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§As memory-centric workloads (Al, graph-analytics) continue to gain momentum,
= technology solutions that provide higher on-die memory capacity/bandwidth can provide
& scalability beyond SRAM. Resistive RAM (RRAM) owing to (1) higher bit-density (2-4x
m01‘SRAM) (2) CMOS process/voltage compatibility, (3) nano-second read (RD) and (4)
mnon volatility has emerged as a promising candidate [1]. In spite of early prototypes,
oseveral technology challenges remain, and need to be addressed through circuit-
xtechnology co-design [1]. This paper presents a 64Kb RRAM macro supporting: (1) a
22 .
Sprogrammable (1 to 9) number of row-accesses (N) to enable vector-matrix
S multiplication (referred to as compute-in-memory, or CIM) for a target algorithm-level
<inference-accuracy [2-8], (2) voltage-based RD with active feedback, advancing the
. state-of-the-art current-based RD, targeted for the low ratio between the high-resistance-
Ostate (HRS) and low-resistance-state (LRS) in typical RRAM, (3) RD-disturb tolerance
2 under RRAM drift, through embedded RD-disturb monitor and write (WR)-back and (4)
fRin-situ WR verification to enable a tight resistance distribution.
§The RRAM cell (Fig. 29.1.1) undergoes: (1) an initial forming process at higher Vyp, (2)
S memory- -WR including SET (HRS-> LRS) and RESET (LRS- HRS) and (3) memory-
= RD. When configured as an array, it enables parallel access to multiple word-lines (WLs)
o sum the resultant voltage/current on the bit-line and perform CIM operation. As the
e@ﬂlter size in typical convolutional neural networks (CNNs) is 3x3, we provide
& programmability to access from 1 WL (full digital access) up to 9 WLs in a single cycle.
gThe macro provides circuit solutions to the following technology challenges. (CH1) When
L RRAM cells are written at high-Vy, to create a large HRS/LRS-ratio (lower RD-failure),
< the endurance of the array decreases [1], necessitating the use of circuit techniques that
&provide high RD-margin under low HRS/LRS-ratio with variation. (CH2) A single
T SET/RESET cycle creates a wide LRS/HRS resistance distribution, and data resolution
%in CIM s affected. (CH3) Back-to-back RDs at higher temperatures lower HRS resistance
2 (resistance drift) and can eventually cause data corruption/RD-disturb. The architecture
8‘0]‘ the 64Kb sub-array is shown in Fig. 29.1.1.

0]
2 Figure 29.1.2 illustrates an array which supports full software-programmability with: (1)
gper-column ADCs for 1-to-9 single-cycle mixed-signal MAC, (2) pulsed digital inputs on
Sthe WL, (3) digital post-MAC shift-and-add to support computation over 1-to-8b
<inputs/weights and 1-to-20b output over 1-to-8 clock-cycles. In the proposed macro
Sonly positive weights and inputs are allowed, but this is not a limiter in machine learning
‘zapplications where weight normalization and ReLU activation functions can be used to
Smaintain positive operands only [8]. A key CIM requirement is high-resolution,
O quantization-free RD-out for all input-weight combinations. Prior designs use current-
£mode sensing and suffer from logic ambiguity in high-endurance RRAM-based CIM
@ [2-5]. Furthermore, traditional voltage-mode sensing with a fixed-current has a narrow
r_ésampling margin at the RD-BL voltage (V.RBL) as more LRS cells are activated in
Zparallel. We address this challenge (CH1) via voltage-mode sensing with an RRAM-cell
E paired with a current source to keep a constant sampling margin, albeit with nonlinear
OADC levels. The non-linear levels are linearized using active feedback (FB) control, where
Ca high-gain FB amplifier controls the current of the paired current sources. This enables
gan input-aware V.RBL which is a linear combination of Vs and Vygs (Vi rgmrs are V.RBL
L:wnh 1 LRS and 1 HRS cell) mathematically shown in Fig. 29.1.2. Previous approaches
= [4] using diode-connected PMOS cannot mitigate the high degree of non-linearity and
—provide no PVT tolerance, whereas the current design with programmable-gain FB
Senables linear V.RBL (with 2x increase in sampling margin), PVT tolerance with 50%
“area reduction (Fig. 29.1.3). The RD-out circuit features a 4b flash ADC with open-loop,
strong-arm comparators and current-clamping. Current clamping limits the range of the
input-referred offset. This relaxes the range of reference voltages and reduces system
power. Monotonicity is maintained in the 8b reference generator (RG) using 3b
thermometer and 5b binary control. The programmable RG produces on-die references
for 1-to-8b CIM with a semi-uniform distribution that caters to the V.RBL
range/resolution for error-free computation. The 4b ADC provides 0.6 Isb redundancy.

An open-loop single-cycle SET/RESET creates a wide distribution of LRS/HRS cells,
where the final resistance value depends on the WR PVT conditions, as well as the

history effect (i.e., how many previous RDs have happened before the WR). This leads
to errors in GIM. In the absence of a hard RESET in high-endurance RRAM, we address
the challenge (CH2) using in-situ WR-verification with negligible overhead (Fig. 29.1.4).
During WR, after every WR-pulse, the high-resolution RD-circuit enables digital RD-out
of the V.RBL representing the resistance state of the individual cell and compares with
a target (stored as a digital word). The current RD-out engages FSM logic that either
increases/decreases the next programming pulse width (PW) determined from the ADC
read-out of the V.RBL, and once the target is reached, it completes the WR process. In
the current process, HRS experiences a wider distribution and it is targeted in this design
(Fig. 29.1.4). Further, HRS cells are also susceptible to a slow decrease of resistance
under back-to-back RDs (CH3). To enable long-term functionality, we address CH3 using
an in-situ RD-disturb monitor that monitors the health of each RRAM cell. Each cell is
periodically sensed and all HRS cells that have drifted beyond a predefined digital
threshold are reset to their original HRS state. A low rate of such RESET operations is
sufficient to provide RD-disturb-free operation with no performance/power penalty (RD-
disturb occurs only after >10° RDs). We expect this circuit scheme to address other
time/temperature-dependent drifts common in RRAMSs.

Correct operation in the RRAM macro is demonstrated in Fig. 29.1.5, where the logic-
waveform capture shows correct 1b CIM operation (N=4). The clock frequency is limited
by the RD access latency of the bitcell and the peripheral circuits. The WR can take
multiple cycles as described above. We indirectly measure the V.RBL for varying N and
show measured results for N=1, 9. The FB-amplifier gain is controlled using a bias
voltage (V.b). We note that the V.RBL for N=9, with an active FB linearizes the BL voltage
providing 5.7x-increased sense margin compared to the case of low V.b (similar to a
diode-based BL pull-up). During initialization to known states, the macro undergoes
forming, SET and RESET. For 100 cells, we measure the number of operations required
to reach target resistance values. We note that while forming is achieved in 2.25
iterations (average), SET and RESET are achieved on an average of 1 and 1.02 iterations,
respectively. The closed-loop, iterative WR-with-verification enables a tight HRS
distribution and we note a decrease of o, as measured through V.RBL, from 37.74mV
(baseline, non-iterative WR) to 12.78mV (proposed). Fig. 29.1.6 shows a typical run of
an HRS cell through back-to-back RDs under accelerated testing conditions (Vy,=1.5V,
Vpp=1V at T=85°C) where the in-situ monitor detects a resistance change below the HRS
threshold (-6%) and activates a RESET process. Subsequently, the HRS is restored to
its high resistance state and the cycle repeats. For CIM, we note an average (peak)
energy-efficiency of 4.15 (56.67) TOPS/W at 100MHz (limited by the low LRS/HRS
resistances in the current process) with the largest contributions from the RRAM array
and sense/RD circuits. The proposed techniques enable high algorithm-level accuracy
across a suite of Al benchmarks. A comparison with the state-of-the-art CIM
architectures [2-6] illustrates competitive metrics while addressing key technological
challenges. The die-shot and the chip-characteristics are shown in Fig. 29.1.7.
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Figure 29.1.1: Motivation and overall architecture of the proposed programmable

hybrid digital/CIM RRAM macro.
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Figure 29.1.2: Proposed programmable hybrid digital/CIM MAC and the linear
voltage-mode sensing RRAM macro with input-aware current control and a
feedback amplifier.
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Figure 29.1.7: Microphotograph of the test-chip and summary of performance.
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