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Abstract—Learning to adapt one’s gait with environmental
changes plays an essential role in locomotion of legged robots
which remains challenging for constrained computing resources
and energy budget, as in the case of edge-robots. Recent ad-
vances in bio-inspired vision with dynamic vision sensors (DVS)
and associated neuromorphic processing can provide promising
solutions for end-to-end sensing, cognition and control tasks.
However, such bio-mimetic closed-loop robotic systems based
on event-based visual sensing and actuation in the form of
spiking neural networks (SNN) have not been well explored.
In this work, we program the weights of a bio-mimetic multi-
gait central pattern generator (CPG) and couple it with DVS-
based visual data processing to show a spike-only closed-loop
robotic system for a prey-tracking scenario. We first propose a
supervised learning rule based on stochastic weight updates to
produce a multi-gait producing Spiking-CPG (SCPG) for hexa-
pod robot locomotion. We then actuate the SCPG to seamlessly
transition between the gaits for a nearest prey tracking task by
incorporating SNN based visual processing for input event-data
generated by the DVS. This for the first time, demonstrates the
natural coupling of event data flow from event-camera through
SNN and neuromorphic locomotion. Thus, we exploit bio-mimetic
dynamics and energy advantages of spike-based processing for
autonomous edge-robotics.

I. KEYWORDS:
Edge Intelligence, Spiking Neural Networks, Central Pattern

Generation, Hexapods, Dynamic Vision Sensor (DVS) Cameras

II. INTRODUCTION

The central pattern generators (CPG) – neuronal circuits in
the spinal cords form the basis of locomotion in many animals
and cause the actuation of the muscles to generate rhythmic
actions like breathing and walking [1]–[3]. These biological
circuits cause contraction and relaxation of the muscles in a
temporally correlated manner that actuates limbs in a specific
order causing multiple gaits, which are observed in animal
locomotion. Tasks like obstacle avoidance or prey approaching
require locomotion in a particular direction at the desired
speed. Thus, a seamless gait transition emerges naturally in
such environmental situations. The information about the envi-
ronment is gathered from sensory inputs like visual, olfactory,
auditory or gyro systems and processed by the neural circuitry
of different cortices in real-time. The CPG generating gait
patterns can be modulated by these related cortex inputs and
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sensory feedback [3]. These complex biological closed-loop
control systems that are composed of spiking neurons process
the stream of event-based information in an energy-efficient
way. Therefore, these systems serve as inspirations behind
the models for the intelligent control of bio-mimetic edge-
robots as shown in Fig. 1(a). This schematic shows sensing
to actuation for a hexapod insect. The sensory information
acquired is processed by the spiking neural circuitry in the
brain to excite the motor neurons for locomotion. The rhythmic
activity of motor neurons then causes rhythmic motion of
muscles resulting in a gait.

A prototypical bio-mimetic electronic implementation of
the spike-based locomotion platform is shown in Fig. 1(b).
The legs of the hexapod robot are controlled by a network
of spiking neurons. A typical network consists of six fully
connected neurons where the spiking of a neuron causes the
corresponding leg to move Fig. 1(c). Therefore, producing a
gait corresponds to tuning the synaptic weights in the network
to cause a specific sequence of spiking in the neurons. Exe-
cution of specific tasks requires transitioning between gaits to
alter the speed and direction of motion. Thus, the objective is
to produce multiple gaits on a single CPG each of which can be
triggered independently with seamless transitions, depending
upon the environment. Gonzalez et. al. used a set of simple
linear equations to update the synaptic weights, thus demon-
strating 3 different gaits [4] for forward motion. Multi-gait
programming has been carried out in [5]. However, both these
approaches use distinct synaptic matrices for different gaits
requiring multiple CPGs for gait transitioning. Approaches like
emulating the biological circuitry [6] or training gait patterns
using remote supervision [7] have also been applied to SCPG
learning. However, these methods are limited to learning a
single gait and cannot effectively transition between gaits. [8]
programs multiple gaits on a single CPG using a complex
evolutionary learning method. Thus, a simple and generic
weight adaptation algorithm for accommodating multiple gaits
on a single SCPG is lacking and has been explored in this
paper.

Sensory inputs describing the surrounding environment are
necessary for the adaptation of gait for autonomous task
completion. Neuromorphic Auditory Sensors (NAS) [9] and
Dynamic Vision Sensors (DVS) [10] provide spike-based
asynchronous inputs that are well-suited for spike-based loco-
motion in SCPG. NAS, when mounted on a robot for actuating
locomotion, requires the generation of specific external sound
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Fig. 1. (a) Schematic of biological sensing to actuation in a hexapod insect. Information acquired by eyes in the form of neuronal spikes is processed by the
SNN to trigger the motor neurons. The motor neurons trigger the muscle contraction causing motion. When the motor neurons driving legs 1,2,3 fire with
fixed temporal differences as shown this gives a rhythmic motion of legs causing a gait (b) Hardware of the bio-inspired system proposed. The Dynamic
Vision Sensor (DVS) mounted on the hexapod robot (c) Schematic of the fully connected spiking central pattern generator (SCPG). All neurons are connected
to each other. The leg corresponding to a neuron moves when that neuron fires. (d) Multi-gait SCPG. Three gait selection neurons corresponding to the three
gaits. Each Gi elicits a different spiking pattern corresponding to the motion of the legs required in that gait. The weights are updated using the difference
between required and obtained spiking of CPG neurons which determines whether to excite or suppress the spiking of that neuron (e) Experimental setup for
testing the end-to-end system. The hexapod has to autonomously identify the closest prey and approach it by changing the gaits. The motion of hexapod in
the environment shown causes DVS to generate a flow of events in the frame as shown (f). The events are fed into a spiking neural network (g) detecting the
edges of the objects and identifying the closest object. Visual data processing network triggers one of the three gait selection neurons to trigger the SCPG
(h) Gait selection neurons excite the (i) SCPG which causes hexapod to move with that gait to generate visual data in form of events for the next step.

frequencies as inputs. This requires an external agent to
steer the movement making it non-autonomous. On the other
hand, DVS generates an asynchronous input event when the
intensity of the pixel changes in the field [10]. This happens
naturally during locomotion causing sensory input generation
as a result of motion allowing potential autonomy in the
actions. Considering the efficiency of energy consumption and
data amount, we notice that the dynamic vision sensor (DVS)
camera can be a promising candidate for our task of sensory
input-driven autonomous locomotion.

In a DVS camera, all the pixels operate independently
and therefore energy is spent in generating events only in
the part of the image where the intensity has changed. This
decoupling from a frame-based approach causes power levels
as low as 10 mW. From the perspective of visual information
processing, the DVS camera tremendously reduces the amount
of data in a video stream and thus provides more energy
efficiency. Another two merits of DVS are low latency and
high dynamic range. DVS cameras have microsecond level

latencies, which enable the visual processing for high-speed
motion. Another advantage presented by these sensors is the
high dynamic range of the order of 130 dB v.s. 60 dB of
standard ones which is 7 orders of magnitude larger [11].
All these advantages coupled with matching event data for
SNNs make DVS perfectly suited for our application. The
locomotion platform with DVS mounted on it is shown in
Fig. 1(b).

DVS camera-based end-to-end robotic tasks like obstacle
avoidance [12]–[14] and object tracking [15]–[17] have been
explored on different platforms and scenarios. A model-based
event clustering method is implemented for a robotic goalie
[17]. Deep learning has also been applied to the same problem
[13]. Spiking implementation of such a visual processing
system is explored by Blum et. al. showing target acquisition
and obstacle avoidance in a wheeled robot [18]. A spiking
neural network for looming object detection [19] has also
been demonstrated recently. DVS-based vision coupled with
spike-based path-planning with Pulse Frequency Modulation
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(PFM) based actuation has also been shown [20]. However,
all these approaches have shortcomings in either of the two
critical aspects. First, the approaches involving non-spiking
algorithms fail to take advantage of sparse asynchronous input
data specifically suited for spiking neural networks and bio-
plausibility. Secondly, the works involving spiking implemen-
tations of visual systems do not extend them to locomotion
platforms [19], [21]. This means that the locomotion is not
spike-based as in the SCPG and the flow of events terminates
at the visual processing stage. Thus, a full exploration of the
end-to-end robotic system allowing a flow of events throughout
the network as shown in Fig. 1(e-i) has not been attempted.

In this work, we propose a supervision based weight adap-
tation methodology for programming multiple gaits in a single
SCPG (Fig. 1(d)). We then demonstrate a closed-loop, fully
spiking, a bio-plausible robotic system involving only SNN,
processing of event data from DVS to actuation of a gait as
shown in Fig. 1(e-i). Our simple edge detecting SNN separates
multiple objects from each other (Fig. 1(e)), allowing online
decision making in gait selection. The key contributions of
this work are:

• A light-weight algorithm for programming spiking pat-
terns in recurrently connected SCPG for multi-gait loco-
motion.

• Demonstration of the first closed-loop end-to-end robotic
system with spiking neural network-driven processing of
data from visual sensory data acquisition to locomotion.

The work opens up avenues for smart bio-mimetic robotics
for advanced applications.

III. LOCOMOTION VIA MULTI-GAIT SPIKING-CPG
A. The Network Structure of the Central Pattern Generator

The SCPG network is shown in Fig. 2(a). It is composed
of six fully connected neurons that generate gait pattern with
spikes. Each neuron corresponds to one leg and spikes to
activate the servo motor of the corresponding leg that finally
actuates the leg. A sequence of spikes generated by the SCPG
network can drive the locomotion of the hexapod robot (Fig.
2(b)). Such a sequence determines the gait pattern that controls
the speed and direction of locomotion. The CPG neurons are
driven by input neurons called gait selection neurons. We use
three gait selection neurons to enable three different gaits.
When a gait pattern is desired, one gait selection neuron
stimulates a subset of CPG neurons to fire in a particular
sequence and enable a designed locomotion gait. All the
CPG neurons are connected to gait selection neurons with
excitatory synapses. To emulate the dynamics of each neuron,
we use a discretized leaky integrate and fire (LIF) model with
membrane potential (Vj) expressed as [4].

Vj [t+ 1] =
Vj [t]

α
+
∑
i

WijSi[t] (1)

if Vj [t] > Vth then Sj [t+ 1] = 1, Vj [t+ 1] = 0 (2)

The leaking current is modelled with a decay factor α.
When the membrane potential exceeds the spiking threshold

Vth, a spike is fired and the membrane potential is instantly
reset to the resting potential, which is zero (Equation
(2)). A pre-synaptic spike, Si results in the increment of
the membrane potential of the post-synaptic neurons. The
synaptic weights (Wij) scale the inputs from the presynaptic
neurons (ith neuron) to the post-synaptic neuron (jth neuron)
as shown in equation (1). Here we do not introduce the
synaptic dynamics and delay, but incorporate the effect
in the dynamical equation of the neuron. Therefore, the
membrane voltage increase caused by the pre-synaptic spike
occurs in the immediate next cycle. These simple discretized
dynamics are voltage-based and easy to emulate on a digital
hardware platform. Such a method bypasses the computation
of membrane current and reduces the power consumption
as well as ensures low latency of computation. The CPG is
implemented on a Raspberry Pi 3 B+ single-board computer,
mounted on an Adeept Raspclaws Hexapod (Fig. 1(b)).

B. Weight Adaptation Mechanism for the SCPG

The CPG neurons need to fire spikes in a specific order
to make the robot walk with a particular gait. Such a firing
sequence is determined by the gait selection neurons (Gi)
which trigger the network. Fig. 2(b) shows different spiking
patterns that correspond to different gaits. E. g. when G1

spikes to initiate forward motion using tripod gait, N2,4,6 fire
in the first time step and N1,3,5 spike in the next time step.
Thus, the training problem is to program the weight matrices
so that when a gait selection neuron fires, the desired sets of
CPG neurons fire in the next few time steps to generate the
gait pattern.

We use a supervised weight update algorithm to program
the synaptic weights in the network. The pseudo-code for the
algorithm is described in algorithm 1 and illustrated in Fig. 3.
To start, all the weights are initialized randomly. Fig. 3 shows
a time instance when G1 spikes which triggers the tripod gait
that enables forward motion. The required spiking of the CPG
neurons is shown in Fig. 3(a) with time steps shown on the
left. In the beginning, the obtained and the required spiking
patterns are not identical. For example, the obtained spiking
at a particular time instance as the algorithm runs is shown
in Fig. 3(b). The algorithm tries to make the required and
obtained spiking patterns identical. If the obtained and required
spike patterns of the SCPG are the same then the neuron is
firing correctly, thus the weights need no further modification.
However, for neurons spiking redundantly, the firing behaviour
needs to be suppressed. This is marked by red circles in Fig.
3(b). Similarly, for a neuron not spiking when required, the
spiking should be triggered as marked in the green circle. The
total number of erroneous firings at every time step is called
error as plotted in Fig. 3(d).

The weight updates required for learning the correct spike
patterns are shown in Fig. 3(c). To suppress redundant spiking,
the incoming weights to that neuron are decreased. However,
not all incoming weights are altered and only the synapses
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Fig. 2. (a) Schematic for SCPG and gait selection neurons. Firing of each gait selection neuron is expected to cause a specific sequence of firing in the SCPG
neurons. Spiking of CPG for (b) tripod (forward), left turn and right turn gaits occurs for spiking of G1,G2,G3 respectively. Alternate neurons fire in tripod
gait. For turning left, neurons of the right side of the hexapod fire and vice-versa
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Fig. 3. Programming the tripod gait on SCPG. Spiking of gait selection neuron G1 should invoke a spike pattern causing tripod gait for forward motion.
G1 fires at T = 1 and the required SCPG neuron firing pattern for the next two time instances as shown in part (a). (b) The obtained spiking sequence for
neurons in these two time instances. To align with the required spiking pattern, the neurons spiking unnecessarily (red) should be suppressed and not spiking
as required are to be excited (c) This is done using the potentiating (depressing) synaptic weights from the neuron last spiked as shown. The change in
synaptic weight is stochastic at every step. The total number of neurons showing deviation from required spiking is shown as the error. (d-f) Total error for
each gait as the algorithm progresses. The error starts high, oscillates and goes down to zero showing the convergence of the algorithm

connected to the neurons that have spiked previously are
updated as shown. This procedure of stochastic updates is
repeated for every gait. Fig. 3(d-f) shows the total error
observed in the spiking process at each time step for each gait.
For all gaits, with the random initialization, the error oscillates
and finally converges to zero indicating correct programming

of the gait pattern in the SCPG. Thus, our method allows
programming of multiple complex recurrent connections on
a single compute fabric with local error minimization using
supervision. Stochasticity ensures that the weight updates do
not get stuck in local minima.
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Algorithm 1 Supervised Weight Adaptation for the Spiking
Central Pattern Generator

1: Initialize weights randomly Win,WCPG

2: Initialize CPG neuron membrane potentials, VCPG[0] = 0

3: for gait = 1 to 3 do
4: Initialize Spikes Gi = 1, SCPG = 0
5: for time = 1 to Tgait do
6: for neuron = 1 to 6 do
7: I = WinSin +WCPGSCPG

8: Vneuron[t] = Vneuron[t− 1]/α+ I
9: SCPG−prev[t] = SCPG

10: if (Vneuron[t] > VThresh) then
SCPG = 1, Vneuron[t] = 0

11: end if
12: Error = SCPG - SCPG−requied

13: ∆Win = Error × random()
14: ∆WCPG = Error × SCPG−prev × random()
15: end for
16: end for
17: end for

C. Convergence Analysis for Multi-Gait SCPG

Only 
G1 G1 + G2 

G1 + G2 + G3

Maximum 3 gaits can be 
programmed using the algorithm

Fig. 4. Percentage of instances converging to correct gait versus the number
of gaits being programmed to the SCPG. Up to two gaits can be programmed
with high accuracy which drops when three gaits are being programmed
simultaneously

In this section, we analyze the capacity of the algorithm to
store multiple gaits on a single CPG. Due to the stochasticity
of the weight adaptation algorithm, not all simulation trials
achieve convergence. Also, as the number of gaits increases,
the percentage of correct convergences is expected to drop.
Thus, we choose a different number of gaits to be programmed
and run 100 iterations for each. Then we identify the number
of instances of all gaits being correctly learnt to obtain the
percentage of cases where the system convergences correctly.
Fig. 4 shows the percentage of successes for a varying number
of total gaits that need to be learnt. We observe that a

maximum of two gaits can be learnt with a high convergence
rate of (> 80%). The convergence rate steeply drops when
3 gaits are to be simultaneously learnt to (∼ 20%). More
than three unique gaits cannot be simultaneously learnt in the
current algorithm.

IV. DVS DATA ACQUISITION AND VISUAL INFORMATION
PROCESSING

In this section, we describe our method of using SNN
to process the event stream of visual data generated from
a DVS camera. We mount a CelexV DVS camera on the
hexapod robot for event-flow generation [10] (Fig. 1(b)). This
DVS camera has a dense frame resolution of 800 × 1280
pixels, streaming event data through MIPI interface. Cypress
CX3 board within the camera converts MIPI to USB 3.0 for
acquisition in the laptop over USB interface. The events are
processed using packages provided in C++. The event stream
is fed into the SNN network which processes it to identify
the presence of the prey. The timestamps of the events are
used to encode voltage leakage in emulating LIF behaviour.
As the hexapod robot walks, visual events are generated with
changing intensities of the pixels in the frame. Fig. 5(a) shows
the block diagram of the spiking neural network that detects
the presence of objects for locomotion control. The event
accumulated frame at every stage is shown in Fig. 5(b-e).

The DVS generated events are acquired in the DVS layer.
This noisy input is shown in Fig. 5(b). The input is filtered
using nearest neighbour filtering keeping only spatially and
temporally close events. This results in only the sharp edges
of the detected objects surviving as shown in Fig. 5(c). The
frame is now divided into multiple windows of size 100 ×
100 (Fig. 5(c)) to identify the window in which the object is
present. The next two layers (layer 2,3) identify the vertical
and horizontal edges of the object, thus localizing the object
within the frame. Layer - 3 connects to the gait selection layer
driving locomotion. Fig. 5(d) shows the detected edges at the
end of layer -3. These edges indicate the presence of the
object in the upper half of the frame. Thus, the objects are
still far from the robot and the robot need to move forward.
This is done by triggering G1 to spike which generates a
tripod motion in the CPG (Fig. 5(f)). Details of the synaptic
connections in each layer are explained in the next section
using the miniaturized model of visual processing.

A. Noise Removal via Filtering

The first layer in visual processing filters the noise in
DVS data. When the DVS moves, edges of the objects create
events in continuous regions as observable in Fig. 5(b).
The events in these continuous regions and close in time
correspond to the edges while other sparse events are to be
filtered out. The nearest neighbour filter implementing this is
shown in Fig. 6(a). Each neuron spiking in the DVS layer is
connected to nine neurons in the filtering layer with synaptic
weights shown by the nearest neighbour filter. Thus, with
every incoming event from DVS, nine neurons in the filtering
layer have an increase in the membrane potential. The neuron
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Fig. 5. (a) Block diagram of the SNN for visual processing. DVS layer acquires the data from the SNN. This noisy data is filtered using nearest neighbour
filtering in layer - 1. Filtered data is passed to two layers of neurons detecting horizontal and vertical edge as shown. Detection takes place in two stages in
layer - 2 and 3. Depending upon where in the frame the object is detected, different gait selection neuron is triggered to actuate locomotion using SCPG (b)
Data representation at different stages of processing. Noisy event information is acquired from the DVS as shown (c) Filtered events. Filtering reduces the
noise pixels significantly and only continuous object edges remain. (d) Edges are detected in the upper region of the frame (e) This triggers the forward gait
selection neuron G1 resulting in (f) tripod gait of SCPG

exactly opposite to the DVS layer neuron has the highest
rise in the potential followed by the nearest neighbours and
next-nearest neighbours. If the same or neighbouring neuron
in the DVS layer fires immediately after this, it boosts the
potential of the neuron in the filtering layer further causing it
to fire. If no neuron in the neighbourhood fires, the potential
in the filtering layer leaks out according to the leaky behaviour
of the LIF neuron. Thus, only temporally and spatially close
spiking activity results in a spike in the filtering layer. The
other spikes get filtered out by the leaky behaviour of spiking
neurons. The synaptic weights are chosen such that a single
spike does not cause spikes in the filtering layer. This results
in only continuous edges surviving as seen in Fig. 5(b). Thus,
we exploit the leakiness of LIF neurons to cancel out high
noise in DVS events. This layer feeds the edge detection layer.

B. Edge Detection for Object Identification

For edge detection, the neurons in the noise filtered layer
are segregated in windows as shown in Fig. 6(b). The mini
model shows 8 × 8 frame with 4 windows of dimensions 4 ×
4. Two such windows are shown bound by the red rectangle
in Fig. 6(b).

The edge detection is a two-step process where layer -
2 indicates the presence of edge and layer - 3 confirms it.

For vertical edge detection, neurons in a vertical column of
filtering layer are connected to a neuron in layer - 2 for each
window. Column - 1 to column - 4 each correspond to one
column in window [1,1] as shown in Fig. 6(c). Significant
spiking activity in a column indicates the presence of an
edge in it, making the columni neuron in layer - 2 to spike.
Column neurons in layer - 2 feed the next layer. All neurons
corresponding to one window are connected to one neuron
in layer -3. Significant spiking activity of layer - 2 neurons
triggers the layer - 3 neurons confirming the presence of
a vertical edge in that window. Similarly, an entire parallel
branch for horizontal edge detection is present in layer - 2
and layer - 3. The synapses connecting the filtering layer to
layer - 2 have the uniform synaptic weights making layer -
2 a leaky summation unit. The connection between layer - 2
and layer - 3 are also the same with the only change being
the magnitude of the weight.

The synaptic weights are chosen such that only when a
critical number of neurons are spiking, the neuron in the next
layer is fired. This is done using 1 volt as the spiking threshold.
Thus, the weights connecting the DVS layer to the filtering
layer have weights 0.5,0.18,0.06 as shown in Fig. 6(a). This
makes sure that only when the neurons in a continuous spatial
region (8 × 8) are spiking closely, the filtering neuron spikes.
Similarly, the weights of connection between layer - 2 and
layer - 3 are chosen to be 0.06, so that at least 16 neurons
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Fig. 6. Miniaturized schematic of SNN processing the visual data. The noisy output of the DVS in the form of a stream of events is generated when the
robot walks (a) 8 × 8 pixels receive this data from DVS (b) Nearest neighbour filtering filters out pixels that are not accompanied by their neighbours.
As observable, only continuous edges survive. The frame is divided into multiple windows (c) Window-wise identification of vertical and horizontal edges.
Parallel networks run for horizontal and vertical edges. All neurons in a row (column) within a window are connected to one neuron in layer - 2. The firing
of layer - 2 neurons indicates the presence of an edge. (d) All neurons corresponding to a window are connected to a single edge detection neuron per
window. The spiking of these neurons confirms the presence of a vertical (horizontal) edge. These neurons drive the gait selection neurons for locomotion
(e) Colour-coded connections of layer - 3 neurons with gait selection neurons. If objects are in the upper half, the robot needs to walks forward. Therefore,
the neurons of layer - 3 in the upper region connect to G1. Similarly, for approaching the object detected in the lower region, these neurons are connected
to the gait selection neurons G2, G3 (e) SCPG for locomotion (f) Actual layer sizes of the SNN for DVS. The synaptic weight at each layer is shown by w
with matching colour

in the column need to spike for it to be detected as a vertical
edge. Layer - 2 and Layer - 3 are connected by the synapses
of weight 0.3 requiring at least 4 neurons to spike for the
presence of an edge to be confirmed in layer - 3.

Fig. 6 miniaturizes the setup. The real sizes of the layers
in the system are shown in Fig. 6(f). 800 × 1280 neurons
filtering layer feeds layer - 2. Layer - 1 consists of 8 × 12
windows each having 100 columns (rows) corresponding to
the window size of 100 × 100. The rightmost 80 neurons
in every row are ignored while division into windows.
100 neurons in each column within a window feed the
corresponding layer - 2 neurons. Thus, 100 columns in every
window make the size of layer - 2 to be 8 × 12 × 100. Each
neuron in layer - 3 corresponds to a single window. Spiking
of that neuron suggests the presence of a horizontal (vertical)
edge in that window.

C. Gait Selection

The presence of an object in the upper windows indicates
that the object is far from the robot. In this case, the robot
does not have to align with the object immediately and thus
chooses to move forward. On the other hand, when a neuron
corresponding to a window belonging to the lower region of
the frame spikes in layer - 3, this indicates the presence of
an object in close vicinity. This requires the triggering of a
turning gait for aligning the robot with the object. This is
implemented by connecting the neurons corresponding to the
lower region to the left (G2) and right (G3) turn triggering
neurons as shown by colour-coding. The neurons in the upper
window connect to the forward gait selection neuron (G1).

The weights connecting to G2,3 are kept higher (w = 0.7)
compared to that of G1 (w = 0.4) to give preference to closer

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 18,2021 at 02:05:26 UTC from IEEE Xplore.  Restrictions apply. 



2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2021.3097675, IEEE
Transactions on Cognitive and Developmental Systems

objects. This makes the robot to get steered towards the nearest
prey when there are multiple objects in the field of view.
The rate-coded winner-take-all mechanism is applied in gait
selection neurons. This means that the gait selection neuron
spiking with the highest frequency is preferred and that gait
is activated. Locomotion in the environment generates a new
set of events for every step and the flow of events through the
SNN continues.

V. RESULTS

The system is deployed in an indoor lab environment and
tested in a simulated predatory scenario shown in Fig. 1(e).
The hexapod robot patrols in the environment with multiple
objects and approaches the nearest object as the target. Visual
processing of the DVS data is carried out on laptop and
is communicated to the SCPG on the robot through wifi.
During the process, the robot adapts its gait based on different
circumstances by transitioning between three gaits.

A. Predator-Prey Scenario with a Single Prey

We test the system in our first task, namely approaching a
single target object (prey) placed in the front of the robot. The
robot needs to approach and align itself directly in front of it.
A demonstration video is available online (video - 1). In this
demo, DVS data is processed and actuation signals are sent
to the hexapod in an end-to-end closed-loop brain-inspired
system. This acts as a proof-of-concept design that shows
the feasibility of engineering bio-mimetic spiking systems.
Screenshots of the video along with the visual information
processed in the background is shown in Fig. 7. Part (a) of
the figure shows the block diagram of the end-to-end system.
In the first step, the object is far from the robot. The event
stream generated by the DVS in one step of the hexapod robot
is shown in Fig. 7(b). After the events pass through the filtering
stage, the object boundaries become clearly discrete as in part
(c). The activity in the upper region of the frame indicates
the object is far which is inferred by the edge detection
layers. Part (d) shows the 96 neurons corresponding to layer
- 3 driving the gait triggering neurons coloured in part (a).
Neurons 1 to 60 drive the forward gait selection neuron, 61
to 78 drive right and 79 to 96 drive the left turning gait
as shown. The activity is mainly observed forward motion
triggering neurons as the object is far away. This activation of
tripod gait results in the forward motion of hexapod as shown
in part (e). For illustration, we have shown edge detection
only for the vertical edges (Fig. 7). The system also includes
horizontal edge detection and the spiking patterns show similar
behaviour.

In the second step, the robot has approached the object and
moved close to it. The same set of figures for this configuration
indicate the DVS outputs and the corresponding filtered bound-
aries. As an edge lies in the lower right corner, this triggers
the right turn (G2) so that the robot can align with the object.
This is observed in part (h) where spiking is observed in the
neurons corresponding to the right turn. As the weights to (G2)

are higher, as explained in the previous section, a right turn is
triggered. The hexapod now turns right to align itself with the
object. This demonstration validates the working principle of
the proposed end-to-end SNN architecture.

B. Predator-Prey Scenario with Multiple Preys

We repeat the experiment in a more complex scenario
where multiple objects (preys) are placed in front of the
robot. The task becomes more difficult as the robot is now
required to consider only the closest object. video - 2 shows
the demonstration. Screenshots of the video are shown in Fig
8. The objects are named as shown. The initial position of
objects and the robot is shown in Fig. 8(a).

The robot starts moving forward and takes three forward
steps until object - 1 is close to it (Fig. 8(b)). Now object 1
being in its proximity, it senses the activity in the lower right
corner of the frame. This makes it change the gait to turn
towards the right for two consecutive steps. The robot can
be seen to have aligned itself with object 1 (Fig. 8(c)). Now
object 1 is removed to test if the robot can decide between
other objects in front of it. Object 2 and object 4 are in its field
of view at a distance where object 2 is closer. The robot takes
2 steps forward to be in a position in Fig. 8(d). With object 2
lying on its right, it generates activity in the lower right region
of the DVS frame. Thus, the robot now turns right to follow the
object - 2. This step aligns it with object - 2 as required (Fig.
8(e)). The trajectory of the robot is shown in Fig. 8(e). This
experiment confirms the capability of the platform to identify
the nearest object and trigger appropriate gait depending upon
that. The demonstration confirms the potential in fully-spiking
systems for connecting spiking interfaces like DVS and CPG.

C. Energy Estimation for End-to-end System

We provide an approximate estimation of the energy con-
sumed by different parts of the system. Spiking neural net-
works both in CPG and visual processing can be implemented
on an SNN ASIC platform. We calculate the energy con-
sumption of the proposed system assuming it is implemented
on Loihi, the neuromorphic platform by Intel. Each spiking
consumes 1.7 nJ of energy [22]. We record the number
of events generated in taking 1 step forward. The results
show that the filtering layer generated ∼1.5 million events,
consuming 2.55 mJ energy. Gait generation in CPG makes 7
neurons spike consuming only 11.9 nJ. This results in ∼ 2.55
mJ of energy consumption. The overall sub-mJ energy con-
sumption highlights the potential of such platforms for battery-
powered edge applications, where event-based processing and
spiking neural network-based decision making and actuation
can reduce the overall system power.

VI. DISCUSSION AND BENCHMARKING

We compare our work with previous efforts in building
autonomous robots using spiking CPGs in Table - 1. [4]–
[8] are focused on designing training algorithms for SCPG
of hexapod robots. The trained locomotion is inflexible and
leaving the agents difficult to be steered in dynamically
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changing targets and environments. The gait transition is also
not possible online because no sensory inputs are integrated
into the control. [23] and [24] use non-bio-inspired sensory
input closing the loop allowing autonomous learning. [21],
[19], [20] take additional step towards bio-mimicking by
using event-based sensors. However, the locomotion platforms
are not event-based. [25] closes the fully SNN control loop
at the cost of external agent-based steering, restricting the
autonomy. Our work adds full bio-plausibility by marrying
bio-inspired sensor and locomotion platforms allowing end-
to-end spike-based autonomous processing. This, to the best
of our knowledge, is the first such closed-loop and end-
to-end system that integrates event-sensing with SNN based
processing and event-actuation with central pattern generation
for gait transitioning locomotion system. Our system is not
trained in an end-to-end network but the inference runs from
data acquisition to gait actuation using vision processing SNN
and SCPG.

The first contribution of our work lies in programming
multiple gaits on a single SCPG with simple stochastic local
weight updates for error minimization. We begin with a
biologically known tripod gait for forward motion, similar to
previous approaches and turning gaits for maximum rotation.
We then program the required activation sequences on a single
SCPG fabric. The weight updates happen, in absence of any
complex error-backpropagation [7] mechanism or optimization
[8] making the updates quick and hardware-friendly. It is then
transferred to the locomotion platform for actuation where the
gait selection neurons are driven by fixed synapses from the
visual processing network to steer the robot. This seamless
integration of the learning modality with evolution-inspired
hard-coded connections between the visual response and the
CPG network, provides an efficient neuro-inspired system
design. Hard coding the connection between the visual re-
sponse and the actuation is in accordance with the observation
that many instinctive tasks observed in insects are shaped by
evolution and do not need an explicit learning response on
individual organisms. [28], [29].

Programming ‘n’ gaits with ‘n’ gait selection neurons results
in the task of programming 15 + 6× n synaptic weights. Our
network is constrained by the small size to allow on-board
computation with limited resources. Our experimental results
with the stochastic update algorithm allow simultaneously pro-
gramming three gaits (‘n’ = 3) similar to [8]. The theoretical
analysis of the maximum number of possible gaits that can
be programmed on a single network of a given dimension is
beyond the scope of this paper.

The second main contribution lies in developing not only
the cognition or control platforms but the integration of them
to enable close-loop spike-based autonomy. This enables the
event stream generated by the DVS to enter the SNN pipeline
and get processed using a binary event-based representation,
without changing the paradigm of binary computation. The
system demonstrates a particular task, namely, tracking a prey.
Although the current setup is limited to cuboidal prey, the
setup can be extended to more complex shapes and cluttered

scenarios. For example, tuned Gabor filter [30] can detect
inclined surfaces. Rich literature on training methods like
SLAYER [31], E-prop [32], Tempotron [30], SPA [33] can
extend the applicability to more advanced image processing.
Our work focuses on building the end-to-end platform making
it suitable for low-power neuro-inspired hardware for edge-
robotics [34]–[37]. Evidences of such hardware designs from
the industry are Loihi from Intel [22] and Truenorth from IBM
[38].

The hardware implementation of the platform opens other
interesting opportunities in low-power computing. Asyn-
chronous sensory data can be processed asynchronously to
spend power only when objects in the field of view move. All-
to-all connections in visual information processing network
suit the typical crossbar platforms proposed for non-volatile
memory based implementation of synapses [39]. Various com-
plex bio-inspired robotics tasks like Odometry and Simulta-
neous Localization and Mapping (SLAM) have been demon-
strated for model-based algorithms [40]. Energy-constrained
robots with ultra-low power ASICs for reinforcement learning
[36] and swarm acceleration [37] have also come up recently .
Extension of these algorithms to spiking neural networks with
correspondingly optimized hardware and motion platform will
bring exciting opportunities in this domain.

VII. CONCLUSION

We develop an end-to-end neuromorphic system that takes
event-based visual data from a dynamic visual sensor and
generates adaptive gait patterns for the locomotion of a hexa-
pod robot in a predator-prey tracking scenario. The proposed
method is fully bio-inspired carrying out the sensing to ac-
tuation in event-based processing. For learning various gaits,
we propose a supervision-based weight adaptation algorithm
to learn multiple gaits in a single CPG. Furthermore, the
programmed SCPG is coupled with DVS to form a closed-
loop control system that processes binary events to mimic
predatory behaviour when the hexapod is approaching prey.
Benefiting from the event-driven sensing and data processing,
the proposed method shows high energy efficiency if this is
implemented on well-known neuromorphic hardware (Intel’s
Loihi platform). We demonstrate the feasibility of end-to-end
neuromorphic systems for resource-constrained edge robotics.
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[16] D. Drazen, P. Lichtsteiner, P. Häfliger, T. Delbrück, and A. Jensen,
“Toward real-time particle tracking using an event-based dynamic vision
sensor,” Experiments in Fluids, vol. 51, no. 5, p. 1465, 2011.

[17] T. Delbruck and M. Lang, “Robotic goalie with 3 ms reaction time at
4% cpu load using event-based dynamic vision sensor,” Frontiers in
neuroscience, vol. 7, p. 223, 2013.

[18] M. B. Milde, H. Blum, A. Dietmüller, D. Sumislawska, J. Conradt,
G. Indiveri, and Y. Sandamirskaya, “Obstacle avoidance and target
acquisition for robot navigation using a mixed signal analog/digital
neuromorphic processing system,” Frontiers in neurorobotics, vol. 11,
p. 28, 2017.

[19] L. Salt, G. Indiveri, and Y. Sandamirskaya, “Obstacle avoidance with
lgmd neuron: towards a neuromorphic uav implementation,” in 2017
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–
4, IEEE, 2017.

[20] F. Perez-Peña, A. Morgado-Estevez, A. Linares-Barranco, A. Jimenez-
Fernandez, F. Gomez-Rodriguez, G. Jimenez-Moreno, and J. Lopez-
Coronado, “Neuro-inspired spike-based motion: from dynamic vision
sensor to robot motor open-loop control through spike-vite,” Sensors,
vol. 13, no. 11, pp. 15805–15832, 2013.

[21] H. Blum, A. Dietmüller, M. Milde, J. Conradt, G. Indiveri, and Y. San-
damirskaya, “A neuromorphic controller for a robotic vehicle equipped
with a dynamic vision sensor,” Robotics Science and Systems, RSS 2017,
2017.

[22] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[23] E. Arena, P. Arena, R. Strauss, and L. Patané, “Motor-skill learning
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