
Hardware-Algorithm Co-Design Enabling Efficient
Event-based Object Detection

Brian Crafton1, Andrew Paredes1, Evan Gebhardt , and Arijit Raychowdhury1

1Georgia Institute of Technology, School of ECE, Atlanta, GA

Abstract—Event-based cameras are a promising alternative
to traditional optical cameras for real time computer vision
systems. They offer low power, high temporal resolution, and high
dynamic range, making them an ideal candidate for resource-
constrained edge computing. In this work, we evaluate system
level designs using event-based cameras for computer vision on
the edge. We present a new technique to improve the object
detection performance of event-based cameras, and demonstrate
a 1.88× to 2.17× improvement in energy efficiency.

I. INTRODUCTION

In less than a decade, tremendous progress towards accel-

erating deep neural networks (DNN) has been made enabling

orders of magnitude improvement in both performance and

efficiency. DNNs have been compressed, pruned, and quan-

tized to minimize the total size of the model and cost of

a single inference [1]. Custom hardware accelerators have

been developed [1] to maximize the reuse of all data such

that expensive memory accesses and total data movement is

minimized. At the same time, technology scaling, advanced

packaging technologies, and emerging memories [2] all seek to

contribute to improved energy efficiency for machine learning

systems. These improvements have contributed to the immense

interest from both industry and academia in moving applied

machine learning and artificial intelligence closer to the edge,

where data is collected.

At one point, a 200W GPU was required to implement

a real time detection system [3]. Hence, the total power

consumption of any computer vision system was dominated by

the DNN. However commercially available ASICs or FGPAs

can implement these systems in real time with less than 1W

of power. In fact, we find that the camera for a low power real

time object detection system now consumes more power than

the hardware required to perform computer vision applications.

For this reason, we must look to low power camera designs

if we wish to continue to improve the energy efficiency of

real time computer vision applications at the edge. One such

design is the event based camera or dynamic vision sensor

(DVS). Naturally, these new cameras come with their own

challenges. Due to the lack of existing work and smaller pixel

count, DVS perform worse than traditional optical cameras on

tasks like object detection.

In this work, we design a low power object detection system

using an event-based camera and explore trade-offs to improve

the detection performance. We perform a system-level design

and evaluate power, performance, and detection accuracy of an

event-based system compared with traditional optical cameras.

To benchmark, we use the recently released Gen1 Automo-

tive Detection (GAD) dataset [4]. To improve the detection

performance of DVS, we exploit the time component in the

event stream by stacking several event sequences rather than

processing static images. Furthermore we explore the tradeoff

in frame rate versus power consumption and demonstrate that

by using a DVS, we can improve energy efficiency by 1.88×
to 2.17× over a standard camera for an object detection system

while achieving competitive detection accuracy.

II. BACKGROUND AND MOTIVATION

Event-based cameras promise a new visual sensor with

exciting properties that have been absent in traditional optical

cameras. Rather than capturing a series of dense digital images

at a fixed frame rate to form a video, event-based cameras

generate streams of visual events. Each event is triggered

asynchronously, which occur when an significant illumination

change occurs at a specific pixel.

Events are typically encoded as tuples containing the x
and y pixel coordinates, a timestamp, and a polarity change

(increase or decrease in illuminance):

ei = (xi, yi, ti, pi)

Since the camera operates asynchronously, events are sampled

as soon as they occur. Therefore there is high temporal

resolution and thus latency on the order of microseconds rather

than tens of milliseconds (30 to 60 FPS). In Figure 1, we

provide an illustration of the data generated by a event-based

camera and how it may be processed to resemble traditional

optical cameras.

Event-based cameras promise ultra low power consumption

even at relatively high sample rates and pixel densities. A

recent demonstration [5] has shown a 1 mega-pixel camera

capable of 300 million events per second consuming between

Fig. 1. Example data from event-based camera. (A) Event stream as point
cloud. (B) Time slice of point cloud as an image.

978-1-6654-1913-0/21/$31.00 ©2021 IEEE

2
0
2
1
 I

E
E

E
 3

rd
 I

n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 A

rt
if

ic
ia

l
In

te
ll

ig
en

ce
 C

ir
cu

it
s

an
d
 S

y
st

em
s

(A
IC

A
S

)
| 9

7
8
-1

-6
6
5
4
-1

9
1
3
-0

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/A

IC
A

S
5
1
8
2
8
.2

0
2
1
.9

4
5
8
4
9
7

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:38:37 UTC from IEEE Xplore. Restrictions apply.

32 mW and 84 mW of power. In comparison, a GoPro
consumes over 2.5W while recording at 60 FPS. Lower power

cameras compatible with commercially available hardware

such as Nvidia Jetson Nano [6] consume as low as 200mW

to 500mW depending on frame rate and resolution.

The power reduction enabled by event-based cameras mo-

tivates their use in systems that require very low power. With

advances in DNN accelerators, we find that commercially

available hardware like TPU Edge [7] or Nvidia Jetson Nano

[6] consume less than or equal to the power dissipated in

a low power optical camera. Furthermore, we can expect

more improvements in energy efficiency. The Edge TPU [7],

boasts 2 TOPs/W at 28nm technology and using standard

LPDDR3. With a more advanced technology node and em-

bedded DRAM, higher efficiency can be achieved enabling

new applications on the edge.

One example application is object detection. Traditional

object detection attempts to identify and locate objects in an

image. Popular datasets like COCO [8] provide bounding box

coordinates and class labels, where the objective is to predict a

region where the object resides and the class the object belongs

to. Since the popularization of deep learning, convolutional

neural networks have been applied to this task with great

success.

Despite this progress, event based object detection is still an

open challenge. Recent work [9], [10] has provided techniques

to convert event streams into frames so that DNNs and modern

computer vision techniques can be used. In [9], streams of

events (time surfaces) are turned into histograms that resemble

images. However, these time surfaces depict only the moving

parts of the image with emphasis on the edges of objects. In

[10], a DNN is used in an attempt to recreate a grayscale image

from an event stream. Hence, one DNN must first be trained

to map event streams to more detailed grayscale images, while

a second DNN is used to perform object detection from the

grayscale images.

III. EVENT BASED OBJECT DETECTION

To make use of existing work in object detection, we must

generate frames from our event stream that can be input to a

CNN. This can be done by accumulating all the events in a

certain time period and recording their pixel polarity values in

a 2D frame. This formulation can be written as:

∀e ∈ E(t, t+ τ) : F (ey, ex) += ep

where E(t, t+ τ) is the set of events in a time period and F
is the 2D frame we construct to resemble a traditional image.

However, this simple method suffers from several limitations.

First, noisy events are not filtered using spatial and temporal

correlation in the event stream. Second, the time component

from the events is lost because we discard the timestamps and

only record the coordinates and polarity of the event.

A. Filtering Noisy Events

Given that events occur in both space and time, we expect

strong correlation in the spatial and temporal coordinates of

events rather than random noise. However, noise and non-

idealities in the sensor lead to random events that should

be filtered out. Prior work [9] addresses this problem by

analyzing the spatial coordinates of recent events and then

filters out events that occur outside high correlation. Spatio-

temporal windows (x, y, t) are established for each event. Next

a convolution-like operation called the time surface [9] is

applied to each event neighborhood to suppress noise. This

technique is given by the following equation, which we adopt

in our detection system.

Φxyt(ei) =
∑

ej∈Nxyt

e−(ti−tj)/τ

B. Frame Stacking

Object detection has traditionally been applied to images in

popular datasets like COCO [8]. However, it has also been

applied to videos, where detections are made for each frame.

Naturally, several works have attempted to use recurrent neural

networks [11] to exploit the temporal component of the video.

This is because objects in the previous frame are likely to

also occur in the current frame. Furthermore, the velocity and

direction of objects can assist in detection and classification.

To illustrate this idea, we divide a 100ms period from the GAD

dataset into 12 frames and observe the change over time. We

visualize this in Figure 2, where frames 1 and 12 from an

event stream are displayed. From frame 1 to frame 12, it is

clear that the car and pedestrian have moved from their prior

locations. By providing the CNN several frames rather than a

single frame, we allow it to extract and exploit these features

for improved performance.

Building off this observation, we seek to model our event

stream in a way that preserves the temporal component of

the data. Thus for each event sequence, we generate up to 12

frames which we stack along the channel dimension. While

this technique loses fine grain temporal resolution of events in

the same frame, it allows us to process events as dense ma-

trices (rather than point clouds) using efficient modern object

detectors. We can control the fine grain temporal resolution by

increasing or decreasing the number of frames an event stream

is converted to. Naturally this results in increased memory

and computation, and in Section V we explore this trade-off.

We choose to process all the frames together as if the time

dimension was the channel dimension of a standard CNN. For

example, our first convolutional filter is sized 7×7×Nf×64,

Fig. 2. Frames 1 and 12 from the event stream with bounding boxes. Encoding
the event stream as 12 frames preserves the time dimension.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:38:37 UTC from IEEE Xplore. Restrictions apply.

where Nf is the number of frames we have divided our

event stream into. It should be noted that we could use a

convolutional LSTM, however we avoid this because of the

increased compute requirement. A convolutional LSTM would

require that we run CNN Nf times for each detection, and

given that we make 30 detections per second it is expensive

for an edge detection system.

C. Dataset and Pre-Processing

A primary challenge in improving the viability of event

based vision for object detection has been the lack of a large

scale event based dataset. However several recent datasets have

been released to serve as a benchmark and to evaluate the

feasibility of event-based object detection. The GAD Dataset

[4] is the first large dataset on event-based object detection

with labeled pedestrians and cars. The dataset consists of 39

hours of recording with over 228k cars and 27k pedestrians.

To generate the image sequences and corresponding bound-

ing boxes, we parsed through the 39 hours of video in the

GAD Dataset. Bounding boxes are provided at 1Hz, 2Hz,

or 4Hz throughout the video. For example, at 4Hz bounding

boxes are provided every 250ms. For every bounding box, we

constructed frames based on the events from the 100ms leading

up to the bounding box. This resulted in 102,600 training

image sequences and 12,700 validation image sequences. To

improve generalization and avoid overfitting, we used dropout,

batch normalization, and image augmentation. We randomly

flipped, rotated, and cropped images to create 8 permutations

per image to increase our training set.

D. Model and Loss Function

To implement our network, we use a variation of YOLOv3

[3], where the base of our network is a pre-trained ResNet18

model. After which we add two fully connected layers to

predict a 12×10 grid of 7 anchor boxes each. Anchor boxes are

chosen using the k-means algorithm [3] on the bounding boxes

of the training set. Mean squared error is used for the bounding

box error and confidence error, but categorical cross entropy

is used for class error. Because there are only two classes (car

and pedestrian), we predict a class at each anchor box. Hence,

each anchor box predicts a 7-dimensional vector and the final

output of our network is 10 × 12 × 7 × 7. After training, we

perform 8-bit quantization to reduce computational cost.

IV. SYSTEM ARCHITECTURE

To implement our detection system and evaluate the value

of an event-based camera, we design and evaluate the per-

formance of a custom SoC through simulation using 16nm

technology at 600 MHz. Our system level design can be di-

vided into several different modules shown in Figure 3. In the

following subsections we detail the hardware implementation

of our design.

A. Processing Event Streams

To generate frames from the event stream, we design a

custom hardware module called the aggregation unit. This

module interfaces the input stream from the event based

Fig. 3. System level design including SoC, event-based camera, and DRAM.

camera and stores the most recent frames in DRAM using

a circular buffer. Given that there is typically high spatial and

temporal locality between events, caching can be exploited

to minimize DRAM accesses. Therefore, an SRAM bank

is used by the aggregation unit to cache pixels and update

the most recently received events. In addition to caching

pixels, the aggregation unit performs filtering via time surfaces

as described in Section II. To implement the time surface

efficiently, we approximate the exponential with a lookup table

and shift operations. To approximate power and performance,

we implemented this module using Verilog and performed

post-synthesis power analysis.

B. SoC Architecture

In addition to pre-processing the event stream, our SoC

implementation requires several modules for performing object

detection. To implement our object detector, we use a systolic

array, a commonly used architecture for accelerating DNNs.

Our systolic array design is a scaled down version of the

Edge TPU [7] to meet our performance requirement, consisting

of only 24×24 processing elements clocked at 600MHz. To

enable real time performance, we simulate the systolic array

on samples from our training set and compute the minimum

array size required to minimize leakage power and area. In

theory, our array size could be further reduced, however we

find that for most of the matrix dimensions it is not possible

to achieve peak throughput and thus 24×24 works well.

To store the model’s weights, bounding box predictions, and

input frames we use 1GB of LPDDR3 operating at 1600 MHz.

To approximate power and performance for this DRAM we

use DRAM Power [12], which yields roughly 65.2 mW for our

model. To feed the array and store partial sums, we use 2MB of

SRAM to cache the weights and input features for each layer.

The results of convolution are cached collected in this bank

and non-linear operations are applied using custom vector

units. This custom vector unit performs SIMD operations

on the results and is used to perform bias addition, ReLU,

pooling, and quantization.

V. RESULTS

To evaluate the advantages of using event-based cameras in

low power detection systems, we compare power and perfor-

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:38:37 UTC from IEEE Xplore. Restrictions apply.

mance versus a system using an optical camera. Unfortunately,

the GAD dataset does not have corresponding optical (RGB)

video to compare the two for detection performance. Hence,

we are only able to compare power and performance of the

system and observe that the detection results are competitive

to results achieved on other datasets. Furthermore, we expect

that future datasets will contain RGB video for comparison and

that further research will close the gap between algorithms for

event-based vision algorithms and optical cameras.

To evaluate the advantages of frame stacking, we trained

our model with varying numbers of frames and provide

our results in Table I. Detection performance is measured

as mean average precision (mAP) defined by the widely

used COCO dataset. A correct detection requires predicting

a bounding box with >50% IoU and the correct class (car

or pedestrian). We find that by increasing the number of

frames, and thus the temporal resolution, we achieve higher

detection performance. At 1 frame we observe 32.0% mAP,

while 12 frames yields 39.6%, for a 7.6% improvement.

However, as we increase this past 8 to 12 frames, the detection

improvement diminishes while requiring additional compute,

memory capacity, and memory bandwidth. Given the brief

time the GAD dataset has been available, there exists only

one other work to compare our results with. We find that

our 12 frame model yields equivalent performance to previous

work [13], where 40% mAP was achieved using a convolu-

tional LSTM. Our code and trained models are available at:

https://github.com/bcrafton/event-based-vision.

To compare the efficiency of the event-based camera design

with a system based on an optical camera, we compute the

power consumption of each component in the system and

visualize the breakdown in Figure 4. Each design uses the

same systolic array and DRAM described in Section IV. All

the event-based designs use the aggregation module for pre-

processing event streams, and we assume 51 mW for the

DVS based on the sampled event streams from the dataset

and power specification of [5]. As reference, we present a

power breakdown for a system using an optical (RGB) camera

running the same workload. For camera and ISP (Image Signal

Processor) power, we use the low power configuration for the

Po
w

er
 (m

W
)

0
DVS 12 DVS 1

100

200

300

400

500

600

47.2% 49.7% 52.2% 54.0%

DVS 8 DVS 4RGB

Camera ISP / Aggregation Unit Systolic Array DRAM

Fig. 4. SoC power consumption by method

TABLE I
DETECTION RESULTS ON GEN1 AUTOMOTIVE DETECTION

Camera # Frames mAP (%) Energy
(mJ)

Latency
(ms)

Optical 1 - 4.37 33.7
DVS 1 32.0 4.15 32.0
DVS 4 37.3 4.48 34.5
DVS 8 38.6 4.91 37.9
DVS 12 39.6 5.34 41.2

popular AR1335 [14] and Nvidia Jetson ISP [6]. In Figure 4,

we use the same key for ISP and aggregation unit since they

serve the same function. It is clear from our power breakdown,

that even at modest 16nm CMOS, the camera and ISP account

for a large fraction of power dissipation and thus provide a

opportunity to greatly reduce system power with a low power

alternative.

VI. CONCLUSION

In this work we design and evaluate an object detection

system based on event-based vision sensors. To make use

of existing work in object detection and utilize the time

component in event-based data, we convert event streams into

sequences of images rather than a single image. This results in

a 7.6% increase in mAP, while incurring a small energy and

latency overhead. Furthermore, We find that using an event-

based vision sensor reduces system power by 1.88× to 2.17×
motivating its use in energy constrained edge systems.

REFERENCES

[1] V. Sze et al., “Efficient processing of deep neural networks: A tutorial
and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329,
2017.

[2] B. Crafton et al., “Merged logic and memory fabrics for accelerating
machine learning workloads,” IEEE Design & Test, 2020.

[3] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[4] P. d. T. Nitti et al., “A large scale event-based detection dataset for
automotive,” arXiv preprint arXiv:2001.08499, 2020.

[5] T. Finateu et al., “5.10 a 1280× 720 back-illuminated stacked tem-
poral contrast event-based vision sensor with 4.86 μm pixels, 1.066
geps readout, programmable event-rate controller and compressive data-
formatting pipeline,” in 2020 IEEE International Solid-State Circuits
Conference-(ISSCC), pp. 112–114, IEEE, 2020.

[6] NVIDIA, NVIDIA Jetson TX2, 2020.
[7] Google, Google Edge TPU, 2020.
[8] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in

European conference on computer vision, pp. 740–755, Springer, 2014.
[9] A. Sironi et al., “Hats: Histograms of averaged time surfaces for

robust event-based object classification,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1731–
1740, 2018.

[10] H. Rebecq et al., “Events-to-video: Bringing modern computer vision
to event cameras,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3857–3866, 2019.

[11] G. Ning et al., “Spatially supervised recurrent convolutional neural net-
works for visual object tracking,” in 2017 IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1–4, IEEE, 2017.

[12] K. Chandrasekar et al., “Improved power modeling of ddr sdrams,” in
2011 14th Euromicro Conference on Digital System Design, pp. 99–108,
IEEE, 2011.

[13] E. Perot et al., “Learning to detect objects with a 1 megapixel event
camera,” Advances in Neural Information Processing Systems, vol. 33,
2020.

[14] O. Semiconductor, AR1335 CMOS Image Sensor, 2020.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 28,2021 at 03:38:37 UTC from IEEE Xplore. Restrictions apply.

