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ABSTRACT

As we approach the end of the silicon roadmap, we observe a steady

increase in both the research effort toward and quality of embedded

non-volatile memories (eNVM). Integrated in a dense array, eNVM

such as resistive random access memory (RRAM), spin transfer

torque based random access memory, or phase change random

access memory (PCRAM) can perform compute in-memory (CIM)

using the physical properties of the device. The combination of

eNVM and CIM seeks to minimize both data transport and leakage

power while offering density up to 10× that of traditional 6T SRAM.

Despite these exciting new properties, these devices introduce prob-

lems that were not faced by traditional CMOS and SRAM based

designs. While some of these problems will be solved by further

research and development, properties such as significant cell-to-cell

variance and high write power will persist due to the physical limi-

tations of the devices. As a result, circuit and system level designs

must account for and mitigate the problems that arise. In this work

we introduce these problems from the system level and propose

solutions that improve performance while mitigating the impact

of the non-ideal properties of eNVM. Using statistics from the ap-

plication and known properties of the eNVM, we can configure a

CIM accelerator to minimize error from cell-to-cell variance and

maximize throughput while minimizing write energy.
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1 INTRODUCTION

Over the last decade, tremendous progress towards accelerating

machine learning workloads has been made at all levels of the com-

puting hierarchy, enabling orders of magnitude improvement in

energy efficiency. At the software level, models are compressed,

pruned, and quantized to minimize the total storage size and the en-

ergy cost of a single inference [9]. At the hardware level, prior work

focuses on maximizing the reuse of all data such that expensive

memory accesses and total data movement is minimized [3]. Both of

these strategies focus on minimizing the cost of data movement and

memory accesses, while maximizing the utility of available on-chip
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memory capacity. While these techniques yield strong results, they

still face the fundamental technological limitations of CMOS. In

particular, the large size of the SRAM bitcell (≈ 150𝐹 2) results in
limited on-die capacity, which necessitates movement of data from

an external DRAM to the on-die SRAM at more energy per bit.

Fortunately, there has been an increasing research effort to-

ward the design and fabrication of novel memory technologies

that are logic process- and voltage-compatible, while providing

non-volatility and high density with manageable read and write

performance. These new devices have important new properties

that have been long absent in traditional charge-based memory

technologies. They are all embedded non-volatile memory (eNVM)

solutions, meaning they can be completely powered down without

loss of data, and hence consume virtually no leakage power. Fur-

thermore, these technologies store information through change of

resistance. This enables us to perform compute in-memory (CIM)

on the bit-line (BL) with breakthrough improvements in throughput

and energy-efficiency. These properties have the potential to realize

the long awaited benefits of in-memory computing.

If successful, CIM with eNVM promises to solve many of the

engineering challenges that the modern memory hierarchy faces

with regards to memory bandwidth and density. In recent years,

new proposed devices have reached huge milestones on their way

to commercial viability. However, these emerging technologies

present a few novel challenges which have so far precluded them

from widespread commercial use. In this paper, we will examine

some of these challenges and provide an overview of the recent

developments from both the technology and circuits and systems

perspectives. Specifically, the two main challenges we address in

this paper are the high write energy of eNVM and cell-to-cell vari-

ation that impacts CIM.

All eNVMs feature significantly higher write energy than tra-

ditional CMOS memories [5]. Therefore, unlike traditional CMOS

architectures, recent CIM architectures [15] do not re-program the

arrays after initialization. This constraint requires several funda-

mental changes to data flow and placement of weights in the eNVM

arrays that we discuss in detail in Section 4. The second key obstacle

to mainstream CIM with all eNVMs is the inherent cell-to-cell vari-

ation in the device’s resistive state. These variations are not specific

to eNVM, and occur due to process and temperature or write-to-

write (cycle-to-cycle) variations. When reading multiple memory

cells at the same time with an analog-to-digital converter (ADC),

high variation among resistive states results in sum-of-products

errors accumulated on the BL. To overcome cell-to-cell variations,

recent work has approached the problem from all levels of the com-

puting hierarchy, ranging from circuits to algorithms. By solving

these new challenges at various levels of the computing hierarchy,

we can enable the use of new memories which will help break the

long withstanding memory bottleneck and enable more efficient

systems for machine learning.
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Figure 1: Prototypical compute in-memory hierarchy including processing engine (PE) and sub-array (SA) architecture.

2 OVERVIEW OF NON-VOLATILE COMPUTE
IN-MEMORY DEVICES

Although most "emerging" non-volatile devices have been around

for quite some time, recent advances in deep learning have height-

ened the importance of large on-chip memories. These devices offer

a new solution to matrix multiplication by performing multiply

and accumulate on the BL, reading multiple rows at the same time

and using analog-to-digital converters (ADC) to read the output.

While variations of traditional SRAM can perform this technique as

well, eNVM enable virtually zero leakage power and much higher

densities. In this section we overview three of the more popular

and mature devices currently being explored today.

RRAM (often called ReRAM) [18] consists of filamentary devices

that switch between a high resistance state (HRS) and low resistance

state (LRS) based on the direction of current applied across the two

terminals. The HRS and LRS in RRAM are achieved by forming and

destroying a filament inside the insulator material of the device. By

creating and destroying this filament we can lower and raise the

resistance of the device by orders of magnitude. The transition from

HRS to LRS is called the set process where the device allows more

current to flow emulating a digital ‘1’. The transition from LRS to

HRS is called the reset process where the device is less conductive

and results in less current across the terminals.

A more mature technology for resistive memories is the STT-

MRAM [2]. The STT-MRAM bitcell consists of one access transistor

and one Magnetic Tunnel Junction (MTJ) where a single bit of

information is stored. An MTJ is formed with two ferromagnetic

CoFeB based layers and one insulating layer (MgO) in between.

One ferromagnetic layer is called a fixed layer because its magnetic

moment is fixed to one direction. The other ferromagnetic layer is

called a free layer since the direction of magnetic moment can be

changed based on the direction of current flowing across the MTJ.

PCRAM [19] devices enjoy some maturity and have a history

of real-world use in optical storage media. PCRAM cells consist

of a layer of glass chalcogenide phase-change material, typically

GeSbTe (GST), sandwiched between a pair of electrodes. This layer

can be fully or partially crystallized, or completely amorphous.

In the amorphous phase, the conductivity of the phase-change

material is much lower than that in the crystalline phase, allowing

resistance to be controlled. Crystallization occurs rapidly when the

material is heated, via Joule heating, to below the melting point. The

amorphous phase may be formed by melting the cell then allowing

it to rapidly cool; this is the so-called "quenching" procedure.

3 COMPUTE IN-MEMORY

CIM seeks to perform matrix multiplication (�𝑦 =𝑊 �𝑥 ) in a crossbar
structure in the analog domain using Ohm’s law, exploiting the

non-volatile conductance state(s) provided by the eNVM. Using

this technique, each weight of the matrix (𝑊𝑖 𝑗 ) is programmed as

the conductance of a bit-cell and each value of the vector ( �𝑥𝑖 ) is
converted to a corresponding voltage and applied to the rows of

the memory crossbar. The current through each cell is proportional

to the product of the programmed conductance (𝑊𝑖 𝑗 ) and applied

voltage (�𝑥𝑖 ) (Ohm’s Law). By Kirchhoff’s current law (KCL), the re-

sulting currents that are summed along the columns of the crossbar

are proportional to the product of the matrix and vector, (�𝑦).
Recent designs have encoded various numbers of bits in each

cell ranging from 8-bit [4], down to 2-bit [15] or 1-bit [16]. Further-

more, these designs use various ADC configurations, such as SAR

[15] and flash [21] ADCs using various precision. However, recent

works have gravitated towards lower precision eNVM cells and

Flash ADCs to manage accumulated variance from cells [6, 14, 21].

Consistent with state of the art CMOS accelerators [10] and low-

precision neural networks [9] 8 (or less) bits are typically used

for inference. To implement this with binary cells, 8 adjacent cells

to form a single 8-bit weight, like those shown in the columns of

Figure 1. The 8-bit vector inputs to this array are represented as

voltages (GND and VDD), and are input one at a time over 8 cy-

cles. Depending on the size of the ADC and assumed cell-to-cell

variance, prior works read the entire column at once [15] or break

it down into several cycles [21]. For example, if 3-bit ADCs are

used then 128 rows can be read in 16 cycles. This can be done

more optimally if zero skipping [21] is used. For an N -bit ADC,

zero-skipping enables the first 2𝑁 wordlines containing ‘1’s, thus

ensuring the ADC will not sustain any quantization error. Because

the input data contains more ‘0’s than ‘1’s, we expect more than

2× speedup [6, 21]. In Figure 2, we provide an example case for

zero-skipping where 8 total rows are read using a 2-bit ADC. The

first technique, we call baseline, involves simply reading as many

rows as the ADC precision allows (e.g. for a 3-bit ADC, we read 8

rows simultaneously). This (2B) requires 2 cycles since it targets

four consecutive rows at a time. Zero-skipping (2A) is able to finish
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Figure 2: Performance advantages of zero skipping (A) over

baseline (B) CIM technique.

all 8 rows in a single cycle because we only consider the ‘1’s in

the input vector. Zero skipping performs faster than the baseline

technique because for most cases it will process more total rows

per cycle.

The result of the binary dot product is the current passing

through each cell, and the sum-of-products is accumulated along

the bitline. The result is then collected at the ADCs. If there are

more inputs than states that the ADC can distinguish, we must di-

vide the binary dot product over multiple cycles and sum the partial

products together with CMOS. For each input-bit and weight-bit

binary product, we perform this binary dot product, and then mul-

tiply (shift) the result by the sum of the magnitudes of each bit.

Thus in order to perform an 8b multiplication, we perform binary

multiplication between each bit in the input data and each bit in the

weight data, and then shift by combined magnitude. In this way, we

can perform 8-bit matrix multiplication by performing 64 binary

multiplications with shift and add operations.

4 ARCHITECTURE

Prior works encapsulate the array, ADCs, and shift and add logic

to create a matrix multiplication engine. For example, if a 128×128

array is used, a 128×16 8bmatrix multiplication can be implemented

since 16 8b words can be fit across the 128 bitlines. Using these sub-

arrays as building blocks, we can store larger matrices and perform

distributed matrix multiplication where each sub-array operates

as a partial matrix. Given that matrix multiplication makes up the

majority of the workload in deep learning models, prior works

have implemented Convolutional Neural Networks (CNN) [15] and

Recurrent Neural Networks (RNN) [11].

Given the high density of these PEs, hundreds or thousands of

them can be tiled in the same area used by modern ICs, enabling

smaller footprints and greater memory capacity. Despite high den-

sity and zero leakage power, eNVM suffer from high write energy

and high write latency. As a result, existing work [15] avoids writ-

ing the eNVM once programmed. While this is advantageous for

data transport and energy efficiency, it means each CIM process-

ing element (PE) can only perform operations it has the weights

for. This implies that if there is an unbalanced workload where

some PEs operations take longer than others, we cannot simply

re-allocate these operations to other PEs. Therefore, we must use

Figure 3: CNN layer using CIM with weight duplication.

synchronization barriers for all PEs so distributed matrix multipli-

cation completes before another is started. In contrast, every CMOS

and SRAM based PE are computationally identical and can perform

any operation in the DNN graph.

Since we cannot simply reallocate operations to CIM PEs for

an unbalanced workload, it is challenging to ensure that all PEs

remain fully utilized. Due to this constraint, a fundamental problem

in CIM based designs is array utilization, that is, the percent of

time an array is in use. Recent large scale CIM designs [15], use

two techniques called weight duplication and layer pipelining to

maximize array utilization under new constraints. To generalize

these techniques and optimize for any network, [6, 14] partition

weights such that throughput is maximized.

4.1 Weight Duplication

Weight duplication [15] is used to maximize throughput in large

scale CIM accelerators where the amount of on-chip memory ex-

ceeds the number of weights in the model. In [14], 24,960 arrays

are used for a total on-chip memory capacity of nearly 104 MB (2b

cells), while only using an area of 250𝑚𝑚2. Using this enormous

on-chip memory capacity, they not only fit ResNet [8] but duplicate

shallow layers up to 32×. When weights are duplicated, the input

data is divided equally amongst each duplicate array so they can

process in parallel. We illustrate this idea for a convolutional layer

in Figure 3. The input patches from the input feature maps (IFMs)

are divided into groups based on the number of duplicates, and

then mapped to each duplicate.

In Figure 3 we further depict how these arrays can be pieced

together to form a larger matrix. In this example, both input feature

maps and filters are vectorized with the filters forming the columns

of a matrix. The vectorized feature maps are input to the crossbar to

perform matrix multiplication, where the results are output feature

maps for this layer in a CNN.

4.2 Layer Pipelining

Layer pipelining [15] is used to maximize throughput in eNVM

CIM accelerator, where arrays are not re-programmed due to large

amounts of on-chip memory and high write energy. At the same

time, most modern neural networks contain 20 or more layers

that must be processed sequentially. Given that most designs use

128 × 128 arrays, it becomes infeasible to partition arrays such that
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Figure 4: Average performance by layer (ResNet18) versus

percentage of ‘1’s in input data.

they can be used for each layer without being re-programmed. This

implies that the majority of PEs would sit idle waiting for their layer

to be processed. To solve this problem, images are pipelined through

the network to keep all arrays utilized. Although this compromises

single example latency, it maintains maximum throughput.

4.3 Array Allocation

CIM with weight duplication and layer pipelining offers an ele-

gant solution to the memory wall observed by CMOS accelerators.

Due to the massive number of fixed-function PEs available, how

these PEs are duplicated and assigned to specific layers becomes

an important challenge. Hence, the challenge CIM faces is not with

weight transport, but rather with weight placement and allocation.

To maximize throughput, weights must be distributed in a way

that allows each CIM PE to be operating at all times to maximize

throughput. One example of an optimal weight mapping and data

flow was demonstrated in [14]. Using redundant weights and clever

mapping strategies, they maximize throughput of a large scale CIM

accelerator. However, this work assumes deterministic computation

time for each array.

Circuit level techniques like zero-skipping greatly increase per-

formance, but create non-deterministic workloads such that each

array takes a different amount of time to complete its task. This is

because the number of ones in the input vector of the CIM opera-

tion is randomly distributed, and thus the amount of time to finish

a dot product is non-deterministic. In Figure 4, we plot the average

time for an array to perform a 128× 16 matrix multiplication versus

the percentage of ‘1’s in all the 8-bit input features for the 20 con-

volutional layers in ResNet18. Naturally, this information can be

used to better allocate arrays in our design. Rather than allocating

arrays just based on the total number of MACs per layer, we can

allocate arrays based on both workload and performance.

5 OVERCOMING DEVICE VARIANCE

Upon moving multiply-and-accumulate operations to the analog

domain, we observe numerous advantages, but face device variation

challenges that digital logic avoids by design. These variations are

not specific to eNVM, and occur due to process and temperature

Figure 5: Impact of ADC precision and variance on CIM.

variations or write-to-write (cycle-to-cycle) variations. Conven-

tional digital memory such as SRAM overcomes this challenge

using differential sensing and a large ratio between the ‘0’ and ‘1’

states. However, when reading multiple memory cells at the same

time with an analog-to-digital converter (ADC), high variance be-

tween resistive states results in sum-of-products errors accumulated

on the bitline. Simultaneously, state-to-state separation is reduced

as more states are placed into the same dynamic range. Given that

these operations are used to implement matrix multiplication, and

thus neural networks, we find that device level variance results in

erroneous computation. While neural networks can tolerate these

errors to some extent, accuracy degrades as a function of the error

rate. To better understand the impact of variance on CIM, we plot

the CDF of error for a 1-bit ADC and a 3-bit ADC in Figure 5. For

the 1-bit ADC, the single reference voltage can be set such that

even high variance in LRS states do not cause an error. In this case,

the reference voltage is set to 0.2 on-state (LRS) cells and the entire

CDF is inside the green region which denotes correct operation.

However, for the 3-bit ADC the reference voltages cannot be set

in such an optimal way because most output states are flanked on

either side by other states. In Figure 5B, we observe how both 10%

and 20% variance yield errors frequently.

To translate this to accuracy, we evaluate a trained VGG11 net-

work on CIFAR10 in Figure 6. We sweep between 1% and 20%

variance using 1-bit, 2-bit, and 3-bit ADCs. For each ADC, the max-

imum number of distinguishable wordlines are enabled. Hence, for

the 1-bit ADC 1 wordline is enabled, for the 2-bit ADC 4 wordlines

are enabled, and for the 3-bit ADC 8 wordlines are enabled. To

emulate variance-induced errors, we add noise at the output of

each matrix multiplication in the network. Like prior work [12],

we find that the accuracy falls based on the number of wordlines

enabled and the variance of the devices used. From this experiment

we infer that devices with higher variance cannot be used for even

3-bit ADCs. Thus in order to increase the space of ADC designs

that can be used, low device variation is required motivating the

following subsections.

5.1 Write-Verify Protocols

Write-verify methods take an iterative approach to minimizing

write error (i.e. state variance) using feedback. During each iteration,

devices are programmed to the desired state and then read back to

determine the error. After each iteration, the error from the desired

state is used to determine the parameters defining next write. Over

several iterations, the device’s conductance converges to the desired
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Figure 6: Impact of ADC precision and variance on CIFAR10

classification accuracy using VGG11.

value. Once the device’s conductance is within an accepted error

range, the write-verify protocol terminates. In this way, several

iterations of feedback can be used to greatly reduce cell-to-cell

variance.

Several demonstrations and various protocols for write-verify

on eNVM have been proposed [1, 20, 22, 23]. In [22], RRAM cell-

to-cell variation is minimized with a 6-step write-verify technique.

They implement a binary neural network using two RRAM cells to

represent ‘+1’ and ‘-1’ and 3-bit ADCs. For SET operations (LRS),

2.3V is applied to the transistor’s gate and 2.1V is applied on the

bitline. For RESET operations (HRS), 3.8V is applied to the gate

of the transistor and 4V is applied on the bitline. In [20], PCRAM

devices are programmed through write-verify and various write

voltages to achieve 3.5% cell-to-cell variation. At this distribution,

one can expect less than 3𝜎 error when using 3-bit ADCs enabling

more efficient CIM.

Recently [23], a write-verify scheme was implemented on a 64KB

RRAM macro that was profiled over a broad range of programming

voltages. In this work, the advantages of using higher write voltages

and write-verify is demonstrated. In Figure 7, we show this data

along with a die image and specifications. In Figure 7 we plot the

cumulative distribution function (CDF) of device resistance for

the various write voltage experiments. Over the 5 different write

voltage experiments, significant reduction in cell-to-cell variation

is observed. With a write voltage of 1.1V, the standard deviation

in resistance across all devices (𝜎𝑅 ) is 1046. However, increasing
the write voltage to 1.9V a 𝜎𝑅 of only 84 Ω is achieved. Measured

as a percentage of the average LRS (𝜇), the cell-to-cell variation
(𝜎/𝜇) for 1.1V is 18.5% and for 1.9V is only 3.5%. Although a higher

write voltage and more iterations yields a higher resistance ratio

and tighter HRS/LRS distribution, it greatly reduces the endurance

in these devices [13]. Therefore, extensive characterization should

be done [23] to determine the best trade-off between endurance

and precision.

5.2 Variance-Aware Training Methods

Variance-aware training can be categorized into two types: offline

and online. Offline training methods take existing DNN models and

attempt to make them robust to noise by retraining the networks

with noisy input data and computation [11]. This can be done by

acquiring LRS and HRS distributions and running simulations to

understand the impact on the DNN workload, then training the

DNN models during simulation or just by simply injecting noise

Figure 7: Write variation on commercial RRAM process

to emulate cell-to-cell variation after each layer. Like approximate

computing, this technique relies on the idea that neural networks

do not need exact computation for high accuracy, and that high

accuracy can be obtained with erroneous computation if networks

are trained to do so.

Offline training methods use estimated distributions of cell-to-

cell variation rather than the actual variations present on a specific

chip. Online training exploits more exact distributions, by retraining

DNN models for a given chip. Each chip will have its own unique

variations and faults, that will be similar, but still different than the

distributions used for offline training. Hence, it is advantageous

to train each chip based on its own variations and faults such that

performance is optimal for the given chip [17]. Naturally, higher

accuracy can be obtained, but at the cost of requiring each chip

to be retrained after fabrication. This requires significant time per

chip during the test phase and also requires that the design has

circuits to support on-chip re-training.

5.3 Statistical Readout Methods

Statistical readout methods like counting cards [7] control variance

induced errors during inference time. Given that CIM-based vector-

matrix multiplication (VMM) is implemented by a series of ADC

reads followed by shift and add operations, the expected error for

a VMM can be computed. Starting with an ADC read, error can

be formulated as a function of the number of wordlines enabled

and standard deviation of the resistance of the memory cells. Next,

the error of the full VMM can be computed by summing together

expected error for all ADC reads. However, because multi-bit VMM

is converted into several binary VMMs (sub-operations) followed

by shift and add operations, the applied magnitude of each sub-

operation must be considered. Therefore the expected error for a

VMM will be the sum of the expected error for each ADC read

times the applied magnitude of the sub-operation it belongs to.

Therefore, the majority of error from CIM operations comes from

high-magnitude sub-operations.

The simplest way to control accumulated variance and error is

to reduce the number of word lines enabled at one time, but this

will compromise the performance and energy efficiency of using
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Figure 8: Classification accuracy and performance versus

cell-to-cell variance for VGG11 on CIFAR10.

CIM. However, we have little choice in this trade-off because target

applications require certain accuracy. In this way, the variance of

the device should ultimately dictate the precision of the ADC used.

Therefore, our objective function becomes achieving a target accu-

racy while maximizing performance. To find the optimal solution,

counting cards enables more wordlines for low magnitude sub-

operations and less wordlines for high magnitude sub-operations.

To set a target accuracy, an error threshold is set based on the ap-

plication. Then, by computing the expected error for sub-operations,

the threshold can be satisfied while enabling optimal performance.

In Figure 8, we show the performance and accuracy of this tech-

nique compared to traditional zero skipping. This simulation was

performed in [7], and used a cycle-accurate simulator to simulate

CIFAR10 with variance cell-to-cell variances on a standard CIM

accelerator. We observe that for low variance devices (1%-5%) this

method yields higher performance than zero skipping, but in or-

der to compensate for high variance memory (<10%), performance

degrades while maintaining accuracy (as intended).

6 CONCLUSION

In this paper we introduced and analyzed some of the current chal-

lenges facing CIM with eNVM. Through our analysis, we identified

several shortcomings of CIM as we work towards widespread adop-

tion. Additionally, we reviewed recent solutions for these challenges

and revealed some future research directions that have the potential

to bring CIM closer to deployment in machine learning systems.

7 ACKNOWLEDGEMENT
This work was funded by the U.S. Department of Defense’s Multi-
disciplinary University Research Initiatives (MURI) Program under
grant number FOA: N00014-16-R-FO05 and the Semiconductor Re-
search Corporation under the Center for Brain Inspired Computing
(C-BRIC) and Qualcomm.

REFERENCES
[1] Fabien Alibart, Ligang Gao, Brian D Hoskins, and Dmitri B Strukov. 2012. High

precision tuning of state for memristive devices by adaptable variation-tolerant
algorithm. Nanotechnology 23, 7 (2012), 075201.

[2] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin, Xueti
Tang, Daniel Lottis, Kiseok Moon, Xiao Luo, Eugene Chen, Adrian Ong, et al.
2013. Spin-transfer torque magnetic random access memory (STT-MRAM). ACM
Journal on Emerging Technologies in Computing Systems (JETC) 9, 2 (2013), 1–35.

[3] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127–138.

[4] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. Prime: A novel processing-in-memory architecture
for neural network computation in reram-based main memory. ACM SIGARCH

Computer Architecture News 44, 3 (2016), 27–39.
[5] Brian Crafton, Sam Spetalnick, Yan Fang, and Arijit Raychowdhury. 2020. Merged

Logic and Memory Fabrics for Accelerating Machine Learning Workloads. IEEE
Design & Test (2020).

[6] Brian Crafton, Samuel Spetalnick, Gauthaman Murali, Tushar Krishna, Sung Kyu
Lim, and Arijit Raychowdhury. 2020. Breaking Barriers: Maximizing Array
Utilization for Compute In-Memory Fabrics. In 2020 IFIP/IEEE 28th International

Conference on Very Large Scale Integration (VLSI-SoC). IEEE.
[7] Brian Crafton, Samuel Spetalnick, and Arijit Raychowdhury. 2020. Counting

Cards: Exploiting Weight and Variance Distributions for Robust Compute In-
Memory. arXiv preprint arXiv:2006.03117 (2020).

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 770–778.
[9] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. 2017. Quantized neural networks: Training neural networks with low
precision weights and activations. The Journal of Machine Learning Research 18,
1 (2017), 6869–6898.

[10] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
2017. In-datacenter performance analysis of a tensor processing unit. In 2017

ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 1–12.

[11] Yun Long, Xueyuan She, and Saibal Mukhopadhyay. 2019. Design of reliable
DNN accelerator with un-reliable ReRAM. In 2019 Design, Automation & Test in

Europe Conference & Exhibition (DATE). IEEE, 1769–1774.
[12] Yandong Luo, Xiaochen Peng, Ryan Hatcher, Titash Rakshit, Jorge Kittl, Mark S

Rodder, Jae-Sun Seo, and Shimeng Yu. 2020. A Variation Robust Inference En-
gine Based on STT-MRAM with Parallel Read-Out. In 2020 IEEE International

Symposium on Circuits and Systems (ISCAS). IEEE, 1–5.
[13] C Nail, G Molas, P Blaise, G Piccolboni, B Sklenard, C Cagli, M Bernard, A Roule,

M Azzaz, E Vianello, et al. 2016. Understanding RRAM endurance, retention and
window margin trade-off using experimental results and simulations. In 2016

IEEE International Electron Devices Meeting (IEDM). IEEE, 4–5.
[14] Xiaochen Peng, Rui Liu, and Shimeng Yu. 2019. Optimizing Weight Mapping

and Data Flow for Convolutional Neural Networks on Processing-In-Memory
Architectures. IEEE Transactions on Circuits and Systems I: Regular Papers (2019).

[15] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic
in crossbars. ACM SIGARCH Computer Architecture News 44, 3 (2016), 14–26.

[16] Xiaoyu Sun, Shihui Yin, Xiaochen Peng, Rui Liu, Jae-sun Seo, and Shimeng Yu.
2018. XNOR-RRAM: A scalable and parallel resistive synaptic architecture for
binary neural networks. In 2018 Design, Automation & Test in Europe Conference

& Exhibition (DATE). IEEE, 1423–1428.
[17] Xiaoyu Sun and Shimeng Yu. 2019. Impact of non-ideal characteristics of resistive

synaptic devices on implementing convolutional neural networks. IEEE Journal

on Emerging and Selected Topics in Circuits and Systems 9, 3 (2019), 570–579.
[18] H-S PhilipWong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, YiWu, Pang-Shiu

Chen, Byoungil Lee, Frederick T Chen, and Ming-Jinn Tsai. 2012. Metal–oxide
RRAM. Proc. IEEE 100, 6 (2012), 1951–1970.

[19] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P Reifenberg,
Bipin Rajendran, Mehdi Asheghi, and Kenneth E Goodson. 2010. Phase change
memory. Proc. IEEE 98, 12 (2010), 2201–2227.

[20] JY Wu, YS Chen, WS Khwa, SM Yu, TY Wang, JC Tseng, YD Chih, and Car-
los H Diaz. 2018. A 40nm low-power logic compatible phase change memory
technology. In 2018 IEEE International Electron Devices Meeting (IEDM). IEEE,
27–6.

[21] Tzu-Hsien Yang, Hsiang-Yun Cheng, Chia-Lin Yang, I-Ching Tseng, Han-Wen
Hu, Hung-Sheng Chang, and Hsiang-Pang Li. 2019. Sparse ReRAM engine: joint
exploration of activation and weight sparsity in compressed neural networks.
In Proceedings of the 46th International Symposium on Computer Architecture.
236–249.

[22] Shihui Yin, Xiaoyu Sun, Shimeng Yu, and Jae-sun Seo. 2020. High-Throughput
In-Memory Computing for Binary Deep Neural Networks With Monolithically
Integrated RRAM and 90-nm CMOS. IEEE Transactions on Electron Devices 67, 10
(2020), 4185–4192.

[23] Jong-Hyeok Yoon, Muya Chang, Win-San Khwa, Yu-Der Chih, Meng-Fan Chang,
and Arijit Raychowdhury. 2021. ReliableWrite Operations andMulti-bit Encoding
in high-endurance RRAM arrays. In 2021 IEEE International Reliability Physics

Symposium. IEEE, 1–2.

310
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 02:59:07 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


