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CryoMem: A 4K-300K 1.3GHz eDRAM Macro with Hybrid 
2T-Gain-Cell in a 28nm Logic Process for Cryogenic 
Applications
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1 Georgia Institute of Technology, 2 University of Notre Dame

In the pursuit of higher digital performance, as well as for finding new 
applications in emerging computing models and operating 
environments, low-temperature (300K to 150K) and cryogenic 
(<150K) computing is gaining momentum. In particular, space 
electronics (4K-200K), digital-control in fuel-cell electric vehicles 
(20K-80K) and digital-assist/ peripherals of quantum/
superconducting computers (10mK -  100K) require temperature- 
scalable process technologies and digital logic/memory [1-7]. 
Further, cryo-CMOS computing (100K -  150K) has been recently 
shown to be a significant booster for high-performance computing 
(HPC), with process retargeted for cryo-HPC [1]. For all these 
applications, there is a demand for high-density, large-capacity, high- 
bandwidth (BW) memory, which cannot be addressed by non-CMOS 
technologies (e.g., Vortex Transitional devices, Josephson Junction 
based Memory arrays etc. [2-7]) that suffer from single-temperature 
operation, low-density, poor-scalability, poor-reliability and high 
design-complexity. On the other hand, scaled CMOS with improved 
characteristics at low-temperature, such as steep sub-threshold 
slope (SS), improved channel transport, Io w -Io f f  and reduced 
thermal noise, provides a promising, yet largely unexplored pathway 
for integrating large on-die memory with both CMOS and non-CMOS 
cryo-computing, across a wide range of temperatures and 
applications. In this research test-chip, we present a 2T-gain-cell 
(GC) based embedded-DRAM (eDRAM) macro in 28nm HKMG 
CMOS targeted for a range of cryo-applications and enabled by 
superior transistor characteristics at low-temperature. It features: (1) 
a hybrid P/N gain-cell for stable storage and low coupling noise, (2) 
an open bit-line architecture taking advantage of the low noise, (3) 
reliable operation from 300K to 4K and (3) 106x improvement of 
retention time from 300K to 4K. The cell architecture, operating 
voltages and the design-space for eDRAM (1T-1C and gain-cell) are 
summarized in Fig. 1. While low storage capacitor in eDRAM on logic 
leads to low retention time and high refresh power, the ultra-low 
leakage at cryo-temperature makes it a promising technology with a 
measured retention time of >1s at 4K.

Previous demonstrations of room-temperature gain-cell arrays 
feature P-only or N-only cells (Fig. 1). Analysis of the P-cell reveal 
charge injection from the write W l  (w W l ) to the storage node during 
a 0^1  transition, worsened by a subsequent charge injection during 
0^1  transition on the read W l  (RWL), elevates the voltage level 
during “0” storage. Similarly, in the N-cell 1 ^0  transitions on the 
WWL add to the 1 ^ 0  transition on the RWL affecting the “1” storage. 
The problem of the charge-injection is exacerbated at scaled nodes 
due to higher overlap capacitance and worsened at low temperature 
due to sharper signal transitions arising from steeper Ids-Vgs 
characteristics. To address this challenge, the macro features a 
hybrid P-N gain-cell where charge is injected from only one WL for 
each of the storage configurations (Fig. 2); and the 1 ^ 0  (0 ^1 ) RWL 
(WWL) transition further assists the “0” (“1”) storage. With an 
optimized sense-amplifier threshold, the hybrid cell provides high 
noise-margin, balanced P/N density, error-free operation and relaxes 
physical design constraints to improve array density. Measurement 
of key transistor properties from 300K to 4K reveal linear SS scaling 
for both NMOS and PMOS in linear and saturation. Further, the 
transistor threshold increases at low temperature; and both these 
effects result in >106 decrease in the measured transistor leakage. 
The higher carrier mobility at low temperature also improves 
saturation current by 1.9x (1.35x) for the PMOS (NMOS). Thus, 
CMOS itself provides a promising technology for low-temperature 
digital operation. The gain-cell macro is arranged in a 1Kb subarray 
with per-column, cross-coupled strong-arm based latched 
comparators in an open-BL architecture. Pre-charge circuits enable 
externally controlled BL voltages for test and debug. Peripherals, 
including timers, strobe generators and decoders are synthesizable. 
Sample timing diagram illustrating signal transitions are shown in Fig. 
3. The retention time is characterized by the capacitance of the
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storage node and the net leakage of 
the cell, and the data needs 
refreshed periodically to prevent 
incorrect reads.

The gain-cell macro is measured and 
characterized across multiple 
temperature points and the VDD- 
Frequency shmoo plots at three 
critical temperature points (T=300K,
100K and 4k ) demonstrate (1) wide 
operating range down to 0.8V, (2)
<1ns RD/WR cycles and (3) 
temperature scalability from room 
temperature to deep cryo. The 
maximum array frequency (FMAX) is 
measured across VDD and 
temperature. Improved transistor 
characteristics at low temperature is 
reflected in a 24.7% (33.3%)
improvement in Fm a x  at Vd d =1.1V 
(0.8V). A peak Fm a x  of 1.3 GHz at 
T=4K is measured.

The linear scaling of SS results in 
exponentially lower leakage and higher retention time as the 
temperature is lowered. Retention time is characterized over 12 
eDRAM subarrays (12Kb) at VDD=1.0V across temperature and the 
retention-PFAIL is illustrated in Fig. 5. The median retention time 
improves from 2.4us (300K) to 6.5s (4K) demonstrating a 2.7x106 
improvement while the 3a fail-rate improves by an equivalent 
amount. The retention time statistics are calculated across Vd d  

points, showing super-linear scaling with increasing VDD across 
temperature (Fig. 5). The array is tested under full BW condition with 
back-to-back WR/RD cycles and across temperature. A peak array 
BW of 4.2 Gbps at 761 pW/kB is measured at 300K, and it improves 
to 5.24 Gbps at 560 pW at 4K. Consequently, a net energy-efficiency 
improvement (in terms of Gbps/W) of 1.7x is obtained because of (1) 
enhanced performance of critical path circuits, (2) 106 decrease in 
refresh rate and (2) near-absence of leakage at lower temperatures. 
The array refresh power decreases to <1 nW/Kb at 4K while the RD 
and WR energies are measured at 360 fJ/kB (340 fJ/kB) and 480 
fJ/kB (425 fJ/kB) at 300K (4K) respectively.

Technology 28nm HKMG CMOS

Flavor HPC+

Metal Stack 1P-9M

Die Area 1mm2
Core Voltage 0.9V

IO Voltage 1.8V

Word Size 32bits

Cell Area 0.5704pm2

Banks 1
Memory
Size

1 kb

The characterization of standby power (including refresh power and 
leakage from peripherals) is performed across mean retention time 
by varying the operating temperature and the results are presented 
in Fig. 6. Memory arrays particularly used as scratch pad or cache 
are seldom used at full-BW. We measure the macro array power as 
a function of the activity factor. Every WR and RD operation is 
followed by M No-ops and the corresponding array power is 
measured. At higher values of M, we observe that most of the array 
power is consumed in refresh operations at 300K and a 5.8x 
improvement in array power is noted at 4K. The gain-cell macro is 
compared against existing prototypes for low temperature memory, 
although no temperature-scalable and monolithically integrable 
CMOS solution is noted. Existing technologies [2-7] (typically used 
for superconducting quantum computers) have been shown to 
operate at 4K and consume a large array power at low 
density/capacity using non-CMOS and hybrid processes. By 
comparison, we demonstrate a 4K-300K 2T-gain-cell based macro 
with high energy-efficiency, 5.24 Gbps of BW operating at 1.3GHz 
(at 4K) on a 28nm CMOS logic technology process. The die 
micrograph and the chip characteristics are shown above.
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Cryogenic VLSI Applications
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Benchmarking across Cryogenic Memory Solutions
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Fig. 6. Standby Power Characterization and benchmarking of 
current work with other cryogenic memory solutions.________
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