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Abstract – On-chip power delivery networks (PDNs) for 

today’s microprocessors and systems-on-chip (SoCs), which are 

characterized by dynamic supply voltage, many embedded 

integrated VRs (IVRs), lower decoupling-capacitor, high 

current ranges, multiple power modes and fast transient loads 

are designed to minimize AC load transients and supply noise. 

The close interaction of the VRs with the power grids create  

multiple feedback paths in the overall network, compromising 

the resultant phase margin and can even lead to system 

instabilities. The introduction of digital linear regulators 

operating in the low dropout (LDO) mode, with low power 

supply rejection, further exacerbates the problem. This paper 

provides a comprehensive methodology, based on Mason's 

Gain Formula applied to hybrid control, for modeling and 

analyzing distributed linear regulators and their interaction 

with the PDN. 

I. INTRODUCTION 

Microprocessors and SoCs continue to improve both 

performance and power efficiencies with technology scaling 

extending beyond 22nm. Multiple voltage islands provide 

fine-grained spatial and temporal control of the operating 

voltage and frequency, and software controlled power-states 

enable low standby power along with fast wake-up enabling 

digital circuits to expand their dynamic ranges of operation. 

The integration of on-die Voltage Regulation on the core 

microprocessor [1] allows faster and wider dynamic voltage 

and frequency scaling (DVFS). Finer regulation is achieved 

with voltage regulators designed in a hierarchical manner, 

e.g., off-die buck converters serving as the voltage regulator 

module (VRM) followed by switched capacitor (SC) VRs 

(either on or off-die) and on-die linear VRs. As shown in 

Fig. 1, they provide fine-grained spatiotemporal supply 

adjustments. Linear regulators operating in LDO mode can 

be designed with one regulator supplying power to a single 

grid or even multiple regulators supplying power to a single 

grid. The latter is an attractive design choice as it allows one 

or more regulators to be switched-off at light load, thereby 

increasing the overall system power efficiency. 

Unfortunately, fine-grained power management comes at the 

expense of lower de-coupling capacitor per grid, higher IR 

drops, and complex interconnected systems where the VRs 

interact with each other and the PDN, forming multiple 

feedback paths. In most cases this leads to over-design in 

which power efficiency and regulation granularity is 

sacrificed with increased guard bands. Linear voltage 

regulators (LVRs) [2-4] are widely used for local supply 

regulation with fast transient response. Analog design 

solutions are popularly used for LDOs but they do not 

integrate well with the digital design/process flow requiring 

custom integration and placement. Consequently, design 

solutions have been proposed for linear regulators with 

digital control using digital process and libraries. Such 

LDOs can be discrete time [2] or continuous time [3] with 

high efficiencies providing seamless process and design 

integration. Although digital regulators provide high 

efficiency, sufficient bandwidth and ease of integration, they 

do suffer from lower power supply rejection (PSR), thereby 

making them more prone to interactions with the PDN. With 

the popularity of digital LVRs, it is prudent to investigate 

not only the overall stability of such LVRs, but also 

understand how they interact with the PDN, when multiple 

VRs drive separate or common digital loads. This problem is 

exacerbated by the fact that digital loads undergo large 

dynamic ranges, resulting in significant movement of the 

output pole frequency, thereby making it difficult to 

guarantee overall system stability across the operating range. 

Further as digital LVRs suffer from lower PSR the overall 

PDN with distributed digital LVRs are more susceptible to 

instabilities or loss of margin. This calls for the development 

of compact models for distributed digital LVRs in an 

interacting PDN, which can provide designers with design 

tools and methods to analyze and optimize the gain, 

placement, sampling frequencies of digital LVRs, as well as 

guide the choice of de-caps, off-chip components and 

necessar y supply guard -bands across chip po wer states.  

 
(a) 

 
(b) 

Fig. 1 (a) A multi-Vcc chip showing a power delivery network with local 

grids, LDOs driving each grid, the global Vcc grid and off-chip routing 

to the VRM (b) A multi-Vcc chip showing the LDOs with single local 

grid driven by multiple LDOs, the global Vcc grid and off-chip routing to 

the VRM. 
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Recently, a hybrid stability theory has been proposed in [5] 

which is used to analyze the stability of analog LDOs in a 

power grid by identifying passivity violations [6]. The 

methodology provides a fast evaluation of the system 

stability at discrete pre-determined frequencies but, for 

certain frequency ranges stability cannot be guaranteed.  

Further, the authors in [6-7] have proposed to find the finite 

gain characteristics of an analog LDO over a range in which 

a passive mapping no longer exists. However, the use of the 

hybrid passivity and finite gain theorem to control practical, 

yet sufficiently complicated plants has not yet been 

demonstrated. Further, digital LDOs with discrete time 

control pose additional challenges for modeling and 

analysis, since they represent a distributed and hybrid 

control system. Although the designs and models of analog 

LDOs are well understood [4-6], digital LDOs have been 

recently proposed for digital loads [2] and their control 

model has not been analyzed.  

In this paper we provide a hybrid control model for digital 

discrete-time LDOs and investigate how distributed LDOs 

interact with themselves and the PDN simultaneously. Using 

a graph-theoretic approach for solving Mason’s Gain 

Formula in a complex multi-LDO grid, we: 

(a)  Provide hybrid models for discrete time LDOs. 

(b) Analyze the overall system stability that handles the 

continuous time PDN and the discrete time VR, and  

(c) Provide performance and stability optimization criterion 

for multi LDO based PDN across the entire frequency range 

of interest. 

II. ALL DIGITAL LDOs 

Power management of microprocessors and SoCs contain 

both off-chip switching converters and on-chip LDOs to 

provide regulated power supplies to different voltage islands. 

For digital loads requiring large dynamic range, the impetus 

for a local LDO are digital design, fine spatio-temporal 

voltage regulation and higher system power efficiency. This 

often comes at an expense of reduced PSR, higher output 

ripple (due to limit cycle oscillations in digital control) and 

lower loop bandwidth. The discrete-time, digital LDO 

proposed in [2] consists of two main stages: an ADC input 

stage, and a current based -DAC at its output stage. As shown 

in Fig. 2a, the ADC samples the output voltage at the rising 

edge of the ADC clock. In its simplest implementation, the 

ADC can be just a 1-bit comparator that determines if the 

output voltage is greater or lower than the reference voltage. 

The ADC output will provide a digital word that measures the 

separation of the output voltage from the reference. This 

code-word is used in the control loop to turn on or turn off 

power MOSFETs through a bidirectional shifter. In steady 

state, the closed loop control will ensure an infinitesimally 

small error, and the output voltage will track the reference 

(VREF). 

Control System Based Model of Digital LDOs: To 

understand the loop and the overall system stability, we 

present a z-domain model for the digital LDO, as illustrated 

in Fig. 2b. The ADC acts as a voltage sampler and converts 

the continuous time error signal to its discrete time 

representation e*.  

       (  )      (  ) (1) 

The shifter acts as a discrete time integrator and in the 

simplest implementation =1 [2]. The output of the shifter, 

which is a thermometer coded digital word (D(nT)) 

represents the number of pull-up PMOSes that are ON at the 

time instance, nT, where T is the period of the sampling ADC 

Clock. It can be written as: 

 (  )    ((   ) )           (  ) (2) 

This results in a transfer function: 

 ( )         
 

   
 ( ) (3) 

where, KDIGITAL is the combined digital gain. The output of 

the shifter controls the number of PMOSes that are turned on, 

and thus interfaces with a continuous time plant (power 

MOSFETs and the load). This can be modeled as a zero-order 

hold (ZOH) cascaded with a single order plant whose output 

pole, a, is given by the load circuit. The s-domain model for 

ZOH followed by the plant is: 
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Thus, the open loop forward path transfer function of the 

LDO can be written in the z-domain as: 

 ( )            
      ( - 

-
 

         )
 

( - )( - 
-

 
         )
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where FSAMPLING is the sampling frequency of the digital 

control. Using unity feedback, the overall closed loop transfer 

function of the digital LDO is: 

 ( ) 
 ( )

   ( )
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Fig. 2 (a) Block Diagram of a digital Linear Regulator (b) A control 

diagram illustrating the hybrid control. 
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Eqns. (5) and (6) provide insights into the stability of the 

digital LDO. Noting that for a digital system to be stable, the 

poles in the z-domain need to lie within the unit circle, we can 

perform a root-locus analysis of the system, which shows the 

closed loop poles as the open loop DC-gain (KDC) of the 

system is varied. Fig. 3a shows the root locus of the digital 

LVR for two different output poles, 600MHz and 60MHz. 

The root-locus provides the maximum DC-gain that can be 

achieved without causing instability in the loop. It can be 

observed that a maximum DC gain of 10.71dB (30.46dB) can 

be achieved for an output pole position of 600MHz (60MHz). 

Ensuring stability in a digital control for digital load circuits 

is made difficult by the fact that the underlying circuit can go 

through wide dynamic ranges of operation, across VCC, power 

states as well as fine-grained power gating. From data 

published in [8] on a wide dynamic range digital signal 

processor, we obtain the movement of the output pole (e
-aT

) in 

the z-plane, and it has been plotted in Fig. 3b. For a constant 

gain and sampling frequency, one can note how the output 

pole position traces a locus on the z-plane leading to a stable 

system for higher load currents and a heavily under-damped 

(or unstable) system for light load conditions. Apart from the 

position of the continuous time load pole (a), and the loop 

gain KDC, it is critical to choose an appropriate sampling 

frequency (FSAMPLING) such that the discrete domain pole (e
-aT

) 

maps to a desired location or region in the z-plane. High 

values of T (i.e., lower FSAMPLING), leads to under-sampling of 

the pole position and can lead to loop instability. This leads to 

a multi-dimensional optimization across FSAMPLING, KDC and a 

to ensure both stability and desired time-domain response of 

the discrete system. It is also important to note, that a second 

order continuous time system is strictly always stable; 

however, a discrete implementation of a second order system 

is prone to instabilities. To perform an analysis on a hybrid 

control consisting of the digital LDOs and the continuous 

time PDN, we invoke ‘Tustin’ approximation on Eqn. (5) to 

obtain the continuous time equivalent of the open loop 

transfer function: 

The analysis of digital LDOs described above can potentially 

be done for each of the distributed regulators, but their 

interaction with the PDN leads to additional feedback loops 

and introduction of multiple poles and zeros from the PDN. 

Further, lower values of PSR (a typical characteristic of 

digital LDOs) lead to tighter coupling of LDOs with the 

PDN, resulting in (a) feedback loops through the PDN with 

higher loop gain and (b) stronger coupling between 

distributed LDOs on the same or different local grids.  

III. CONTINUOUS TIME MODELS FOR THE PDN 

In this section, we propose a generic framework to analyze 

the stability of a PDN composed of multiple digital LDOs. 

Two scenarios are considered in our framework: 

(1) A single on-die grid with multiple digital LDOs driving it. 

(2) Multiple local grids supplied by individual LDOs that 

share the same incoming line voltage.  

The signal-flow paths of these LDOs can be traced via the 

global grid through bumps and package connections to the 

main PCB voltage regulator module (VRM). To understand 

the overall system stability across various closed loops 

formed in this complex system, we develop s-domain models 

for the PDN and include the distributed closed loop digital 

LDOs to understand stability margins for the whole system. 

This leads to a hybrid Multiple-Input-Multiple-Output 

(MIMO) system whose transfer functions from each input to 

output node needs to be evaluated and pole positions and 

pole-zero movements need to be ascertained. In the next 

subsections, we briefly describe the models for the various 

components of the PDN and how they have been incorporated 

in the system level analysis. 

 

Distributed Model for the ON-die Grid: The on-die local grid 

is a complex network of distributed R and C as shown in Fig. 

4. In scaled nodes, the decreasing size and pitch of metal 

wires increase wire resistivity as well as the metal-to-metal 

capacitance. Further, the insertion of multiple power-domains 

necessitates routing multiple supplies on a given area, thereby 

making the grid sparse and more resistive. Therefore, the 

distributed nature of the on-die RC grid needs to be captured 

for accurate modeling of interaction of multiple on-die digital 

regulators. Since different LDOs may drive different points of 

 ( )   
(  

  

 
) (  

  

 
)

(  
  

 
(
   

   
))(  

  

 
(
   

 (
 

         
)

   
 (

 
         

)
))

 

    
           

     

(   )
 

where, 

 

(7) 

 
(a) 

LDO1 LDO2

CpathCpath

R x,y

 
(b) 

Fig 4: (a) Distributed nature of local grid with two sampling points 

(x1,y1) and (x2,y2) of connected LDOs (b) Simplified transfer 

function approximation model. 
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Fig. 3: (a) Root loci of the discrete time digital LDO on the Z-plane for 

different values of the sampling frequency and the output pole. (b) Loci 

of the output pole position in the Z-plane for different DC Gains. 
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the same grid, the local grid adds additional phase between 

two regulator loops. Therefore, the effective R and C between 

these two distributed grid points, (     )  and (     ) , 

needs to be modeled. 

The effective resistance between any two points on a 

distributed grid can be approximated by [13]:  
    

 
 
√ 

  
(  (      )                     

            
       (   )

 
                              (8)          

    is the effective resistance between two points on a grid,  

         ,          ,      and      . Here r 

is the unit resistance,    and    give the vertical and 

horizontal resistances in the grid mesh and k is used to model 

the non-uniformity along the vertical and horizontal sections 

of the grid as described in [13]. The value of r has been 

obtained from the ITRS roadmap for the 22nm technology 

node. 

The capacitance on the grid is contributed by the load and the 

decoupling capacitance (de-cap). For a 100um x 100um grid, 

a capacitance of roughly 100pF has been extracted. Using 

Elmore approximation, the total capacitance in the region of 

the two points under observation can be distributed across the 

effective resistance as shown in Fig. 4b. This model not only 

captures the distributed nature of the grid but also provides an 

s-domain transfer between two points on the grid that are 

driven by two LDOs under consideration. 

 

ABCD Models of Off-Die Components: We model the PCB, 

package and bumps as a double-sided RLC ladder (for both 

VCC and GND), as shown in Fig. 5. More complex off-die 

package models [10] can be easily incorporated into our 

design methodology. Upper metal layers are thicker and 

provide less resistance compared to intermediate and lower 

layers. Therefore, the global grid is modeled as a lumped RC 

ladder where the CGM includes any additional de-cap that may 

be inserted at the global metal. The off-chip components are 

expressed in terms of their ABCD parameters that allow 

different off-chip sections to be easily cascaded to each other. 

A formal methodology to obtain ABCD parameters involves 

obtaining the Z-parameter model using the modified nodal 

analysis and then using the Z-parameters to obtain the ABCD 

parameters. 

Two-port Z-model of off-die components can be obtained by 

evaluating port V/I relationship. This is calculated by 

performing modified nodal analysis (MNA) for a two port 

network. In MNA, R, L and C of the network are captured in 

matrices form. Each node gives a first order differential 

equation if the states are both the node voltages and the 

currents through inductors. The state-space formulation in s-

domain turns out to be  

                  ( ) ( )    ( ) ( )   ( ) ( )    

                                   ( )   ( ) ( )            

(9) 

(10) 

Here, the input vector ‘z’ comprises of test current sources 

attached to the two ports. A unit magnitude is assumed for 

these sources for evaluating V/I relationship. State vector ‘x’ 

captures the voltages of all the nodes in the network and the 

currents through the inductors. The admittance matrix H 

comprises of both capacitor and inductor values and G is the 

conductance matrix for the network. O and P are the input 

and output mapping matrices. The model reduces to a two-

port Z parameter matrix in the s-domain by state space to 

transfer function transformation for the network as: 

 ( )  [
      
      

] where:  ( )    (      )  
 

(11) 

O and P are set to capture only the port voltages; therefore, 

the computation complexity of evaluating the transfer 

function is low. The transmission parameter model (ABCD 

model) is then obtained from the Z parameters using Eqn. 

(12). ABCD model is suitable for cascaded stages as it 

simplifies the chain with simple multiplication of individual 

ABCD matrices. 

A = 1 + Z1/Z3, B = Z1 + Z2 + (Z1*Z2)/Z3, 

C = 1/Z3, D = 1 + Z2/Z3 

Overall model:  ∏ [
  
  

]
 

 
   i=PCB,PCK,BUMP 

(12) 

Based on the ABCD model, the impedance plot of the entire 

off-chip network has been shown in Fig. 6b. It illustrates two 

resonant peaks, one at the bump frequency and another at the 

PCB and package frequency. 

 

Coupling between LDO output and global power grid: Any 

noise generated on the local grid can be modeled as a small 

 
 

 
Fig 5: The PDN showing the on-chip and off-chip components and the 

integrated LDOs. The component values are shown in the table [9]. 
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Fig 6: (a) The ABCD Model of each RLC section. (b) Bode plot of the off-
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signal variation picked up by the sampling node of the LDO 

(VOUT). Such variations on the grid will couple with global 

power grid (called VLINE). The resultant small signal transfer 

function is:  

 

   (     )   
         (     )

         (   
       )    

 (13) 

 

Where AOL is the open-loop gain of the LDO, Zglobal is the 

impedance seen from VLINE to the on-PCB VRM and ro is 

the output resistance of the power MOSFETs in the LDO. 

IV. SIGNAL FLOW GRAPH FOR THE SYSTEM 

Based on the basic system illustrated in Fig. 7, we construct 

the Signal Flow Graph (SFG) of the entire PDN along with 

the digital LDOs, local grids, global GND grid and the 

multiple feedback paths through the PCB, PCK and BUMP 

(Fig. 7a,b). G represents the open loop transfer function of 

LDO and can be obtained from Eqn. (5). The PSR of the 

LDO (typically about -10dB for digital discrete time LDOs) 

captures the coupling from the VLINE to the local grid. The 

load transfer function is modeled by a parallel R, C between 

the local grids and the global GND grid, which represents the 

load resistance and capacitance. Two feedback paths can be 

traced from the global GND grid to the VLINE. First path 

originates from the capacitive coupling between global GND 

and global metal grid (ZGM) and the second path traces 

through the off-die components (ZGND+ZPCK) as modeled in 

Section III. In this paper we will investigate two PDN 

topologies. The first one represents multiple LDOs driving a 

common local grid. A particular instance of this, where two 

LDOs are driving a single grid has been shown in Fig. 7a. It 

illustrates all the feedback connections in the PDN network, 

showing the individual LDO feedback loops and their 

interaction through the common line voltage (VLINE), a 

common local on-die voltage grid (V01 and V02) as well as 

through the external GND, package and PCB impedance 

(ZGND+ZPCK). The second scenario represents individual 

power grids separately driven by separate LDOs. The 

corresponding SFG is illustrated in Fig. 7b, where the 

different power domains interact through the common line 

(VLINE) and the external off-die components. The SFG 

comprises of several key path and loop topologies that have 

been shown in Fig. 7c, and are used in implementation of 

Mason’s Gain Formula in the distributed PDN, which will be 

described in Section V. 

 V. APPLICATION & AUTOMATION OF MASON’S RULE 

We have, so far, presented a multi-LDO multi-grid PDN and 

multi-LDO single grid PDN in terms of signal flow 

representations. Appropriate optimizations are performed on 

the SFG to reduce the complexity of the underlying graph. 

Let us first consider the scenario of multiple-LDOs driving a 

common local voltage grid. LDOs are typically designed  

such that they remain stable across their entire region of 

operation but a stable feedback system may become unstable 

if it is inserted in a distributed network where multiple 

feedback loops are formed and they all add extra phase to the 

closed loops at unity gain. If multiple LDOs are placed in the 

PDN then evaluating the transfer function between the input 

and output nodes of each LDO will be required to evaluate if 

the overall system remains stable and if it still meets the 

design specifications. Therefore to gain insights into the 

overall system stability and the interaction of multiple LDOs 

among themselves and the PDN, we need to obtain the 

transfer function between two nodes on the SFG, Yi and Xj. 

The transfer function between any two point Yi and Xj on a 

SFG can be determined using Mason’s Gain Formula [11]:  

where k = number of forward paths between nodes Yi and Xj.  

Summation of k suggests that there can be multiple forward 

paths between any two nodes; 

      = forward traversal gain of path k;  

   =   ∑(                            )   

∑  (                                                        )  

             ∑  (                                                          )   
three at a time ) +… 

               ∑     (                   )

 

 

   ( )  
  ( )

  ( )
 
∑              

   
 (14) 

 
(a) 

 

  
(b)         (c) 

Fig 7: (a) Complete SFG of the system illustrating two LDOs driving a 

shared grid  (b) Complete SFG of the system illustrating multiple 

LDOs driving separate grids (c) Different paths and loops for the 

application of Mason’s Rule.  
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or equivalently,        is formed by eliminating from 

    the loop gains that touch the k
th

 forward path. A path 

with identical start and end node constitutes a loop. 

Conventions used for Mason’s gain simplifications are 

shown in (Fig. 7c). Formal methods and algorithms on 

traversal of a SFG using Mason’s Gain Formula have been 

discussed in [12]. Since our SGF is tailored to analyze the 

stability of the whole system tractably, we do not need to 

analyze the transfer function for every node pair. Since the 

LDO loops contain active elements, we need to analyze the 

transfer functions of the LDOs taking into account all the 

possible feedback paths including those contributed by the 

PDN. All feedback loops that originate and end on Vox 

(output node of LDOx) need to be analyzed. Therefore, in 

this context, the nodes under consideration have no non-

touching loops. Table I summarizes the implementation flow 

of Mason’s Rule in our proposed model. For the PDN with 

embedded and distributed LDOs, the SFG is first 

constructed. Next for every node of interest (i.e., the output 

nodes of the LDOs) all the input nodes are identified. For 

each input-output node pair, all the loops, non-touching 

loops and feed-forward paths are identified in terms of their 

transfer functions. Once all the different components for 

Eqn. (14) are identified, the transfer-function between the 

input-output node pair is determined using Eqn. (14). The 

process is repeated until all the relevant input-output pairs 

have been exhausted. At the end of the process, all the 

transfer functions that include active loop elements are 

determined and can be used to locate the system poles/zeros 

as well as gain and phase margins of all the LDO loops 

taking into account the PDN and other parasitic loops. 

VI. METHODOLOGY FOR STABILITY ANALYSIS OF 

A PDN WITH EMBEDDED LDOS 

Even if discrete-time digital LDOs are designed to be stable 

for the local VCC grid, it is not guaranteed that the overall 

system with the interacting LDOs and the PDN would 

remain so. Applying Mason’s Gain Formula to the SFG 

enables us to ascertain the transfer function between any two 

pairs of nodes in the overall system. A transfer function 

between two pairs of nodes can either be:   

(a) Completely passive – and hence inherently stable 

(b) Include Active gain elements – and can lead to 

instabilities. 

By simplifying the SFG and considering only the node pairs 

belonging to category (b), we obtain the pole locations for all 

the relevant node pairs. This essentially translates to 

determining the poles of the LDO considering their 

interaction with the system poles contributed by the PDN.  

The exact location of the closed loop poles depend on the 

LDO poles (Eqn. 6), the LVR loop gain, FSAMPLING, PSR and 

the impedance offered by the off-die components. Each LDO 

is designed to a given local specification. If a single LDO is 

placed in the PDN and the gain of PDN feedback loops are 

made negligible, by increased PSR for instance, then we 

obtain only the LDO closed loop poles. But in systems with 

low PSR and higher interaction between the LDO and the 

PDN, the phase contribution through the PDN loops cannot 

be ignored and need to be accurately modeled to evaluate the 

total phase margin of the system. Let us analyze the two 

scenarios: multiple-LDOs driving a single grid and multiple 

LDOs driving separate grids. 

 

Multiple LDOs driving the same grid: Let us consider the 

scenario of multiple LVRs driving a single local grid, where 

Table I. Pseudo code for application of Mason’s Gain Formula for the 

entire PND network with embedded LDOs, corresponding to the SFG 

shown in Fig. 7.Some elemental paths and loops have been shown in Fig. 

7c. 

            (                             ) 

 
Construct directed SFG for N LDO system, 
Define Structure – node id, type (feed forward, loop, both), flags 
Construct adjacency linked list of directed SFG 
While (! every node is traversed) Do 
   Search for multi-input nodes (potential loop nodes) 
   For each multi-input node 
      Track loop by visiting adjacent nodes until starting node is  
      reached 
      Store loop nodes in a sub-linked list to the main list 
   End For 
End While 
Pass Input (Xj=Vrefx) and output (Yi=V0x) nodes  
For each input-output node pair 
Start from input node  
Repeat until current node == output node  
   If (adjacent node is already searched) 
      Switch to other adjacent node with type ‘feed forward’ or 
‘both’   
     Build feed forward gain for path k;          

End Repeat 
For (each forward path k); Traverse nodes 
    If ( at least one common node found) 
       Store id in loops touching forward path k 
     else 
       Store id in loops not touching forward path k 
End for 
Evaluate    ; no non-touching loop gains in presented PDN SFG 

Evaluate Eqn. (13) to obtain the TF between Xj & Yi         
 

Fig 8: Two LDOs attached on the same grid. Path in red forms a n 

additional feedback loop to the output of LDO1 and has been shown 

here. 
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two stable LDOs (say LDO1 and LDO2) are introduced in the 

PDN. The different feedback paths and interactions of the 

two LDOs have been illustrated in Fig. 8. We observe a pair 

of complex dominant poles in the system, as illustrated in 

Fig. 9a. These poles are introduced by the interaction between 

the LDO and the PDN. Any signal at the local grid couples to 

VLINE through LDO1 via the transfer function shown in Eqn. 

12. This excites the dominant resonant frequencies of the off-

grid RLC network. If in such topology the open-loop gain of 

the LDO2 is low (and hence the resultant PSR of LDO2 is also 

low) then the signal coupling back to LDO1 is non-negligible. 

This decreases the phase margin of LDO1 as it interacts with 

the PDN and distributed LDOs.  

  To evaluate the phase contribution and understand its 

origin qualitatively, let us analyze Fig. 9. The PDN 

contributes a pole and a zero, which cancel each other when 

the LDOs are non-interacting. As signal from LDO1 couples 

to the line and feeds back through LDO2, the PDN pole and 

zero split and the pole moves towards the RHP of the s-plane. 

As a result, the resultant phase contribution form the PDN 

feedback (i.e., phase contribution from the zero – phase 

contribution from the pole) is no longer zero but increases 

rapidly as the PSR of the LDOs decrease. It is intuitive to 

understand that as the number of LDOs on a shared grid 

increases, the overall phase margin decreases. This is shown 

in Fig. 9, where the case of three LDOs driving a common 

voltage grid creates further splitting of the zero and the pole 

giving rise to higher instability. As the pole moves towards 

the imaginary axis, the overall system can rapidly become 

unstable.  

This can also be seen in the phase contribution of the PDN 

poles/zeros at unity gain-bandwidth. In other words, the 

additional feedback loop as shown in Fig. 8, can add higher 

phase shift at unity gain, creating loss of phase margin. Let us 

consider two LDOs on a shared local grid with unity gain 

bandwidth (c) of 500MHz. As the two LDOs interact 

through the common grid and the PDN, in a manner shown in 

Fig. 8, additional phase is contributed by the PDN, which 

results in compromised phase margin at unity gain. As shown 

in Fig. 10, an additional 5 to 6 degrees of phase contribution 

can be expected when the LDOs have a PSR of ~10dB 

(which is common for digital LDOs). When three LDOs are 

placed in the common grid, the phase contribution from two 

additional loops, that are created, can be as high as 15 

degrees. Any additional phase, thus added to the LDO loops 

at unity gain, results in a direct reduction of the phase margin 

and increase in potential instability of the system. 

This interaction between LDOs is expected to be minimal if 

they operate in high gain regimes. This can be observed from 

Fig. 11a, where the pole movement is negligible and 

therefore, the phase margins of the LDO have not degraded. 

Higher loop gain also increases the PSR of the LDOs, and a 

higher value of PSR reduces the gain of the feedback loop 

through the PDN. Since lower PSR is a typical characteristic 

of digital LDOs, we note that the system pole moves 

considerably towards the imaginary axis for low PSR. It can 

be seen in Fig. 11b, that as the PSR varies from 30dB to 10dB 

in a 3LDO system, the system pole moves towards the 

imaginary axis and can lead to system instability. 

The role of the impedance of the off-die components is also 

critical and our methodology can be used to evaluate that. 

Increasing the impedance offered by off-die RLC grid from 

its nominal value (Znom) increases the interaction of the LDO 

output with the PDN. As the overall VLINE impedance 

increases, the transfer function given in (12) increases the 

noise coupling from the grid to VLINE taking the system 

towards potential instability as shown in Fig. 12. 

  
              (a)               (b) 

Fig 10: (a) Additional phase added to the LDO#1 in a 2 LDO system loop 

at ωc, 10*ωc, ωc/10 for varing PSR where ωc=500MHz is the unity gain 

bandwidth. (b) Additional phase added to the LDO#1 in a 3 LDO system 

loop at ωc, 10*ωc, ωc/10 for varing PSR where ωc=500MHz is the unity gain 

bandwidth. 
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(a)     (b) 

Fig 11: (a) Increased gain of the LDO#1 reduces the phase margin 

degradation contributed by the system feedback loop (b) Movement of phase 

degradation poles (system poles) as a function of increasing PSR in a 3 LDO, 

single grid PDN show an improvement of phase margin of the LDO under 

consideration. 
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(a)     (b) 

Fig 9: (a) Isolated closed loop (CL) LDO poles and system poles/zeros in a 

2 LDO system on a single local grid with the PDN (b) CL poles of LDO 

under consideration when 3 LDOs are placed on a single local grid 

showing the decrease in phase margin of the LDO by pole zero split of the 

poles and zeros contributed by the system interaction. 
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Individual LDOs driving separate local grids: In this section 

we investigate the stability for multiple LDOs driving 

separate local grids. They share the same incoming voltage 

line (VLINE). The SFG is shown in Fig. 7b. 

Since the grids are separate in this case, the only system 

feedback loop that can be traced goes through the global 

GND grid and the package. Attenuation provided by this 

feedback path is high and does not contribute significantly to 

the degradation of phase margin at unity gain. Fig. 13 

illustrates the bode plot of the feedback loop and shows very 

high attenuation through the parasitic path. This is significant 

considering that the primary feedback of the LDO loops offer 

20-30dB of gain. Thus the parasitic path in the distributed 

LDO PDN do not have enough gain to be consequential and 

does not degrade the phase margins of any of the embedded 

LDOs. Although separate LDOs drive separate grids and 

share a common line, they do not seem to interact with each 

other strongly enough to cause instability. Nevertheless, we 

present it here for the sake of completeness and show that the 

proposed methodology can be used to evaluate such complex 

PDNs and embedded LDOs. 

VII. CONCLUSIONS 

This paper presents a comprehensive methodology for 

analyzing the overall stability of distributed digital LDOs in a 

power delivery network. Hybrid control models of all the 

necessary components have been developed and an 

automated method of analyzing system poles using Mason’s 

Gain Formula has been proposed. We have demonstrated that 

when multiple LDOs drive a common voltage grid, 

significant loss of phase margin can occur. Analysis on 

various design corners reveals the design trade-offs and 

provides a systematic methodology to comprehend stability in 

a muti-grid PDN. This methodology can be employed in pre-

silicon validation to understand the limits of system stability 

under wide dynamic range and to ensure that even under the 

worst case load conditions the overall system meets the target 

phase margin and stability. It can also be used to adjust LDO 

design parameters such that the overall system stability is 

ensured.  
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Fig 12: System poles as a function of the impedance (Z) of the off-chip 

components. Arrows indicate the direction of pole movement as Z 

increases. 
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Fig 13: Bode plot of parasitic feedback paths in a multi-grid PDN 

where each grid is driven by a separate LDO and they interact 

only through the GND grid and the external package components. 
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