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Abstract—A recent trend in open source hardware and chiplet- 
based IP reuse faces a key obstacle: protocol standardization. 
Hardware interfaces lack flexibility and require designers to 
follow a strict behavior when implementing IP. The rigid nature 
of hardware interfaces prevents IP reuse, a critical challenge in 
integrating a plethora of emerging open source IP. To mitigate 
these challenges, we propose a tool to automatically synthesize 
translators between arbitrary IP blocks. Using a protocol de­
scription language (PDL), we model protocols such that they 
can be interpreted as finite state machines (FSM). Next, we 
design algorithms to map and schedule transactions between 
these protocols, generating a single integrated state machine 
which serves as a translator between the two protocols. Lastly, 
we convert our integrated state machine into readable RTL 
(Verilog) and perform functional verification. Our flow has been 
implemented, tested, and proven on 12 protocol pairs with unique 
behavior.

I. I n t r o d u c t i o n

Very large scale integration (VLSI) of various functional 
components has enabled tremendous progress in modern com­
puting systems. However, in the last decade the cost of 
designing a system-on-chip (SoC) has increased dramatically 
[1], motivating more efficient design principles. Fortunately, 
growing interest in open source hardware [2] coupled with 
emerging technologies like 2.5D silicon interposer [3] and 
multi-chip modules [4] promise to significantly reduce the 
cost of designing an SoC. These new technologies seek to 
enable drastically different design methodologies for SoCs, 
where IP blocks are chipletized and fabricated IP can be reused 
across several designs by mounting it in a system-in-package 
(SiP). Recent demonstration of chiplet-based designs have 
been fabricated with 64 and 96 processors [5], [6]. Although 
these designs feature only processors, it is expected that future 
work will include other functionality used in mobile SoCs like 
wireless communication and analog IP.

Meanwhile, FPGAs have recently become available in cloud 
computing applications for their ability to provide near ASIC 
performance without the cost of a custom ASIC. FPGAs are 
also commercially available at low cost with high quality em­
bedded CPUs and mature software tools. With frameworks like 
SiP and FPGA in place, new design methodologies envision 
IP catalogs with hundreds of vendor chiplets to choose from 
that can easily be integrated into a large scale SoC. This 
new framework promises affordable high quality chip design 
without redesigning IP that can be completed in weeks rather 
than years. This IP can be provided either commercially or 
from emerging open source hardware IPs [7], [8], [9].

Although these new technologies and design flows can 
greatly reduce the cost and design time of modern SoCs, they 
face their own unique challenges that are avoided by traditional 
design flows [10]. The key obstacle we face in integrated these 
IPs is communication. Recent work [10], has attempted to 
tackle this problem at the physical level by automating the 
generation of I/O cells. This is of particular importance to 
low cost and quick design of the envisioned framework since 
the design time saved by design reuse is lost to custom design 
of I/O cells. Just like the physical level, we observe these 
same issues at the logical or protocol level. Throughout the 
years many open source and proprietary protocols have been 
developed, each designed to be a generic protocol to standard­
ize communication. However, with emerging challenges and 
design needs new protocols are adopted and old IP has to be 
updated. I f  the promise of simple SoC design and integration 
is to succeed, we require a solution to protocol standardization.

In this work, we propose the use of a new protocol descrip­
tion language (PDL) and synthesis algorithms to automatically 
generate translators between IPs that communicate using dif­
ferent protocols. Originally protocol synthesis was proposed 
[11], [12] as an early high level synthesis (HLS) technique 
to promote design reuse. In fact, the original motivation was 
the belief that standardization of protocols would be imprac­
tical [13]. Building upon these works, we expand on both 
the modeling techniques and synthesis algorithms to enable 
protocol translator synthesis for modern bus and packet-based 
protocols. We present a visualization of our proposed tool flow 
in Figure 1. We begin with source PDL files modeling the 
protocols, which are then parsed and converted into abstract

Fig. 1. A visual representation of the PDL-to-RTL flow. Initially, state 
machines are generated from PDL files, then merged into a single state 
machine, and finally RTL (Verilog) is generated.
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syntax trees (AST) and later converted to FSMs. We then 

integrate the FSMs from both protocols by identifying paths in 

each protocol that send data and finding corresponding paths in 

the opposite protocol to receive the data. Next, we schedule the 

transactions and generate FSMs that model a valid translation 

between the two protocols. Lastly, RTL (Verilog) is generated 

using the integrated FSM as the control unit, and instantiating 

buffers and multiplexers to control data flow.

We use our tool flow to demonstrate the efficacy of auto-

matic translator synthesis by testing on handpicked packet- 

based and emerging protocols requiring complex language 

semantics. We generate RTL and perform synthesis place 

and route for 12 protocol combinations, dramatically reducing 

RTL design and verification time. Furthermore we demonstrate 

methods to reduce both area and latency using automatic 

translator synthesis. We observe up to 39% area reduction from 

custom partial translator implementation.

II. Ba c k g r o u n d

Protocols and interfaces used between logic blocks can 

be modeled as finite state machines (FSM) [12]. The FSM 

modeling the protocol is a directed acyclic graph containing 

both vertices and edges. Vertices represent the current state of 

the system that is executing the protocol. Edges contain two 

essential components to model the protocol: conditions and 

transactions. Conditions are requirements for a state transition 

to be made, such as valid or ready signals. Transactions are 

the actual data to be transferred in the protocol.

In Figure 2, we illustrate this idea for a subset of the 

commonly used bus protocol: AXI [14]. In this example, 

we observe a value of 4 for arlen and asserted valid and 

ready signals. In the AXI protocol, this implies the master 

is attempting to read a sequence of four words from a 

memory. upon satisfying these three conditions, the protocol 

proceeds to the next state in the FSM. Where upon continued 

assertion of valid and ready, the master protocol receives four 

transactions. Naturally we can model this behavior as an FSM, 

where these signals are conditions dictating state transitions, 

and the data transferred is mapped to the edges of the FSM.

Fig. 2. Transformation of AXI into an FSM. Only three of the many branches 

of AXI are shown. The highlighted branch in the FSM is the path that was 

taken in the waveform.

Prior work [12] use a language (like HDL) so that designers 

can describe their protocols in a concise manner. This style 

of language is called protocol description language (PDL), 

and is used specifically to derive FSMs from protocols. Such 

a language yields similar benefits as HDL, promoting both 

optimization of the underlying data structure and designer 

productivity in describing it. Given two PDLs, and thus 

two FSMs, [12] showed that a translator between the two 

protocols could be generated by identifying and combining 

legal combinations of states between these protocols (e.g. 

one protocol sends data, one receives data). The result is a 

merged FSM, which could in turn be converted to HDL such 

as Verilog.

III. M o d e l i n g  Co m p l e x  Pr o t o c o l s

As we discussed in the previous section, Logic-level pro-

tocols implemented by IP blocks can be modeled as FSMs. 

However, as protocols increase in complexity, additional fea-

tures are required to adaquetly model their behavior. In this 

Section, we identify and describe components of popular bus 

protocols like [14], [15], [16] and packet-based protocols like 

[17] that require extensions to previously discussed protocol 

modeling efforts.

A. Packet/Flit Format
Packet based protocols are commonly used in multi-core 

processors and network-on-chips [18]. Packets differ from 

traditional bus protocols in that the physical wires do not 

carry the same meaning each cycle. Instead control signals 

and opcodes dictate what groups of wires carry a certain 

piece of information. To properly model this, the data must 

be virtualized from the physical wires that carry it. This is 

in stark contrast to bus protocols where the data and physical 

wires are the same entity.

Packets are usually divided over many flits where control 

signals necessary to decode data in one flit, were sent several 

flits before. This type of data structure, yields a tree-like FSM 

where each packet type has its own path in the FSM. In 

Figure 3, we illustrate a pair of example packets and their 

corresponding FSM. Although the tree-like structure of packet 

protocols requires slightly additional run time and state space, 

it does not result in exceptionally high area (Table II).

B. Independent State Machines
Modern bus protocols [14], [15], [16] allow reads and writes 

to occur at the same time, completely independent of each 

other. For example, the AXI protocol has 5 different interfaces 

to handle read and write transactions. While some pairs of 

these interfaces can be modeled in the same FSM, to capture 

the full behavior of the protocol, multiple state machines are 

required. Although in theory it would be possible to create 

a single state machine for all possible combinations of these 

independent state transitions, it is not feasible in practice given 

that the state space would increase exponentially. Therefore we 

propose that protocols should be a combination of many state 

machines that work independently of one another.
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CLK

ECC CMD LEN ID

ECC Address (32b)

A. Read Request Packet

31 23 15

B. Read Response Packet

ECC CMD LEN ID

ECC Read Resp Data [31:0]

ECC Read Resp Data [63:32]

ECC Read Resp Data [95:64]

ECC Read Resp Data [127:96]

A  Flit Header''A.
Address I

It
Read Resp Data

Fig. 3. Transformation of a packet protocol into an FSM. Both packets 

structure is defined by the header, after which they diverge.

C. Data Dependence

Although we require independent state machines to model 

modern protocols, it is possible that these state machines 

depend on one another. In AHB, for both a write transaction 

and a read transaction, the address must occur before the 

data is sent. During a burst mode transaction, the subsequent 

addresses and data can occur on the same cycle or different 

cycles. The only requirement is that each address must precede 

the data it corresponds to. In Figure 4, we show an ideal 

scenario where the data follows the address and the sequence 

finishes after 5 cycles. In this case data dependence is not 

enforced since the address always precedes data. However, 

since AHB allows for stalls, we must support sequences like 

Figure 5. The sequence in Figure 5 effectively breaks the 

single FSM model for AXI because address and data are 

stalled and do not follow each other. To properly model this 

behavior we require multiple FSMs and information regarding 

this relationship between waddr and wdata. More specifically, 

we must be able to declare dependence between these two 

variables, and enforce the condition that address precedes the 

data it corresponds to.

CLK

w a d d r [ 3 1 : 0 ]

w d a t a [ 3 1 : 0 ]

a i  a2 « 3  aA

Fig. 4. The ”easy” case for data dependence, no stalls occur and data always 

trails address by 1 cycle. IV.

IV. Pr o t o c o l  d e s c r i p t i o n  La n g u a g e

We have developed a new language that draws on similar 

syntax to the Verilog hardware description language. Although 

useful for modeling hardware, both Verilog and System Ver- 

ilog provide insufficient details to properly model a protocol.

w a d d r [ 3 1 : : 0 ]  Q 2

w d a t a [ 3 1 : : 0 ]  K d 1 X f W X

Fig. 5. A ”hard” case for data dependence. Stalls occur for both data and 

address and data does not always follow address by 1 cycle.

The goal of PDL is to fully describe a protocol in the most 

concise and simple way possible. The PDL should effectively 

model the interface of the protocol and the necessary behavior 

of that protocol for translation. It is this behavior that HDLs 

do not model. Rather than arbitrary ports, the tool needs to 

know what rules the protocol follows.

Prior works have proposed two necessary definitions to 

synthesize a protocol [12], [4]. The first is a description of 

the signals that implement the protocol. In defining these 

signals, the designer must describe the name, width, direction, 

and type. The second is a description of the behavior of the 

protocol that can be modeled with FSMs. The edges within 

the FSM contain the conditions necessary for a state transition, 

and information about the data that is transferred during the 

transition. While this model suffices for smaller protocols, 

modern protocols require additional language semantics to 

express complex behavior. In this section we describe the 

necessary semantics, and later demonstrate how they can be 

used for bus protocols and packet protocols.

The additional semantics we include in our language are as 

follows:

1) Transaction Id: ”Id” gives a transaction an identifier 

so that other transactions can reference it to declare 

dependence. This allows us to determine when stalls are 

required in a sequence (Figure 4).

2) Transaction Dependence: ”Dep” allows a user to specify 

that the given transaction is dependent on another trans-

action. With this identifier we can enforce order in the 

protocol.

3) Address Offset: ”offset” describes the size of the data an 

address refers to.

4) Data Range: ”Range” specifies the amount of data (in 

bits) that is sent during a transaction.

Each of these parameters is simple, yet adds necessary infor-

mation to properly model modern protocols. In this work we 

focus our effort on bus protocols and packet-based protocols. 

The bus protocols we have discussed in this work all require 

multiple state machines and the ability to describe data de-

pendence. Meanwhile, packet protocols require a structured 

hierarchy describing how previous flits determine future data 

to come. In the following subsections, we further describe 

these requirements and illustrate how these behaviors can be 

modeled using simple code.

A. Bus Protocols

The bus protocols we have discussed in this work all 

require multiple state machines and the ability to describe
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V. FSM INTEGRATIONprotocol axi 
ports

data out 32 araddr 
control out 8 arlen 
control out 1 arvalid 
control in 1 arready

data in 32 rdata 
control in 1 rvalid 
control out 1 rready

endports
behavior

generate tid = arlen:0 begin 
+ @(rvalid(1), rready(1)) {

rec( rdata(range=32, dep=araddr(tid)) )
}

end
endbehavior

behavior
generate tid = arlen : 0 begin 
+ @(arvalid(1), arready(1)) {

send( araddr(offset=4, id=tid) )
}

end
endbehavior

endprotocol

Fig. 6. A Subset of the AXI protocol PDL for read transactions.

data dependence. As an example, we show a subset of the 

AXI protocol for read transactions in Figure 6. Both the 

read address and read response portions of the protocol are 

described in separate state machines. We use generate loops 

for all possible burst transactions while declaring dependence 

between address and data.

B. Packet Based Protocols

using the same data structures and language, it is possible to 

define a packet based protocol. Although additional semantics 

are required, the resulting data structures are processed the 

same way. A packet based protocol uses multiple flits, a packet 

structure, and a variable length bus to transmit data. A packet 

header will define an opcode or command and the length of 

the packet. These control signals will determine the rest of the 

packet structure and what transactions will occur. Just like the 

control signals in regular bus protocols, we create branches 

based on these control signals because it will determine the 

rest of data to come.

Given that most packet protocols are proprietary, we opt to 

define a generic packet protocol featuring common transac-

tions like reads and writes. In Figure 7, we show a subset of 

this protocol (also illustrated in Figure 3) for read transactions 

that we will later use to generate a translator for AXI. Each 

packet is described as the concatenation of several sub-packets, 

including a header and body. We use sub-packets to reduce 

redundant code in the protocol. We use a branch based on 

CMD field to infer which type of packet is being sent. 

There are over a hundred different packet commands for this 

protocol, but we only show ReadResp16. This packet is six 

flits long. This includes the header, the address information, 

and then four packets containing ECC and write data.

Once we have parsed both PDL source files and have 

generated the FSM data structures, we have the underlying 

model and can ignore whether a protocol was a bus or packet- 

based protocol. Instead, we simply view a protocol as a set of 

FSMs, where each FSM is a graph of states and edges like the 

example provided in Section III. With the two sets of FSMs, 

the goal of FSM integration becomes creating a single set of 

FSMs that serve as a translator between both protocols. More 

specifically, we must ensure that all transactions sent by one 

protocol are received by the other.

In [12], an algorithm was first proposed to automatically 

synthesize a translator between two protocols. Their algorithm 

attempts to recursively traverse the two protocols modeled as 

FSMs. At each state, a check for data consistency is performed. 

If the data sequence sent by a protocol is correctly matched by 

the receiving protocol, then the combined sequence of paths 

is appended to the combined FSM. If one protocol attempts to 

send or receive while the other does not, then data sequencing 

is incorrect and the path is deemed invalid.

This exhaustive search algorithm was shown to perform 

poorly on more complex protocols [19]. Later work [19], [20], 

used a divide and conquer approach to more efficiently search 

the solution space. However, we still find this heuristic to be 

unnecessarily complex. Instead of traversing the whole FSM, 

we take a more abstract approach. Our proposed algorithm 

considers the data transactions that each path in the FSM 

contain, and then only attempts to match other paths that 

contain the same transactions. Next, we attempt to schedule 

the paths by issuing stalls when there is a timing mismatch 

or the protocols have different bus widths. We further detail 

these steps in the following subsections.

packet packet_header begin 
control 6 LEN
control 8 CMD 
control 8 TID

control 5 ECC 
end
packet rd_rsp_pkt (i, d) begin

data 32 read_resp_data(range=32, id=i, dep=d) 
control 3 CD 
control 5 ECC 

end
packet pkt_protocol begin

subpacket pkt_header pkt_header0 
begin

| + @(pkt_header0.CMD(0)) : RdReq16 
rd_req_pkt

| + @(pkt_header0.CMD(1)) : RdResp16 
control 4 SID 
control 1 H
data 32 rd_address(offset=16) 
control 3 ECC
subpacket rd_rsp_pkt rd_rsp0(0, RdReq16(0)) 
subpacket rd_rsp_pkt rd_rsp1(1, RdReq16(0)) 
subpacket rd_rsp_pkt rd_rsp2(2, RdReq16(0)) 
subpacket rd_rsp_pkt rd_rsp3(3, RdReq16(0))

end
end

Fig. 7. A Subset of the packet protocol PDL for read transactions.
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A. Path Selec tion Table I. Path Selection

In any directed acyclic graph there exists some number of 

paths from source to sink, where each path is a unique set of 

edges. The set of all paths is all the possible procedures that a 

protocol can make. To create a functional translator, we must 

ensure that all data sent from both protocols is received by the 

other. To do this, we iterate through the set of all paths in the 

target protocol that transmit data. Then, we identify paths in 

the other protocol that receive the data the target protocol is 

trying to send. Once we satisfy all paths that send data, our 

translator is complete.

To demonstrate this, we show an example case our tool 

has successfully executed. In the process of integrating the 

packet protocol and AXI, we must find a translation for the 

ReadResponse16B (shown in Figure 3) packet of our packet- 

based protocol. In Table I, we visualize the data structure 

we use to represent the paths. Our tool identifies receiving 

paths that can be used to satisfy the ReadResponse16B packet. 

We also maintain information on the number of cycles and 

how many additional states the receiving path will incur. This 

allows the algorithm to make decisions based on performance 

and area. In this particular example, there are four paths in 

AXI that could satisfy ReadResponse16B. However, for paths 

1 to 3 we would need to iterate several times. Choosing path 

4 results in the lowest latency because the 2 cycle overhead 

is only incurred once. For paths 1-3 we would need to incur 

this latency at least twice, and in the case of using path 1 four 

times, we incur this latency four times.

However, there is a trade off to consider. Path 4 may require 

the fewest cycles, but it also requires 2 additional states in our 

FSM, while paths 1 and 2 do not add additional states since 

they have already been added to satisfy smaller read packets. 

Our tool defaults to always choose the lowest latency given 

that additional states are inexpensive, however, if area is a 

concern a flag enables area minimization. We provide psuedo- 

code for this in Algorithm 1. The search time for this algorithm 

is O(N) since we iterate through all the paths in protocol 1, but 

use a lookup table to identify paths in protocol 2 that satisfy 

the translation. This algorithm also takes a cost function as 

input argument to decide which path is the best solution for 

translation. This cost function is a weighted function specified 

by the user to optimize for either area or latency.

B. Scheduling

In the path selection part of the flow, we are not concerned 

with timing, rather just making sure we obey the constraints 

set on each path. After we find the set of paths from the 

second protocol to match with our first protocol we must

Algorithm 1 Path Selection 

1: procedure Pa t h  Se l e c t i o n (P1, P2, Cost)

2: for path1 g  P1.paths do
3: for path2 g  P2.paths.contain(path1) do
4: champ = min(Cost(path2), Cost(champ))

Path # #Cycles Path Used #States Data Transfer

1 3 Y 0 (4B rdata, 4B addr)

2 4 Y 0 (8B rdata, 8B addr)

3 5 N 1 (12B rdata, 12B addr)

4 6 N 2 (16B rdata, 16B addr)

create a schedule that issues the control signals and satisfies 

the timing constraints of each protocol. The basis of our 

scheduling algorithm is simply checking if data has been sent 

by master, and if data is ready to be received by the slave. 

We provide psuedo-code for this algorithm in Algorithm 2. 

Although simple for cases when both protocols send data with 

the same width, it is challenging to handle data of different 

sizes. For instance, if IP1 communicates using 32-bit AXI and 

IP2 communicates with 64-bit AHB, we must buffer packets 

going to IP2 and split packets sent to IP1.
This issue is further exasperated by serial protocols and 

packet based protocols. For the same scenario above a serial 

IP1 would require 64 buffering cycles before sending a sin-

gle transaction to IP2. Furthermore such a translator would 

potentially require asynchronous FIFos for serial protocols 

that operate faster than bus protocols. Packet protocols suffer 

from a different issue. Since the data we send and wires 

we send it on are not bound, but virtualized, the same data 

transaction can come from different physical sources. our 

scheduling algorithm accounts for this by adding control 

signals to the multiplexer preceding the FIFo mapped to the 

data transaction. In our FSM, we add this control signal based 

on our current state so that we select the correct data to buffer.

Algorithm 2 Schedule 

1: procedure ScH E D U L E(master, slave, fifo)

2: while !master.empty() and !slave.empty() do
3: if !fifo.fullO then
4: fifo.push = master.send

5: if slave.receives() then
6: slave.receive = fifo.pop VI.

VI. RTL Ge n e r a t i o n

once an integrated FSM is generated, it needs to be con-

verted into a synthesizable RTL where it serves as a translator 

between IP blocks in an SoC. Given the ease of modeling 

state machines in HDL and the availability and maturity of 

commercial grade synthesis tools, we choose to convert our 

integrated FSM into Verilog code. Like [21], we find that the 

repetitive nature of translators makes it feasible to generate 

Verilog using higher level blocks such as FIFos, multiplexers, 

and adders. Furthermore, the excellent optimization provided 

by these tools minimizes area, further simplifying the task of 

generating high quality translators.

In each translator, the integrated state machine directly 

serves as the control unit. This control unit makes state 

transitions based on inputs from the connected IPs, and issues 

control logic to multiplexers, FIFos, and address calculators
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to control the flow of data. Multiplexers are instantiated 

throughput the design to route the data from one IP to the 

FIFos and address calculators, and then to the other IP. This is 

especially important for packet based protocols where several 

sources share the same destination. This occurs in packets 

when data resides in different parts of the packet or when 

different bus widths are used.

To buffer data transactions between IPs, we use register 

based FIFos inside the translator. In the FSM each state con-

tains FIFo and mux control logic, which can be implemented 

as a lookup table indexed by a state variable. However, because 

we generate Verilog and use commercial synthesis tools we 

allow the tool to find a more optimal implementation. To 

handle addresses sent between protocols, we use a generic 

address calculator block. This is necessary to translate between 

protocols that receive data in different sizes. For example, 

AHB receives bursts up to 16 4 byte transactions while AXI 

sends bursts up to 1024 transactions. In this case, we must 

break the 1024 transactions into 64 bursts. For each burst 

we must provide an additional address which is the original 

address plus an offset.

A. Control Generation
With our control unit and basic blocks in place, the next 

step is generating the control logic. The control logic from 

the IPs to this control unit (input control) is what we used in 

path selection and scheduling to satisfy our constraints. These 

signals are already embedded in our translator and we use them 

to set the conditions for state transitions. The control logic we 

seek to generate is from the translator to the IP (output control) 

and from the translator to the multiplexers, FIFOs, and address 

calculators. All of this control logic will be generated for each 

state in our control unit. Physically, this can be implemented as 

a lookup table indexed by our state variable. However, because 

we generate Verilog and use a commercial synthesis tool, we 

allow the tool to find a more optimal implementation.

We first consider how to generate the output control logic to 

the IPs. To do this, we iterate through all the states and edges 

and generate output control for each edge based on conditions 

and transactions from that edge and the two states it connects. 

Given that the PDL already specifies what conditions lead to 

state transitions, we can embed these values for the case when 

we do not wish to stall. However, if we do wish to stall based 

on the current state of the protocol we must generate control 

logic to do so. Since we have the full specification of the 

protocol it is possible to compute a set of control signals such 

that the protocol stalls. For most protocols this is a simply 

inverting the valid or ready signal. In the case of protocols 

that do not stall one a transaction is initiated, we must have a 

sufficiently sized buffer to buffer a full transaction sequence. 

This is further discussed in the following subsection.

To generate the control signals for the basic blocks in the 

translator we follow a similar procedure. We iterate through 

all the states and edges and generate the necessary signals 

based on whether data is sent or received. We then append 

these signals to the set of signals to be stored in the lookup

table of the control unit. For each FIFo, we must control two 

signals: push and pop. For each edge, we simply check if data 

is sent or received and then we set push and pop accordingly. 

For each address calculator, we control the base address and 

the offset of the current edge from the start of the transaction 

sequence. In operation, this value is then added to the base 

address in the address calculator block. For each multiplexer, 

we must control the select signal. For each edge we check the 

source of the input data and simply set the select value to the 

port mapped to our input data source.

B. Automatic FIFO Allocation
To ensure sufficient buffer capacity and minimize translator 

area, we automatically size our FIFos using information from 

our FSMs. Given that we have complete information about the 

protocol and the transactions along the different paths of the 

protocol, we can compute the minimum FIFo depth required 

to buffer each transaction along a single path. one solution 

is to choose the total number of bytes sent along the longest 

path. However this option will not minimize FIFo area. A 

better solution is to traverse the entire the FSM, and simply 

choose the most bytes buffered at one time. This implies that 

by default we can only buffer a single transaction sequence 

and that one sequence must finish before another can begin. 

Additional FIFo capacity can be added so that more than one 

sequence of transactions can be buffered, however by default 

we assume a sequence is finished before beginning another.

C. Verilog Generation

After generating necessary control signals and appropriately 

sizing buffers, we have a sufficient design specification to write 

out the Verilog for our translator. First we trivially write out 

the ports in Verilog syntax using the port information specified 

in the PDL. Next we instantiate the multiplexers, FIFos, and 

address calculators from template Verilog implementations. 

Lastly, we write out our control unit in Verilog syntax. This 

is implemented as a large case statement, where each state is 

modeled by a case where output and basic block control logic 

is specified.

Figure 8 shows a block diagram of an AXI to packet 

protocol translator. In this case FIFos are connected to all 

data ports with multiplexers to handle routing into the packet 

IP. We group all control signals together since they all feed 

into the control unit. In this design we represent all four state 

machines in our translator as the single control unit. This 

control unit takes all control signals from both IPs and issues 

control logic back to the IPs as well as the multiplexers, FIFos, 

and address offset blocks. The architecture for translators is 

repetitive, thus automating the RTL generation using high level 

blocks simplifies the problem space.

VII. Re s u l t s

We have run our tool on several different protocol combi-

nations including AXI [14], AHB [15], TileLink [16], and our 

generic packet protocol. The examples we have chosen are 

to demonstrate the unique aspects of protocols that our tool
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Fig. 8. RTL Block diagram for translator between AXI and our packet 

protocol. All logic to and from CTRL unit is control logic.

Table II. Translator Synthesis Results

Translator State Time

(s)

Cells FF Footprint

(g m 2)

AHB AXI 214 0.06 2017 619 2393

AHB PKT 261 0.04 1888 551 2222

AHB TL 242 0.04 1999 611 2313

AXI AHB 1079 0.78 2195 623 2496

AXI PKT 1184 1.10 2318 591 2491

AXI TL 1322 1.56 2634 682 2568

PKT AHB 375 0.08 1971 547 2212

PKT AXI 392 0.16 1966 550 2228

PKT TL 380 0.16 1849 515 2024

TL AHB 914 0.24 2193 600 2393

TL AXI 989 0.33 2355 606 2494

TL PKT 1061 0.33 2612 541 2228

can handle. Each example is synthesized and implemented in 

28nm through our automated back-end flow. This flow uses 

our compiler to generate translator RTL and then performs 

synthesis and place and route using commercial tools. In Table 

II we show the synthesis and place and route results for each 

translator. These results from this backend flow provide us 

with valuable feedback to ensure that the area of translators 

remains small.

In Table II, we also include the runtime for our tool and 

the number of states in the control unit. Naturally we observe 

that the states and runtime are proportional to the total area 

of the design. The translators including AXI or TileLink (TL) 

protocols have the highest area and consequently, the most 

states and highest runtime. Despite a fairly large state space, all 

the translators we create take roughly a second to synthesize. 

It should we noted that for the larger translators, we use 

multiple threads to explore the set of paths, so CPU time 

will be greater than wall-clock time. In comparison, modern 

synthesis and HLS tools take days of runtime on small parts of 

large CPUs and GPUs since it becomes infeasible to synthesize 

them as a single component. Thus as more complex protocols 

emerge, we expect that translator synthesis runtime will remain 

insignificant compared to gate level synthesis.

As we have observed so far, automatic protocol synthesis 

presents an opportunity to both reduce design time optimize

AXI to Packet Protocol Packet Protocol to AXI

Fig. 9. Layouts of two translator designs in 28nm technology node. (A) AXI 

to Packet (B) Packet to AXI

for area. In the following subsections, we discuss these two 

improvements separately.

A. Design Time Reduction
Although we have to manually write the PDL code, it is 

needless to say that it takes a small fraction of the time it 

takes to write and verify optimized RTL for 12 translators. 

Furthermore, we realize that once a verified PDL file is written, 

it need not be written again. Hence, the four protocols we 

demonstrate in this work become an asset of our tool so 

that any additional protocol added can be synthesized with 

existing PDL. This implies that potential design time saved 

grows quadratically as we increase the number of translators 

in our PDL library and the maturity of our tool. This attribute 

becomes a critical asset in our tool's application in future 

design flows. Where vendors can provide PDL for each IP 

and then integration tools can automatically generate custom 

optimized translators for the SoC or SiP.

B. Area Reduction
In Section I, we discussed two methods that can be used 

to optimize for area in the protocol translator problem. The 

first of these is partial translator synthesis. This idea stems 

from the fact that most designs rarely (if ever) use the full 

functionality of the protocol, but they still incur the area cost of 

a full translator between each IP for this unused functionality. 

To demonstrate how PDL can reduce area by simplifying the 

customization of protocols, we have removed some of the less 

commonly used transactions in each protocol's PDL and rerun 

our flow. In Table III we show the partial translator results 

from this experiment. The area of each translator reduces by 

roughly 30% as shown in Figure 10, further increasing the 

area savings automatic translator synthesis enables for large 

scale SoC design.

VIII. Co n c l u s i o n

In this paper we proposed several contributions to the 

protocol translator problem that we implemented in over 15 

thousand lines of C++ code. We proposed requirements to 

model packet based and emerging protocols and the language 

semantics to properly express them. We demonstrated an 

efficient path selection and scheduling algorithm to create the
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Table III. Partial Translator Synthesis Results

Translator State Time

(s)

Cells FF Footprint 

(gm  )

AHB AXI 119 0.06 1242 363 1842

AHB PKT 207 0.03 1154 329 1410

AHB TL 112 0.03 1200 332 1698

AXI AHB 638 0.31 1420 367 1715

AXI PKT 743 0.35 1222 272 1513

AXI TL 832 0.68 1517 386 1860

PKT AHB 207 0.07 1220 351 1422

PKT AXI 224 0.15 1372 399 1554

PKT TL 220 0.15 1369 374 1548

TL AHB 607 0.21 1357 351 1645

TL AXI 719 0.29 1444 370 1787

TL PKT 783 0.23 1319 312 1515

Fig. 10. Bar plot of area reduction from full to partial translator implemen-

tation

control unit for our translator, which uses configurable cost 

function to minimize latency and area. Next, we demonstrated 

a method of taking the data and address transactions and 

mapping them to FIFos and address calculators, and then 

routing them together using networks of multiplexers. From 

our implementation we generated the RTL and performed 

synthesis and place and route for 12 protocol combinations. 

Using automatic translator synthesis we observe up to 39% 

area reduction from partial translator implementation, and we 

greatly reduce the design time required for integrating many 

IPs in an SoC.
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