the SIAM Journal on Mathematics
of Data Science since 2018.

Arijit Raychowdhury (Senior Member, IEEE)
received the Ph.D. degree in electrical and computer
engineering from Purdue University, West Lafayette,
IN, USA, in 2007.

His industry experience includes five years as a
Staff Scientist with the Circuits Research Labora-
tory, Intel Corporation, Portland, OR, USA, and a
year as an Analog Circuit Researcher with Texas
Instruments Inc., Bengaluru, India. He joined the
Georgia Institute of Technology, Atlanta, GA, USA,
in 2013, where he is currently an Associate Professor

with the School of Electrical and Computer Engineering and also holds
an ON Semiconductor Junior Professorship. He holds more than 25 U.S.
and international patents and has published over 100 papers in journals and
refereed conferences. His research interests include low-power digital- and
mixed-signal circuit design, device–circuit interactions, and novel computing
models and hardware realizations.

Dr. Raychowdhury was a recipient of the Dimitris N. Chorafas Award for
Outstanding Doctoral Research in 2007, the Intel Labs Technical Contribution
Award in 2011, the Best Thesis Award from the College of Engineering,
Purdue University, in 2007, the Intel Early Faculty Award in 2015, the NSF
CISE Research Initiation Initiative Award (CRII) in 2015, and multiple best
paper awards and fellowships.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

