
20
21

 2
2n

d
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Q
ua

lit
y

E
le

ct
ro

ni
c

D
es

ig
n

(I
S

Q
E

D
)

| 9
78

-1
-7

28
1-

76
41

-3
/2

0/
$3

1.
00

 ©
20

21
 I

E
E

E
 |

D
O

I:
10

.1
10

9/
IS

Q
E

D
51

71
7.

20
21

.9
42

43
38

Automatic Generation of Translators for
Packet-Based and Emerging Protocols

Brian Crafton1, Arijit Raychowdhury1, and Sung-Kyu Lim1

1Georgia Institute of Technology, Atlanta, GA
1School of Electrical and Computer Engineering

brian.crafton@gatech.edu

Abstract—A recent trend in open source hardware and chiplet-
based IP reuse faces a key obstacle: protocol standardization.
Hardware interfaces lack flexibility and require designers to
follow a strict behavior when implementing IP. The rigid nature
of hardware interfaces prevents IP reuse, a critical challenge in
integrating a plethora of emerging open source IP. To mitigate
these challenges, we propose a tool to automatically synthesize
translators between arbitrary IP blocks. Using a protocol de­
scription language (PDL), we model protocols such that they
can be interpreted as finite state machines (FSM). Next, we
design algorithms to map and schedule transactions between
these protocols, generating a single integrated state machine
which serves as a translator between the two protocols. Lastly,
we convert our integrated state machine into readable RTL
(Verilog) and perform functional verification. Our flow has been
implemented, tested, and proven on 12 protocol pairs with unique
behavior.

I. I n t r o d u c t i o n

Very large scale integration (VLSI) of various functional
components has enabled tremendous progress in modern com­
puting systems. However, in the last decade the cost of
designing a system-on-chip (SoC) has increased dramatically
[1], motivating more efficient design principles. Fortunately,
growing interest in open source hardware [2] coupled with
emerging technologies like 2.5D silicon interposer [3] and
multi-chip modules [4] promise to significantly reduce the
cost of designing an SoC. These new technologies seek to
enable drastically different design methodologies for SoCs,
where IP blocks are chipletized and fabricated IP can be reused
across several designs by mounting it in a system-in-package
(SiP). Recent demonstration of chiplet-based designs have
been fabricated with 64 and 96 processors [5], [6]. Although
these designs feature only processors, it is expected that future
work will include other functionality used in mobile SoCs like
wireless communication and analog IP.

Meanwhile, FPGAs have recently become available in cloud
computing applications for their ability to provide near ASIC
performance without the cost of a custom ASIC. FPGAs are
also commercially available at low cost with high quality em­
bedded CPUs and mature software tools. With frameworks like
SiP and FPGA in place, new design methodologies envision
IP catalogs with hundreds of vendor chiplets to choose from
that can easily be integrated into a large scale SoC. This
new framework promises affordable high quality chip design
without redesigning IP that can be completed in weeks rather
than years. This IP can be provided either commercially or
from emerging open source hardware IPs [7], [8], [9].

Although these new technologies and design flows can
greatly reduce the cost and design time of modern SoCs, they
face their own unique challenges that are avoided by traditional
design flows [10]. The key obstacle we face in integrated these
IPs is communication. Recent work [10], has attempted to
tackle this problem at the physical level by automating the
generation of I/O cells. This is of particular importance to
low cost and quick design of the envisioned framework since
the design time saved by design reuse is lost to custom design
of I/O cells. Just like the physical level, we observe these
same issues at the logical or protocol level. Throughout the
years many open source and proprietary protocols have been
developed, each designed to be a generic protocol to standard­
ize communication. However, with emerging challenges and
design needs new protocols are adopted and old IP has to be
updated. I f the promise of simple SoC design and integration
is to succeed, we require a solution to protocol standardization.

In this work, we propose the use of a new protocol descrip­
tion language (PDL) and synthesis algorithms to automatically
generate translators between IPs that communicate using dif­
ferent protocols. Originally protocol synthesis was proposed
[11], [12] as an early high level synthesis (HLS) technique
to promote design reuse. In fact, the original motivation was
the belief that standardization of protocols would be imprac­
tical [13]. Building upon these works, we expand on both
the modeling techniques and synthesis algorithms to enable
protocol translator synthesis for modern bus and packet-based
protocols. We present a visualization of our proposed tool flow
in Figure 1. We begin with source PDL files modeling the
protocols, which are then parsed and converted into abstract

Fig. 1. A visual representation of the PDL-to-RTL flow. Initially, state
machines are generated from PDL files, then merged into a single state
machine, and finally RTL (Verilog) is generated.

978-1-7281-7641-3/21/$31.00 ©2021 IEEE 488 22nd Int'l Symposium on Quality Electronic Design

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

syntax trees (AST) and later converted to FSMs. We then

integrate the FSMs from both protocols by identifying paths in

each protocol that send data and finding corresponding paths in

the opposite protocol to receive the data. Next, we schedule the

transactions and generate FSMs that model a valid translation

between the two protocols. Lastly, RTL (Verilog) is generated

using the integrated FSM as the control unit, and instantiating

buffers and multiplexers to control data flow.

We use our tool flow to demonstrate the efficacy of auto-

matic translator synthesis by testing on handpicked packet-

based and emerging protocols requiring complex language

semantics. We generate RTL and perform synthesis place

and route for 12 protocol combinations, dramatically reducing

RTL design and verification time. Furthermore we demonstrate

methods to reduce both area and latency using automatic

translator synthesis. We observe up to 39% area reduction from

custom partial translator implementation.

II. Ba c k g r o u n d

Protocols and interfaces used between logic blocks can

be modeled as finite state machines (FSM) [12]. The FSM

modeling the protocol is a directed acyclic graph containing

both vertices and edges. Vertices represent the current state of

the system that is executing the protocol. Edges contain two

essential components to model the protocol: conditions and

transactions. Conditions are requirements for a state transition

to be made, such as valid or ready signals. Transactions are

the actual data to be transferred in the protocol.

In Figure 2, we illustrate this idea for a subset of the

commonly used bus protocol: AXI [14]. In this example,

we observe a value of 4 for arlen and asserted valid and

ready signals. In the AXI protocol, this implies the master

is attempting to read a sequence of four words from a

memory. upon satisfying these three conditions, the protocol

proceeds to the next state in the FSM. Where upon continued

assertion of valid and ready, the master protocol receives four

transactions. Naturally we can model this behavior as an FSM,

where these signals are conditions dictating state transitions,

and the data transferred is mapped to the edges of the FSM.

Fig. 2. Transformation of AXI into an FSM. Only three of the many branches

of AXI are shown. The highlighted branch in the FSM is the path that was

taken in the waveform.

Prior work [12] use a language (like HDL) so that designers

can describe their protocols in a concise manner. This style

of language is called protocol description language (PDL),

and is used specifically to derive FSMs from protocols. Such

a language yields similar benefits as HDL, promoting both

optimization of the underlying data structure and designer

productivity in describing it. Given two PDLs, and thus

two FSMs, [12] showed that a translator between the two

protocols could be generated by identifying and combining

legal combinations of states between these protocols (e.g.

one protocol sends data, one receives data). The result is a

merged FSM, which could in turn be converted to HDL such

as Verilog.

III. M o d e l i n g Co m p l e x Pr o t o c o l s

As we discussed in the previous section, Logic-level pro-

tocols implemented by IP blocks can be modeled as FSMs.

However, as protocols increase in complexity, additional fea-

tures are required to adaquetly model their behavior. In this

Section, we identify and describe components of popular bus

protocols like [14], [15], [16] and packet-based protocols like

[17] that require extensions to previously discussed protocol

modeling efforts.

A. Packet/Flit Format
Packet based protocols are commonly used in multi-core

processors and network-on-chips [18]. Packets differ from

traditional bus protocols in that the physical wires do not

carry the same meaning each cycle. Instead control signals

and opcodes dictate what groups of wires carry a certain

piece of information. To properly model this, the data must

be virtualized from the physical wires that carry it. This is

in stark contrast to bus protocols where the data and physical

wires are the same entity.

Packets are usually divided over many flits where control

signals necessary to decode data in one flit, were sent several

flits before. This type of data structure, yields a tree-like FSM

where each packet type has its own path in the FSM. In

Figure 3, we illustrate a pair of example packets and their

corresponding FSM. Although the tree-like structure of packet

protocols requires slightly additional run time and state space,

it does not result in exceptionally high area (Table II).

B. Independent State Machines
Modern bus protocols [14], [15], [16] allow reads and writes

to occur at the same time, completely independent of each

other. For example, the AXI protocol has 5 different interfaces

to handle read and write transactions. While some pairs of

these interfaces can be modeled in the same FSM, to capture

the full behavior of the protocol, multiple state machines are

required. Although in theory it would be possible to create

a single state machine for all possible combinations of these

independent state transitions, it is not feasible in practice given

that the state space would increase exponentially. Therefore we

propose that protocols should be a combination of many state

machines that work independently of one another.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

CLK

ECC CMD LEN ID

ECC Address (32b)

A. Read Request Packet

31 23 15

B. Read Response Packet

ECC CMD LEN ID

ECC Read Resp Data [31:0]

ECC Read Resp Data [63:32]

ECC Read Resp Data [95:64]

ECC Read Resp Data [127:96]

A Flit Header''A.
Address I

It
Read Resp Data

Fig. 3. Transformation of a packet protocol into an FSM. Both packets

structure is defined by the header, after which they diverge.

C. Data Dependence

Although we require independent state machines to model

modern protocols, it is possible that these state machines

depend on one another. In AHB, for both a write transaction

and a read transaction, the address must occur before the

data is sent. During a burst mode transaction, the subsequent

addresses and data can occur on the same cycle or different

cycles. The only requirement is that each address must precede

the data it corresponds to. In Figure 4, we show an ideal

scenario where the data follows the address and the sequence

finishes after 5 cycles. In this case data dependence is not

enforced since the address always precedes data. However,

since AHB allows for stalls, we must support sequences like

Figure 5. The sequence in Figure 5 effectively breaks the

single FSM model for AXI because address and data are

stalled and do not follow each other. To properly model this

behavior we require multiple FSMs and information regarding

this relationship between waddr and wdata. More specifically,

we must be able to declare dependence between these two

variables, and enforce the condition that address precedes the

data it corresponds to.

CLK

w a d d r [3 1 : 0]

w d a t a [3 1 : 0]

a i a2 « 3 aA

Fig. 4. The ”easy” case for data dependence, no stalls occur and data always

trails address by 1 cycle. IV.

IV. Pr o t o c o l d e s c r i p t i o n La n g u a g e

We have developed a new language that draws on similar

syntax to the Verilog hardware description language. Although

useful for modeling hardware, both Verilog and System Ver-

ilog provide insufficient details to properly model a protocol.

w a d d r [3 1 : : 0] Q 2

w d a t a [3 1 : : 0] K d 1 X f W X

Fig. 5. A ”hard” case for data dependence. Stalls occur for both data and

address and data does not always follow address by 1 cycle.

The goal of PDL is to fully describe a protocol in the most

concise and simple way possible. The PDL should effectively

model the interface of the protocol and the necessary behavior

of that protocol for translation. It is this behavior that HDLs

do not model. Rather than arbitrary ports, the tool needs to

know what rules the protocol follows.

Prior works have proposed two necessary definitions to

synthesize a protocol [12], [4]. The first is a description of

the signals that implement the protocol. In defining these

signals, the designer must describe the name, width, direction,

and type. The second is a description of the behavior of the

protocol that can be modeled with FSMs. The edges within

the FSM contain the conditions necessary for a state transition,

and information about the data that is transferred during the

transition. While this model suffices for smaller protocols,

modern protocols require additional language semantics to

express complex behavior. In this section we describe the

necessary semantics, and later demonstrate how they can be

used for bus protocols and packet protocols.

The additional semantics we include in our language are as

follows:

1) Transaction Id: ”Id” gives a transaction an identifier

so that other transactions can reference it to declare

dependence. This allows us to determine when stalls are

required in a sequence (Figure 4).

2) Transaction Dependence: ”Dep” allows a user to specify

that the given transaction is dependent on another trans-

action. With this identifier we can enforce order in the

protocol.

3) Address Offset: ”offset” describes the size of the data an

address refers to.

4) Data Range: ”Range” specifies the amount of data (in

bits) that is sent during a transaction.

Each of these parameters is simple, yet adds necessary infor-

mation to properly model modern protocols. In this work we

focus our effort on bus protocols and packet-based protocols.

The bus protocols we have discussed in this work all require

multiple state machines and the ability to describe data de-

pendence. Meanwhile, packet protocols require a structured

hierarchy describing how previous flits determine future data

to come. In the following subsections, we further describe

these requirements and illustrate how these behaviors can be

modeled using simple code.

A. Bus Protocols

The bus protocols we have discussed in this work all

require multiple state machines and the ability to describe

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

V. FSM INTEGRATIONprotocol axi
ports

data out 32 araddr
control out 8 arlen
control out 1 arvalid
control in 1 arready

data in 32 rdata
control in 1 rvalid
control out 1 rready

endports
behavior

generate tid = arlen:0 begin
+ @(rvalid(1), rready(1)) {

rec(rdata(range=32, dep=araddr(tid)))
}

end
endbehavior

behavior
generate tid = arlen : 0 begin
+ @(arvalid(1), arready(1)) {

send(araddr(offset=4, id=tid))
}

end
endbehavior

endprotocol

Fig. 6. A Subset of the AXI protocol PDL for read transactions.

data dependence. As an example, we show a subset of the

AXI protocol for read transactions in Figure 6. Both the

read address and read response portions of the protocol are

described in separate state machines. We use generate loops

for all possible burst transactions while declaring dependence

between address and data.

B. Packet Based Protocols

using the same data structures and language, it is possible to

define a packet based protocol. Although additional semantics

are required, the resulting data structures are processed the

same way. A packet based protocol uses multiple flits, a packet

structure, and a variable length bus to transmit data. A packet

header will define an opcode or command and the length of

the packet. These control signals will determine the rest of the

packet structure and what transactions will occur. Just like the

control signals in regular bus protocols, we create branches

based on these control signals because it will determine the

rest of data to come.

Given that most packet protocols are proprietary, we opt to

define a generic packet protocol featuring common transac-

tions like reads and writes. In Figure 7, we show a subset of

this protocol (also illustrated in Figure 3) for read transactions

that we will later use to generate a translator for AXI. Each

packet is described as the concatenation of several sub-packets,

including a header and body. We use sub-packets to reduce

redundant code in the protocol. We use a branch based on

CMD field to infer which type of packet is being sent.

There are over a hundred different packet commands for this

protocol, but we only show ReadResp16. This packet is six

flits long. This includes the header, the address information,

and then four packets containing ECC and write data.

Once we have parsed both PDL source files and have

generated the FSM data structures, we have the underlying

model and can ignore whether a protocol was a bus or packet-

based protocol. Instead, we simply view a protocol as a set of

FSMs, where each FSM is a graph of states and edges like the

example provided in Section III. With the two sets of FSMs,

the goal of FSM integration becomes creating a single set of

FSMs that serve as a translator between both protocols. More

specifically, we must ensure that all transactions sent by one

protocol are received by the other.

In [12], an algorithm was first proposed to automatically

synthesize a translator between two protocols. Their algorithm

attempts to recursively traverse the two protocols modeled as

FSMs. At each state, a check for data consistency is performed.

If the data sequence sent by a protocol is correctly matched by

the receiving protocol, then the combined sequence of paths

is appended to the combined FSM. If one protocol attempts to

send or receive while the other does not, then data sequencing

is incorrect and the path is deemed invalid.

This exhaustive search algorithm was shown to perform

poorly on more complex protocols [19]. Later work [19], [20],

used a divide and conquer approach to more efficiently search

the solution space. However, we still find this heuristic to be

unnecessarily complex. Instead of traversing the whole FSM,

we take a more abstract approach. Our proposed algorithm

considers the data transactions that each path in the FSM

contain, and then only attempts to match other paths that

contain the same transactions. Next, we attempt to schedule

the paths by issuing stalls when there is a timing mismatch

or the protocols have different bus widths. We further detail

these steps in the following subsections.

packet packet_header begin
control 6 LEN
control 8 CMD
control 8 TID

control 5 ECC
end
packet rd_rsp_pkt (i, d) begin

data 32 read_resp_data(range=32, id=i, dep=d)
control 3 CD
control 5 ECC

end
packet pkt_protocol begin

subpacket pkt_header pkt_header0
begin

| + @(pkt_header0.CMD(0)) : RdReq16
rd_req_pkt

| + @(pkt_header0.CMD(1)) : RdResp16
control 4 SID
control 1 H
data 32 rd_address(offset=16)
control 3 ECC
subpacket rd_rsp_pkt rd_rsp0(0, RdReq16(0))
subpacket rd_rsp_pkt rd_rsp1(1, RdReq16(0))
subpacket rd_rsp_pkt rd_rsp2(2, RdReq16(0))
subpacket rd_rsp_pkt rd_rsp3(3, RdReq16(0))

end
end

Fig. 7. A Subset of the packet protocol PDL for read transactions.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

A. Path Selec tion Table I. Path Selection

In any directed acyclic graph there exists some number of

paths from source to sink, where each path is a unique set of

edges. The set of all paths is all the possible procedures that a

protocol can make. To create a functional translator, we must

ensure that all data sent from both protocols is received by the

other. To do this, we iterate through the set of all paths in the

target protocol that transmit data. Then, we identify paths in

the other protocol that receive the data the target protocol is

trying to send. Once we satisfy all paths that send data, our

translator is complete.

To demonstrate this, we show an example case our tool

has successfully executed. In the process of integrating the

packet protocol and AXI, we must find a translation for the

ReadResponse16B (shown in Figure 3) packet of our packet-

based protocol. In Table I, we visualize the data structure

we use to represent the paths. Our tool identifies receiving

paths that can be used to satisfy the ReadResponse16B packet.

We also maintain information on the number of cycles and

how many additional states the receiving path will incur. This

allows the algorithm to make decisions based on performance

and area. In this particular example, there are four paths in

AXI that could satisfy ReadResponse16B. However, for paths

1 to 3 we would need to iterate several times. Choosing path

4 results in the lowest latency because the 2 cycle overhead

is only incurred once. For paths 1-3 we would need to incur

this latency at least twice, and in the case of using path 1 four

times, we incur this latency four times.

However, there is a trade off to consider. Path 4 may require

the fewest cycles, but it also requires 2 additional states in our

FSM, while paths 1 and 2 do not add additional states since

they have already been added to satisfy smaller read packets.

Our tool defaults to always choose the lowest latency given

that additional states are inexpensive, however, if area is a

concern a flag enables area minimization. We provide psuedo-

code for this in Algorithm 1. The search time for this algorithm

is O(N) since we iterate through all the paths in protocol 1, but

use a lookup table to identify paths in protocol 2 that satisfy

the translation. This algorithm also takes a cost function as

input argument to decide which path is the best solution for

translation. This cost function is a weighted function specified

by the user to optimize for either area or latency.

B. Scheduling

In the path selection part of the flow, we are not concerned

with timing, rather just making sure we obey the constraints

set on each path. After we find the set of paths from the

second protocol to match with our first protocol we must

Algorithm 1 Path Selection

1: procedure Pa t h Se l e c t i o n (P1, P2, Cost)

2: for path1 g P1.paths do
3: for path2 g P2.paths.contain(path1) do
4: champ = min(Cost(path2), Cost(champ))

Path # #Cycles Path Used #States Data Transfer

1 3 Y 0 (4B rdata, 4B addr)

2 4 Y 0 (8B rdata, 8B addr)

3 5 N 1 (12B rdata, 12B addr)

4 6 N 2 (16B rdata, 16B addr)

create a schedule that issues the control signals and satisfies

the timing constraints of each protocol. The basis of our

scheduling algorithm is simply checking if data has been sent

by master, and if data is ready to be received by the slave.

We provide psuedo-code for this algorithm in Algorithm 2.

Although simple for cases when both protocols send data with

the same width, it is challenging to handle data of different

sizes. For instance, if IP1 communicates using 32-bit AXI and

IP2 communicates with 64-bit AHB, we must buffer packets

going to IP2 and split packets sent to IP1.
This issue is further exasperated by serial protocols and

packet based protocols. For the same scenario above a serial

IP1 would require 64 buffering cycles before sending a sin-

gle transaction to IP2. Furthermore such a translator would

potentially require asynchronous FIFos for serial protocols

that operate faster than bus protocols. Packet protocols suffer

from a different issue. Since the data we send and wires

we send it on are not bound, but virtualized, the same data

transaction can come from different physical sources. our

scheduling algorithm accounts for this by adding control

signals to the multiplexer preceding the FIFo mapped to the

data transaction. In our FSM, we add this control signal based

on our current state so that we select the correct data to buffer.

Algorithm 2 Schedule

1: procedure ScH E D U L E(master, slave, fifo)

2: while !master.empty() and !slave.empty() do
3: if !fifo.fullO then
4: fifo.push = master.send

5: if slave.receives() then
6: slave.receive = fifo.pop VI.

VI. RTL Ge n e r a t i o n

once an integrated FSM is generated, it needs to be con-

verted into a synthesizable RTL where it serves as a translator

between IP blocks in an SoC. Given the ease of modeling

state machines in HDL and the availability and maturity of

commercial grade synthesis tools, we choose to convert our

integrated FSM into Verilog code. Like [21], we find that the

repetitive nature of translators makes it feasible to generate

Verilog using higher level blocks such as FIFos, multiplexers,

and adders. Furthermore, the excellent optimization provided

by these tools minimizes area, further simplifying the task of

generating high quality translators.

In each translator, the integrated state machine directly

serves as the control unit. This control unit makes state

transitions based on inputs from the connected IPs, and issues

control logic to multiplexers, FIFos, and address calculators

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

to control the flow of data. Multiplexers are instantiated

throughput the design to route the data from one IP to the

FIFos and address calculators, and then to the other IP. This is

especially important for packet based protocols where several

sources share the same destination. This occurs in packets

when data resides in different parts of the packet or when

different bus widths are used.

To buffer data transactions between IPs, we use register

based FIFos inside the translator. In the FSM each state con-

tains FIFo and mux control logic, which can be implemented

as a lookup table indexed by a state variable. However, because

we generate Verilog and use commercial synthesis tools we

allow the tool to find a more optimal implementation. To

handle addresses sent between protocols, we use a generic

address calculator block. This is necessary to translate between

protocols that receive data in different sizes. For example,

AHB receives bursts up to 16 4 byte transactions while AXI

sends bursts up to 1024 transactions. In this case, we must

break the 1024 transactions into 64 bursts. For each burst

we must provide an additional address which is the original

address plus an offset.

A. Control Generation
With our control unit and basic blocks in place, the next

step is generating the control logic. The control logic from

the IPs to this control unit (input control) is what we used in

path selection and scheduling to satisfy our constraints. These

signals are already embedded in our translator and we use them

to set the conditions for state transitions. The control logic we

seek to generate is from the translator to the IP (output control)

and from the translator to the multiplexers, FIFOs, and address

calculators. All of this control logic will be generated for each

state in our control unit. Physically, this can be implemented as

a lookup table indexed by our state variable. However, because

we generate Verilog and use a commercial synthesis tool, we

allow the tool to find a more optimal implementation.

We first consider how to generate the output control logic to

the IPs. To do this, we iterate through all the states and edges

and generate output control for each edge based on conditions

and transactions from that edge and the two states it connects.

Given that the PDL already specifies what conditions lead to

state transitions, we can embed these values for the case when

we do not wish to stall. However, if we do wish to stall based

on the current state of the protocol we must generate control

logic to do so. Since we have the full specification of the

protocol it is possible to compute a set of control signals such

that the protocol stalls. For most protocols this is a simply

inverting the valid or ready signal. In the case of protocols

that do not stall one a transaction is initiated, we must have a

sufficiently sized buffer to buffer a full transaction sequence.

This is further discussed in the following subsection.

To generate the control signals for the basic blocks in the

translator we follow a similar procedure. We iterate through

all the states and edges and generate the necessary signals

based on whether data is sent or received. We then append

these signals to the set of signals to be stored in the lookup

table of the control unit. For each FIFo, we must control two

signals: push and pop. For each edge, we simply check if data

is sent or received and then we set push and pop accordingly.

For each address calculator, we control the base address and

the offset of the current edge from the start of the transaction

sequence. In operation, this value is then added to the base

address in the address calculator block. For each multiplexer,

we must control the select signal. For each edge we check the

source of the input data and simply set the select value to the

port mapped to our input data source.

B. Automatic FIFO Allocation
To ensure sufficient buffer capacity and minimize translator

area, we automatically size our FIFos using information from

our FSMs. Given that we have complete information about the

protocol and the transactions along the different paths of the

protocol, we can compute the minimum FIFo depth required

to buffer each transaction along a single path. one solution

is to choose the total number of bytes sent along the longest

path. However this option will not minimize FIFo area. A

better solution is to traverse the entire the FSM, and simply

choose the most bytes buffered at one time. This implies that

by default we can only buffer a single transaction sequence

and that one sequence must finish before another can begin.

Additional FIFo capacity can be added so that more than one

sequence of transactions can be buffered, however by default

we assume a sequence is finished before beginning another.

C. Verilog Generation

After generating necessary control signals and appropriately

sizing buffers, we have a sufficient design specification to write

out the Verilog for our translator. First we trivially write out

the ports in Verilog syntax using the port information specified

in the PDL. Next we instantiate the multiplexers, FIFos, and

address calculators from template Verilog implementations.

Lastly, we write out our control unit in Verilog syntax. This

is implemented as a large case statement, where each state is

modeled by a case where output and basic block control logic

is specified.

Figure 8 shows a block diagram of an AXI to packet

protocol translator. In this case FIFos are connected to all

data ports with multiplexers to handle routing into the packet

IP. We group all control signals together since they all feed

into the control unit. In this design we represent all four state

machines in our translator as the single control unit. This

control unit takes all control signals from both IPs and issues

control logic back to the IPs as well as the multiplexers, FIFos,

and address offset blocks. The architecture for translators is

repetitive, thus automating the RTL generation using high level

blocks simplifies the problem space.

VII. Re s u l t s

We have run our tool on several different protocol combi-

nations including AXI [14], AHB [15], TileLink [16], and our

generic packet protocol. The examples we have chosen are

to demonstrate the unique aspects of protocols that our tool

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. RTL Block diagram for translator between AXI and our packet

protocol. All logic to and from CTRL unit is control logic.

Table II. Translator Synthesis Results

Translator State Time

(s)

Cells FF Footprint

(g m 2)

AHB AXI 214 0.06 2017 619 2393

AHB PKT 261 0.04 1888 551 2222

AHB TL 242 0.04 1999 611 2313

AXI AHB 1079 0.78 2195 623 2496

AXI PKT 1184 1.10 2318 591 2491

AXI TL 1322 1.56 2634 682 2568

PKT AHB 375 0.08 1971 547 2212

PKT AXI 392 0.16 1966 550 2228

PKT TL 380 0.16 1849 515 2024

TL AHB 914 0.24 2193 600 2393

TL AXI 989 0.33 2355 606 2494

TL PKT 1061 0.33 2612 541 2228

can handle. Each example is synthesized and implemented in

28nm through our automated back-end flow. This flow uses

our compiler to generate translator RTL and then performs

synthesis and place and route using commercial tools. In Table

II we show the synthesis and place and route results for each

translator. These results from this backend flow provide us

with valuable feedback to ensure that the area of translators

remains small.

In Table II, we also include the runtime for our tool and

the number of states in the control unit. Naturally we observe

that the states and runtime are proportional to the total area

of the design. The translators including AXI or TileLink (TL)

protocols have the highest area and consequently, the most

states and highest runtime. Despite a fairly large state space, all

the translators we create take roughly a second to synthesize.

It should we noted that for the larger translators, we use

multiple threads to explore the set of paths, so CPU time

will be greater than wall-clock time. In comparison, modern

synthesis and HLS tools take days of runtime on small parts of

large CPUs and GPUs since it becomes infeasible to synthesize

them as a single component. Thus as more complex protocols

emerge, we expect that translator synthesis runtime will remain

insignificant compared to gate level synthesis.

As we have observed so far, automatic protocol synthesis

presents an opportunity to both reduce design time optimize

AXI to Packet Protocol Packet Protocol to AXI

Fig. 9. Layouts of two translator designs in 28nm technology node. (A) AXI

to Packet (B) Packet to AXI

for area. In the following subsections, we discuss these two

improvements separately.

A. Design Time Reduction
Although we have to manually write the PDL code, it is

needless to say that it takes a small fraction of the time it

takes to write and verify optimized RTL for 12 translators.

Furthermore, we realize that once a verified PDL file is written,

it need not be written again. Hence, the four protocols we

demonstrate in this work become an asset of our tool so

that any additional protocol added can be synthesized with

existing PDL. This implies that potential design time saved

grows quadratically as we increase the number of translators

in our PDL library and the maturity of our tool. This attribute

becomes a critical asset in our tool's application in future

design flows. Where vendors can provide PDL for each IP

and then integration tools can automatically generate custom

optimized translators for the SoC or SiP.

B. Area Reduction
In Section I, we discussed two methods that can be used

to optimize for area in the protocol translator problem. The

first of these is partial translator synthesis. This idea stems

from the fact that most designs rarely (if ever) use the full

functionality of the protocol, but they still incur the area cost of

a full translator between each IP for this unused functionality.

To demonstrate how PDL can reduce area by simplifying the

customization of protocols, we have removed some of the less

commonly used transactions in each protocol's PDL and rerun

our flow. In Table III we show the partial translator results

from this experiment. The area of each translator reduces by

roughly 30% as shown in Figure 10, further increasing the

area savings automatic translator synthesis enables for large

scale SoC design.

VIII. Co n c l u s i o n

In this paper we proposed several contributions to the

protocol translator problem that we implemented in over 15

thousand lines of C++ code. We proposed requirements to

model packet based and emerging protocols and the language

semantics to properly express them. We demonstrated an

efficient path selection and scheduling algorithm to create the

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

Table III. Partial Translator Synthesis Results

Translator State Time

(s)

Cells FF Footprint

(gm)

AHB AXI 119 0.06 1242 363 1842

AHB PKT 207 0.03 1154 329 1410

AHB TL 112 0.03 1200 332 1698

AXI AHB 638 0.31 1420 367 1715

AXI PKT 743 0.35 1222 272 1513

AXI TL 832 0.68 1517 386 1860

PKT AHB 207 0.07 1220 351 1422

PKT AXI 224 0.15 1372 399 1554

PKT TL 220 0.15 1369 374 1548

TL AHB 607 0.21 1357 351 1645

TL AXI 719 0.29 1444 370 1787

TL PKT 783 0.23 1319 312 1515

Fig. 10. Bar plot of area reduction from full to partial translator implemen-

tation

control unit for our translator, which uses configurable cost

function to minimize latency and area. Next, we demonstrated

a method of taking the data and address transactions and

mapping them to FIFos and address calculators, and then

routing them together using networks of multiplexers. From

our implementation we generated the RTL and performed

synthesis and place and route for 12 protocol combinations.

Using automatic translator synthesis we observe up to 39%

area reduction from partial translator implementation, and we

greatly reduce the design time required for integrating many

IPs in an SoC.

Re f e r e n c e s

[1] G. Gielen, P. De Wit, E. Maricau, J. Loeckx, J. Martin-Martinez,

B. Kaczer, G. Groeseneken, R. Rodriguez, and M. Nafria, “Emerging

yield and reliability challenges in nanometer cmos technologies,” in

Proceedings o f the conference on Design, automation and test in Europe,
pp. 1322-1327, 2008.

[2] K. Asanovic and D. A. Patterson, “Instruction sets should be free: The

case for risc-v,” EECS Department, University o f California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, 2014.

[3] J. Kim, G. Murali, H. Park, E. Qin, H. Kwon, V. Chaitanya, K. Chekuri,

N. Dasari, A. Singh, M. Lee, et al., “Architecture, chip, and package

co-design flow for 2.5 d ic design enabling heterogeneous ip reuse,” in

Proceedings o f the 56th Annual Design Automation Conference 2019,
pp. 1-6, 2019.

[4] T. Fukushima, T. Konno, K. Kiyoyama, M. Murugesan, K. Sato, W.-C.

Jeong, Y. Ohara, A. Noriki, S. Kanno, Y. Kaiho, et al., “New hetero-

geneous multi-chip module integration technology using self-assembly

method,” in 2008 IEEE International Electron Devices Meeting, pp. 1-4,

IEEE, 2008.

[5] P. Vivet, E. Guthmuller, Y. Thonnart, G. Pillonnet, G. Moritz, I. Miro-

Panades, C. Fuguet, J. Durupt, C. Bernard, D. Varreau, et al., “2.3 a

220gops 96-core processor with 6 chiplets 3d-stacked on an active inter-

poser offering 0.6 ns/mm latency, 3tb/s/mm 2 inter-chiplet interconnects

and 156mw/mm 2@ 82%-peak-efficiency dc-dc converters,” in 2020

IEEE International Solid-State Circuits Conference-(ISSCC), pp. 46-48,

IEEE, 2020.

[6] S. Naffziger, K. Lepak, M. Paraschou, and M. Subramony, “2.2 amd

chiplet architecture for high-performance server and desktop products,”

in 2020 IEEE International Solid-State Circuits Conference-(ISSCC),
pp. 44-45, IEEE, 2020.

[7] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,

C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, et al., “The

rocket chip generator,” EECS Department, University o f California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[8] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph,

J. Menon, M. P. Drumond, R. Paul, S. Prasad, P. Valathol, etal., “Miaow-

an open source rtl implementation of a gpgpu,” in 2015 IEEE Symposium

in Low-Power and High-Speed Chips (COOL CHIPS XVIII), pp. 1-3,

IEEE, 2015.

[9] F. Farshchi, Q. Huang, and H. Yun, “Integrating nvidia deep learn-

ing accelerator (nvdla) with risc-v soc on firesim,” arXiv preprint
arXiv:1903.06495, 2019.

[10] M. Lee, A. Singh, H. M. Torun, J. Kim, S. K. Lim, M. Swaminathan,

and S. Mukhopadhyay, “Automated i/o library generation for interposer-

based system-in-package integration of multiple heterogeneous dies,”

IEEE Transactions on Components, Packaging and Manufacturing Tech-
nology, 2019.

[11] J. Akella and K. McMillan, “Synthesizing converters between finite state

protocols,” in Computer Design: VLSI in Computers and Processors,
1991. ICCD’91. Proceedings, 1991 IEEE International Conference on,
pp. 410-413, IEEE, 1991.

[12] R. Passerone, J. A. Rowson, and A. Sangiovanni-Vincentelli, “Automatic

synthesis of interfaces between incompatible protocols,” in Proceedings

o f the 35th annual Design Automation Conference, pp. 8-13, ACM,

1998.

[13] G. Borriello, “Specification and synthesis of interface logic,” in High-
Level VLSI Synthesis, pp. 153-176, Springer, 1991.

[14] A. AMBA, “Protocol specification v2. 0,” ARM Holdings plc Std, 2010.

[15] T. AMBA, “Specification (ahb)(rev 2.0),” ARM Ltd, May, vol. 1, p. 1,

1999.

[16] H. Cook, W. Terpstra, and Y. Lee, “Diplomatic design patterns: A tilelink

case study,” in 1st Workshop on Computer Architecture Research with

RISC-V, 2017.

[17] G. Casey and S. S. C. Team, “Gen-z an overview and use case s,” in

Open Fabric Allience, 13th annual workshop, 2017.

[18] W. J. Dally and B. Towles, “Route packets, not wires: on-chip intecon-

nection networks,” in Proceedings ofthe 38th annual Design Automation

Conference, pp. 684-689, 2001.

[19] S. Watanabe, K. Seto, Y. Ishikawa, S. Komatsu, and M. Fujita, “Protocol

transducer synthesis using divide and conquer approach,” in Design

Automation Conference, 2007. ASP-DAC’07. Asia and South Pacific,
pp. 280-285, IEEE, 2007.

[20] M. Fujita, H. Tanida, F. Gao, T. Nishihara, and T. Matsumoto, “Syn-

thesis and formal verification of on-chip protocol transducers through

decomposed specification,” in Quality Electronic Design (ISQED), 2010

11th International Symposium on, pp. 515-523, IEEE, 2010.

[21] A. Grasset, F. Rousseau, and A. A. Jerraya, “Automatic generation

of component wrappers by composition of hardware library elements

starting from communication service specification,” in Rapid System

Prototyping, 2005.(RSP 2005). The 16th IEEE International Workshop

on, pp. 47-53, IEEE, 2005.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

