
Statistical Optimization of Compute In-Memory
Performance Under Device Variation

Brian Crafton1, Samuel Spetalnick1, Jong-Hyeok Yoon2, and Arijit Raychowdhury1

1Georgia Institute of Technology
2Daegu Gyeongbuk Institute of Science and Technology

arijit.raychowdhury@ece.gatech.edu

Abstract—Compute in-memory (CIM) is a promising technique
that minimizes data transport, maximizes memory throughput,
and performs computation on the bitline of memory sub-arrays.
Utilizing embedded non-volatile memories (eNVM) such as re-
sistive random access memory (RRAM), various forms of neural
networks can be implemented. Unfortunately, CIM faces new
challenges traditional CMOS architectures have avoided. In this
work, we explore the impact of device variation (calibrated with
measured data on foundry RRAM arrays) and propose a new
algorithm based on device variation to increase both performance
and accuracy for CIM designs. We demonstrate up to 36%
power improvement and 44% performance improvement, while
satisfying any error constraint.

I. INTRODUCTION

Over the last decade, tremendous progress towards acceler-
ating machine learning workloads has been made at all levels
of the computing hierarchy, enabling orders of magnitude im-
provement in energy efficiency. At the software level, models
are compressed, pruned, and quantized to minimize the total
size of the model and cost of a single inference [1]. At the
hardware level, prior work focuses on maximizing the reuse
of all data such that expensive memory accesses and total
data movement is minimized [1]. Both of these strategies
focus on minimizing the cost of data movement and memory
accesses, while maximizing the utility of available on-chip
memory capacity. While these techniques yield strong results,
they still face the fundamental technological limitations of
CMOS. In particular, the large size of the SRAM bitcell
(≈ 100 − 150F 2) results in limited on-die capacity, which
necessitates movement of data from an external DRAM to the
on-die SRAM at more energy per bit.

Fortunately a new class of high density eNVM is positioned
to minimize data movement and increase memory throughput
by performing CIM. CIM performs vector matrix multipli-
cation (VMM) (~y = W~x) by mapping the computation to
the analog domain. Weights (W) are programmed to the non-
volatile resistive state of eNVM, input vectors (~x) are applied
as voltages, and the sum of currents along the bitline serves
as the result of VMM, ~y. Under this implementation, the only
data transport required for VMM is the input vector (~x) from
memory and result (~y) to the memory. Despite these benefits,
a key obstacle in designing a reliable CIM accelerator with
eNVM is the inherent cell-to-cell variation in the device’s
resistive state. These variations are not specific to eNVM,
and occur due to process and temperature or write-to-write

(cycle-to-cycle) variations. Conventional digital memory such
as SRAM overcomes this challenge using differential sensing
and a large ratio between the ‘0’ and ‘1’ states. However,
when reading multiple memory cells at the same time with
an analog-to-digital converter (ADC), high variation between
resistive states results in sum-of-products errors accumulated
on the bitline. Given that these operations are used to imple-
ment VMM, and thus neural networks, we find that device
level variation results in erroneous computation. While neural
networks can tolerate these errors to some extent, inference
performance degrades as a function of the these errors.

Recent work has attempted to mitigate the impact of these
errors in several different ways. Training a network to be
robust to device variation induced error can be done both
off-chip and on-chip. Off-chip training attempts to train a
neural network to tolerate device variation induced errors [2],
however this technique still results in accuracy degradation.
On-chip training [3] can be done to minimize error for a
specific chip, however this is expensive since each chip must
be trained based on its own specific devices. Lastly, write-
verify methods have been proposed to reduce the cell-to-cell
variation [4]. However these methods require high write energy
and latency, and greatly reduce the endurance of the device.

In this work, we present a new technique to minimize
variation-induced errors by controlling the number of word-
lines read in parallel. Ideally, all wordlines for an array (128,
256) can be read to enable massive thoughput. However, the
more wordlines we read, the higher the error due to the
accumulation of device variation. Recent work [5], [6] explore
this tradeoff to maximize performance for a given inference
performance target. Building upon this idea, we construct
an accurate error model for VMM based on RRAM device

Yp

SumAdd Shift AddpSum

8 4 20 24

(TC)
YYp

SumAdd Shift AddpSum

8 4 20 24

(TC)
YYp

SumAdd Shift AddpSum

8 4 20 24

(TC)
YYp

SumAdd Shift AddpSum

8 4 20 24

(TC)
Y

8b

2 3 4 5 6 7 81

1

WL Driver

128

MUX 8:1Sel

VRef

8

121 122 123 124 125 126 127 128

MUX 8:1Sel

8 3b ADC

8

VRef

8

3b ADC

Fig. 1. 128×128 RRAM array architecture. 8 adjacent cells form an 8-bit
weight and share a 3-bit ADC through a 8-to-1 multiplexer. Shift and add
logic accumulate partial sums and apply corresponding magnitude.

978-1-6654-3922-0/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
C

M
 In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Lo
w

 P
ow

er
 E

le
ct

ro
ni

cs
 a

nd
 D

es
ig

n
(I

SL
PE

D
) |

 9
78

-1
-6

65
4-

39
22

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

LP
ED

52
81

1.
20

21
.9

50
24

84

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 19,2021 at 00:57:46 UTC from IEEE Xplore. Restrictions apply.

variation. We calibrate our variation models with experimental
data collected from a 40nm foundry RRAM test-chip array,
whose circuit details appear in [7]. Next, we formulate an
optimization problem to achieve optimal performance for a
given error constraint. We benchmark on ImageNet using
ResNet18 and demonstrate a 36% power and 44% performance
improvement, while satisfying any error constraint.

II. BACKGROUND AND MOTIVATION

A. Compute In-Memory (CIM)

To implement VMM (~y = W~x), CIM systems encode the
input vector ~x as wordline voltages and the weight matrix W
as conductance states in a memory cell. The current through
each cell is proportional to the product of the programmed
conductance (Wij) and applied voltage (~xi) (Ohm’s Law). By
Kirchhoff’s current law (KCL), the resulting currents that are
summed along the columns of the crossbar are proportional to
the product of the matrix and vector, (~y).

Typically, each memory cell only stores 1 or 2 bits and
thus weights (Wij) requiring higher precision are encoded as
several cells on the same wordline. Similarly, input voltages
are limited to 1 bit and vector values (~xi) are input to the
wordline over several cycles. Therefore, to implement 8-bit
VMM with 1-bit cells and 1-bit voltages, we must use 8
adjacent cells for each weight (Fig. 1) and 8 voltage pulses for
each input. This encoding scheme results in 64 (8 cells × 8
cycles) partial sums that we must shift and sum to generate the
full 8-bit VMM. In other words, 8-bit VMM is implemented
using 1-bit inputs and 1-bit cells as the shifted sum of 64
(8× 8) binary VMM.

If the number of wordlines in the array exceeds the precision
of the ADC (i.e. 16 wordlines for a 4-bit ADC), the ADC
overflows and results in erroneous VMM. To resolve this, the
number of wordlines read should be limited to the maximum
precision of the ADC. As a result, performance is reduced
since the wordlines must be read over several cycles, where the
partial sums from these cycles are summed together. However,
it is important to note that only wordlines equal to ‘1’ are read,
and thus we can process more wordlines when ‘0’s exist in the
input data. This technique is called zero-skipping [8], and can
be used to achieve significant speedup since the activations of
neural networks are typically very sparse.

To implement signed VMM using CIM, there are two
common implementations. For signed weights and unsigned
inputs, two’s compliment can be used. For each binary VMM
involving the most significant bit (MSB) of the weight, we
simply scale by −27 instead of 27. For signed weights and
signed inputs, an offset representation is used for both inputs
and weights, where a bias is subtracted after the VMM. For
signed 8-bit VMM, 27 is added to both inputs and weights, and
after VMM is performed the bias is computed and subtracted
from the result. The downside of this approach is that the sum
of the input vector must be computed and then subtracted from
each output value.

SET RESET

0

25

50

75

100

C
D

F
 (

%
)

2K 3K 4K 25K 50K 75K 100K

Resistance (Ω) Resistance (Ω)

0K5K 6K 7K

VSLKey σ(Ω) μ(Ω)
2.6 11.1K

2.8 27.9K

3.0 33.6K

14.5K

2.8K

16.7K

VBLKey σ(Ω) μ(Ω)
1.3 421 3.6K

1.5 177 2.9K

1.7 90 2.6K

Fig. 2. CDF of measured resistance values for various write voltages for (A)
set operation and (B) reset operation [7].

B. Quantifying the Impact of Device Variations

CIM seeks to read and accumulate several states on a bitline
at once, and therefore a key obstacle to enabling CIM is
cell-to-cell variation. These variations are typically normally
distributed [4], [7] and measured as the standard deviation (σ)
from the mean (µ) resistance value. For binary (2-level) cells,
a digital ‘0’ is encoded as the high resistance state (HRS) and a
digital ‘1’ is encoded as the low resistance state (LRS). Ideally,
current from reading a cell in the HRS could be ignored if the
difference between between the HRS and LRS (on/off ratio)
were several orders of magnitude. Unfortunately, this is not the
case as recent RRAM [7] and PCM [4] demonstrate an on/off
ratio between 10× to 100×. Thus to accurately quantify device
variation we model the standard deviation as a percentage of
the mean for LRS and HRS (σL/µL, σH/µH) and the on/off
ratio between HRS and LRS (µH /µL).

Recent demonstrations of RRAM [7] and PCM [4] show
low LRS variation (3.5%) and high HRS (50%) variation with
an on/off ratio of 10× to 100× depending on how the cells are
written [4], [7]. Using higher write voltages and an iterative
write verify protocol, lower variation and higher on/off ratio
can be achieved. To quantify the variation, we measure the
resistance values of RRAM cells from a recent RRAM test-
chip prototype on a 40nm foundry RRAM array [7]. The array
contains 256×256 RRAM cells (64Kb). The details of the read
and write circuit of the array are beyond the scope of this paper
and interested readers are pointed to [7] for further discussions.
Instead, in this paper, we use the measured data to calibrate our
RRAM models. To understand the impact of the write voltages,
we used three different configurations for both the set (LRS)
and reset (HRS) operations. The CDF of these measurements
as well as the corresponding µ and σ are shown in Figure
2. While higher write voltages and iterative write verify
can reduce device variation and increase on/off ratio, there
are several drawbacks. First, these techniques increase write
energy and latency. Second, they greatly reduce the endurance
of RRAM and most other eNVM [7]. Therefore, in this work
we consider a range of device models with different variation
and on/off ratio parameters. These models are consistent with
other measured data from existing literature [4] and provide
high confidence on LRS and HRS distributions.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 19,2021 at 00:57:46 UTC from IEEE Xplore. Restrictions apply.

III. ERROR MODEL AND OPTIMIZATION

The simplest way to control accumulated variation-induced
error is to reduce the number of word lines enabled at one time.
Of course, this will unfortunately compromise the performance
and energy efficiency of using CIM. However, we have little
choice in this trade-off because target applications require
certain accuracy to be useful. Therefore, our objective func-
tion becomes achieving a target accuracy while maximizing
performance. In this way, the variation of the device should
ultimately dictate the precision of the ADC used.

As we discussed in Section II, VMMs are mapped to CIM
arrays by dividing the VMM into multiple lower precision
VMMs that can be mapped to an array’s wordlines (1-bit) and
memory cells (1-bit, 2-bit). If we again assume 8-bit VMM,
1-bit wordlines, and 1-bit cells, we perform 64 binary VMMs
that are then shifted by the corresponding magnitude of the
input and weight values mapped to it. For the binary VMM
between the least significant bit (LSB) of both the inputs and
weights, we shift by 0 (or multiply by 1). For the binary
VMM between the most significant bits (MSB), we shift by
14 (or multiply by 16384). Therefore, variation induced errors
during the binary VMMs are also shifted by this magnitude.
Thus errors that occur for the most significant bit (MSB), are
exponentially more destructive to the result of the VMM.

To illustrate this idea, we can extract the VMM performed
by a convolutional layer and identify how much error each
binary VMM contributes. We use mean absolute error (MAE)
where if we let the true result of VMM be: y = W~x, and
the CIM result be: ŷ = Ŵ~x, then MAE is

∑
|ŷ − y|. As an

example, we extract all the 8-bit VMMs performed during
a single inference of 2 different layers in 8-bit ResNet18
on ImageNet. Using the simulator detailed in Section V, we
simulate the VMM using devices based on Figure 2 with 6.2%
LRS variation and 50% HRS variation and 3-bit ADCs.

We show the average MAE breakdown across the 64 binary
VMMs that occurs when performing an 8-bit VMM in Figure
3. The rows of the table correspond to the magnitude of
the input bit (X0-X7) and columns of the table correspond
to the magnitude of the weight bit (W0-W7). Each bin of
the table contains the percentage of total MAE that can be
attributed to the corresponding binary VMM. It is clear that
the majority of MAE comes from high magnitude VMMs,
while low magnitude VMMs contribute near-zero MAE to the
final output. Thus, if our design allows we can operate these
binary VMM at different speed (number of wordlines) as a
function of their MAE and magnitude. This idea is the basis
of our work, and in the following sections we discuss how to
model VMM error and optimize CIM performance.

A. Modeling VMM Error

In this work we model VMM error as mean absolute error
(MAE). Therefore, if we let the true result of VMM be:
ŷ = W~x, and the CIM result be: ŷ = Ŵ~x, then MAE is∑
|ŷ − y|. To compute the expected MAE for an 8-bit VMM

(assuming 1-bit inputs & weights), we must model the MAE
in a bottom-up fashion starting with the the ADC. From the

Layer 1
0.0

0.0

0.0

0.0

0.1

0.1

0.2

0.2

0.0

0.0

0.0

0.1

0.1

0.2

0.3

0.4

0.0

0.0

0.1

0.1

0.1

0.3

0.5

0.6

0.0

0.1

0.1

0.1

0.2

0.5

0.9

1.1

0.1

0.1

0.2

0.3

0.6

1.4

2.6

2.9

0.1

0.2

0.2

0.4

0.8

1.9

3.5

3.9

0.1

0.4

0.5

0.8

0.8

4.4

7.9

8.8

0.3

0.8

0.9

1.9

3.7

9.3

14.8

19.1

X0

X1

X2

X3

X4

X5

X6

X7

W0 W1 W2 W3 W4 W5 W6 W7

Layer 4
0.0

0.0

0.0

0.0

0.1

0.1

0.0

0.0

0.0

0.0

0.1

0.1

0.2

0.2

0.1

0.0

0.0

0.1

0.1

0.3

0.4

0.5

0.2

0.0

0.1

0.1

0.3

0.5

0.9

0.9

0.3

0.0

0.1

0.3

0.5

1.0

1.7

1.8

0.6

0.0

0.3

0.5

1.0

2.0

3.3

3.6

1.3

0.0

0.7

1.3

2.5

4.8

8.0

8.9

3.4

0.0

1.0

2.0

4.0

7.5

12.3

14.1

5.4

0.0

W0 W1 W2 W3 W4 W5 W6 W7

Fig. 3. Each of the 64 binary VMM contribution to total MAE for layers 1
and 4 of ResNet18 on ImageNet.

ADC MAE model, we can compute the expected MAE for
a single binary VMM, and then lastly the 8-bit VMM. In the
following sections, we break down the MAE computation into
these three levels of abstraction.

1) ADC: The expected error at each ADC can be computed
as a function of the device variation and the number of
wordlines enabled. Ideally, the output of the ADC is the
number of LRS cells read since an LRS cell corresponds
to a digital ‘1’. However, the cumulative current through the
memory cells can produce erroneous ADC output codes due
to cell-to-cell variation. Given the standard deviation (σL,
σH) of the resistive states (LRS and HRS) of the memory
cells, we can compute a PMF for the ADC output codes. The
probability of observing an ADC code, C, given the actual
number of LRS cells, NL, can be computed using the normal
CDF (Φ) function. Equation 1 demonstrates this, and models
P (C | NL), the probability of the cumulative current from
NL LRS cells being read by the ADC as C.

= Φ

(
C −NL + 0.5√
σ2
LNL + σ2

HNH

)
−Φ

(
C −NL − 0.5√
σ2
LNL + σ2

HNH

)
(1)

2) Binary VMM: Equation 1 provides the probability of
an ADC code given that NL LRS cells are read. Given that
each vector-vector product in the binary VMM is the sum
of ADC output codes along the bitline, we can compute the
expected MAE of a binary VMM by identifying the PMF of
these ADC codes, P (NL), and applying Equation 1. P (NL)
depends on the inputs and weights of the binary VMM under
consideration. To acquire P (NL), we can profile our neural
network in simulation assuming ideal devices, and perform the
64 binary VMMs, in place of a 8-bit VMM, while counting the
number of times each ADC output value occurs. This gives as
an approximation for P (NL), and as an example, we profile
layer 1 of 8-bit ResNet18 on ImageNet. We visualize this
in Figure 4, showing different distributions for the different
binary VMM in the 8-bit VMM when reading 16 wordlines.

So far we have obtained P (NL), the PMF of ideal (zero
device varition) ADC output codes, and P (C | NL), the PMF
of obtaining an ADC code, C, given the actual number of LRS
cells, NL. Using these PMFs, we can compute the expected
MAE for a binary VMM by summing the MAE for all possible
outcomes. We implement this by first iterating over the set
of possible NL, the number of LRS enabled along a bitline.
This set ranges from 0 to the number of wordlines enabled,
NWL. For each value of NL, we iterate over all possible ADC

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 19,2021 at 00:57:46 UTC from IEEE Xplore. Restrictions apply.

10 11 12 13 14 15 160 1 2 3 4 5 6 7 8 9

5

10

15

5

10

15

5

10

15

5

10

15

 Ideal ADC Output (NL)

P
M

F
 (
%

)
ResNet18 / ImageNet Binary VMM: X0W0

Binary VMM: X4W4

P
M

F
 (
%

)

Fig. 4. P (NL) for layer 1 of ResNet18 on ImageNet.

output codes: NC . Next, we compute the probability for each
pair (NL, C) and the associated error. Naturally, the error for
each pair is simply the difference: C −NL. The final part of
our model comes from the fact that a binary VMM contains
columns where we may read more than NWL wordlines.
As discussed in Section II, we break down these columns
into several cycles to not overflow the ADC. Therefore, we
scale our MAE calculation by Ntot/NWL, where Ntot is the
expected number of wordlines enabled along a column. Our
complete model for a binary VMM is given in Equation 2.

Exw =

NWL∑
NL

NC∑
C

Ntot

NWL
· P (C | NL) · P (NL) · |C −NL| (2)

3) 8-bit VMM: Building off of the binary VMM model,
we can compute the expected MAE for the 8-bit VMM as
the sum of MAE across the 64 binary VMM scaled by their
corresponding magnitude. Our final MAE approximation for
a matrix multiplication is given in Equation 3.

EVMM =

X∑
x

W∑
w

2x2w · Exw (3)

B. Optimizing Operation Speed

After establishing a methodology for computing the ex-
pected MAE for 8-bit VMM, we can now formulate an
optimization problem. In our optimization problem, we con-
sider the relationship between MAE and performance and
we attempt to optimize CIM performance for a given MAE
constraint. Since each of the 64 binary VMMs will yield
different error rates, we choose to operate each one at a
different number of wordlines per cycle. Thus, the solution
to our optimization problem will be a lookup table (LUT)
containing 64 (8×8) values indicating the number of wordlines
per cycle to be performed by the corresponding binary VMM.

To find the optimal LUT, we compute the expected MAE
and performance for all 64 binary VMM operating at various
numbers of wordlines per cycle. We then compile these
results into a table. To illustrate this, we provide an example
table in Figure 5. In this example, we perform 8-bit matrix
multiplication and we read up to 16 wordlines at a time, thus
our table will be 8× 8× 16. For each of the 64 binary VMM,
we must select between 1 wordline and 16 wordlines in a
single cycle. This is visualized in the far right column of
Figure 5, where one of the 16 conditions will be chosen for

7 7 1 0.010 56.9
7 7 2 0.030 28.7

1
0

7 7 15 2.230 4.2
7 7 16 2.410 4.0

0
0

0 0 1 0.000 72.1
0 0 2 0.000 36.3

0
0

0 0 15 0.002 5.2
0 0 16 0.003 5.0

0
1

X bit W bit NWL MAE Cycles Select

 Constraints:
 (1) MAE⋅Select ≤ Thresh
 (2) ∀x ∈ X, ∀w ∈ W: ∑Selectxw = 1
 Objective:
 Minimize: Cycle⋅Select

Optimal LUT:
16 16 16 15 14 14 10 8
16
16
15
14
13
10
8

16 15 14 13 10 8 6
15 14 13 10 8 6 4
14 14 10 8 5 4 1
13 10 8 6 4 2 1
10 8 6 5 2 2 1
8 6 4 2 1 1 1
6 3 1 1 2 1 1

W0 W1 W2 W3 W4 W5 W6 W7

X0

X1

X2

X3

X4

X5

X6

X7

ILP Formulation:

Fig. 5. Example LUT optimization problem formulation.

each binary VMM. Although it is just an example, we show
two cases where NWL is chosen. For the lowest magnitude
binary VMM (X0-W0), NWL=16 is chosen since the MAE
is relatively low for the performance gain. For the highest
magnitude binary VMM (X7-W7), NWL=1 is chosen because
of the high impact a single error has on the VMM. The
objective of this optimization problem is to satisfy an MAE
constraint, while maximizing performance.

Upon formulating this problem we note that it is, by
definition, a variant of the knapsack problem called multi-class
knapsack. The weight (or cost) of each choice in the table is
the expected MAE from operating the binary VMM at NWL

per cycle. The value of each choice is the latency required for
the binary VMM, making our objectice function minimization
because we seek to minimize latency. We compute this latency
as the expected number of cycles required to perform the
binary VMM. For example, in Figure 5, the average Ntot for
the first binary VMM (X0, W0) is 72.1 cycles. Thus operating
at 1 wordline per cycle (NWL=1), we can expect to finish the
binary VMM in 72.1 cycles. However, at 16 wordlines per
cycle (NWL=16), we can expect to finish in just 5 cycles.

The constraints to our optimization problem are two fold.
First, the sum of the MAE of all the selected binary VMM
must be less than or equal to our MAE constraint. Second,
exactly 1 NWL must be chosen for each of the 64 binary
VMM, hence multi-class knapsack. The solution to this opti-
mization problem provides us with the optimal operation speed
(NWL) for each binary VMM that maximizes performance
while satisfying our MAE constraint. This can be solved
with a greedy heuristic or a common optimization technique
like branch and bound or integer linear programming (ILP).
Despite being an NP-hard problem, this instance of the multi-
class knapsack is quite small and is solved very fast (<10ms)
using ILP implemented with the CVXOPT package in Python.

IV. CIM-BASED ARCHITECTURE

For our experiments we adopted a similar architecture to
previous work [9]. Our basic processing element (PE) contains

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 19,2021 at 00:57:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. System architecture with 1 router (R) per PE.

32 256×256 RRAM arrays. Each array has 1 ADC for every
8 columns. To better understand how our algorithm applies
to different ADCs we try both Flash and SAR designs. For
the Flash ADC, we use 3-bit precision where a single bitline
is pitch-matched with a comparator to minimize peripheral
overhead and maximize memory density. For the SAR ADC,
we find that an area optimized 6-bit SAR ADC takes approx-
imately the same area as a 3-bit Flash ADC.

To cache input data, each PE contains a 4096KB SRAM
cache with a 128-bit bus. To feed the 32 RRAM arrays with
data, a CMOS-based memory controller reads from the SRAM
cache and provides the RRAM arrays with input data. This
controller contains a state machine that iterates through all 64
binary VMM, and issues the correct input data (X0-X7) based
on the corresponding binary VMM. In a standard design, like
ISAAC [9], this memory controller would issue a input vectors
with a fixed number of ‘1’s based on the precision of the ADC.
However in our design, we control the number of wordlines
based on the corresponding binary VMM. Hence, we add
a small programmable LUT to this controller containing 64
entries for the 64 binary VMM. To set the speed we require
log2(NWL) bits per binary VMM. Therefore if we enable up
to 64 wordlines per cycle, we require a 48 byte LUT, which
is negligible compared the large SRAM and RRAM banks.

The activation inputs to the RRAM sub-arrays are stored
in on-chip SRAM, while the input images are read in from
external DRAM. Matrix multiplication is performed by the
PEs, while custom vector units are used to perform vector-
wise accumulation, bias addition, quantization, and ReLU.
Because all inputs in a CNN are positive valued, we can
use two’s complement representation for our weights and
avoid offset format (Section II). We use a N × N mesh
network for communication between PEs, memory, and vector
units shown in Figure 6. To avoid reprogramming the RRAM

ReLU, Qu antize

128b SRAM (64KB) 64 fJ / bitInput Cache

Output Cache

1

1

1

Component # Unit Specification Energy

64b SRAM (32KB) 62 fJ / bit

81 fJ / op

Processing Element (PE)

Sub-Array

RRAM Array

ADC

Shift + Add

1

32

32

1-bit/cell 256×256

Flash 3-bit / 1 cycle

SAR 6-bit / 6 cycle

24-bit Shift, 24-bit Add

1.1 fJ / bit

45 fJ / conv-step

22 fJ / conv-step

101 fJ / op

DFF 32×24 24-bit 85 fJ / bit

 See Below

Vector Unit

16 See Below

Sub-Array (SA)

ReLU, Qu antize

128b SRAM (64KB) 64 fJ / bitInput Cache

Output Cache

1

1

1

Component # Unit Specification Energy

64b SRAM (32KB) 62 fJ / bit

81 fJ / op

Processing Element (PE)

Sub-Array

RRAM Array

ADC

Shift + Add

1

32

32

1-bit/cell 256×256

Flash 3-bit / 1 cycle

SAR 6-bit / 6 cycle

24-bit Shift, 24-bit Add

1.1 fJ / bit

45 fJ / conv-step

22 fJ / conv-step

101 fJ / op

DFF 32×24 24-bit 85 fJ / bit

 See Below

Vector Unit

16 See Below

Sub-Array (SA)

Fig. 7. Simulation parameters used for hardware components.

Fig. 8. MAE by layer for the first 8 layers of ResNet18 on ImageNet.

arrays due to high write energy and latency, we store all
layers on chip like prior work [9]. To maximize throughput,
we pipeline the layers to that all RRAM arrays are active.
Furthermore, Given that total RRAM capacity nearly doubles
the size of 8-bit ResNet18 (33.5MB vs 17.6MB), we apply
weight duplication [9]. To choose which layers are duplicated,
we apply performance-based array allocation [8] to maximize
throughput. This technique profiles the workload and evenly
allocates arrays to each layer to prevent a bottleneck.

V. RESULTS

To benchmark our algorithm (from Section III) we call
counting cards, we compare against a baseline design. For
both counting cards and baseline, we use the same architecture
described in Section IV. The only difference is counting
cards sets the NWL for each binary VMM to optimize for
a given MAE constraint, while baseline operates based on the
precision of the ADC. We evaluate performance, power, and
accuracy on ImageNet using ResNet18.

A. Simulation Framework

Our simulator performs cycle-accurate implementations of
convolutional and fully connected layers. It is based in Python,
but runs array level operations in C for faster evaluation.
We model components in the design in object oriented fash-
ion, iterating through all components in all PEs each cycle.
We embed performance counters in our ADC and sub-array
objects to track metrics like stalls so we can calculate uti-
lization. As input, the simulator takes the network weights,
input images, PE level configuration, and chip-level config-
uration. The PE-level configuration includes details like the
precision of each ADC and size of the sub-array. The chip-
level configuration contains the number of PEs and details
about array allocation and mapping. As output, the simulator
produces a table with all desired performance counters and
all intermediate layer activations that are verified against
a TensorFlow implementation for correctness. We evaluate
power and performance using 32nm CMOS and ADC models
adopted from NeuroSim [10] and displayed in Figure 7. All
code and simulation parameters to recreate results is available
at: https://github.com/bcrafton/speed read.

B. Simulation Results

To generate the 64 entry LUT for each layer of ResNet18,
we first acquire the distribution of ADC output codes and then
optimize performance for a target MAE constraint. Initially, we
perform inference on 100 images and profile the distribution

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 19,2021 at 00:57:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Performance and Accuracy (ResNet18) of counting cards versus the baseline design.

of the ADC output codes. Because this distribution depends on
NWL, we perform each of the 100 inferences using between
1 and 128 wordlines, for a total of 12,800 inferences. Using
an Nvidia RTX 2080 GPU, this process took 84 seconds.
While this significantly longer than simply running 12,800
inferences, it is only done once per model and representative
dataset. After acquiring the distribution, we compute the
optimal LUT for each layer based on device models shown in
Figure 2 and an MAE constraint which we sweep to explore
the accuracy-performance tradeoff.

In Figure 9, we show the accuracy and performance of
counting cards and our baseline design, for various device
models and target MAE constraints (0.1, 0.25). Our MAE
constraints are chosen as 0.1 and 0.25 because we find that this
roughly translates to < 0.25% and < 1% accuracy degradation
on ResNet18. For this simulation we use the 3-bit Flash ADC.
For σL, σH , and the on/off ratio, we sweep a range of param-
eters determined by our data collected from the 40nm RRAM
array (Fig. 2). For Figures 9A and 9B, we show accuracy and
performance versus σL. Over this range, we find that counting
cards maintains a near constant accuracy independent of σL.
For low values of σL, a performance speedup is achieved
(1.21×), while for higher values performance slows down
to maintain low MAE. While sweeping σH and on/off ratio,
we observe similar behavior. However it is clear that in this
parameters given by Fig. 2, σL has the highest impact. In
Figure 8, we show MAE by layer for σL = 12%. This figure
demonstrates how counting cards keeps precise control of
MAE at each layer based on the MAE constraint, while the
baseline design exhibits high MAE.

To compare power and performance of counting cards using
a 6-bit SAR ADC and 3-bit Flash ADC, we plot results versus

Fig. 10. Power & performance of counting cards using Flash and SAR ADC.

σL in Fig. 10. It should be noted that baseline performance and
power is presented as a dotted reference line because it does
not change as a function of device variation. As expected the
SAR ADC yields significantly better energy efficiency over the
Flash, while achieving less performance. At low σL, counting
cards enables 44% improved TOP/s and 36% better TOP/W for
the SAR ADC. For the Flash ADC we observe 21% improved
TOP/s and 23% improved TOP/W. Interestingly, for the SAR
ADC the TOP/W & TOP/s decreases greatly as σL increases
while the Flash remains near constant. This is because the
Flash operates at 8 wordlines per cycle instead of 64, and
thus it is far less sensitive to higher σL.

VI. ACKNOWLEDGEMENT

This work was funded by the U.S. Department of Defense’s
Multidisciplinary University Research Initiatives (MURI) Pro-
gram under grant number FOA: N00014-16-R-FO05 and the
Semiconductor Research Corporation under the Center for
Brain Inspired Computing (C-BRIC).

REFERENCES

[1] B. Crafton et al., “Merged logic and memory fabrics for accelerating
machine learning workloads,” IEEE Design & Test, 2020.

[2] Y. Long et al., “Design of reliable dnn accelerator with un-reliable
reram,” in 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1769–1774, IEEE, 2019.

[3] X. Sun and S. Yu, “Impact of non-ideal characteristics of resistive
synaptic devices on implementing convolutional neural networks,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 3, pp. 570–579, 2019.

[4] J. Wu et al., “A 40nm low-power logic compatible phase change memory
technology,” in 2018 IEEE International Electron Devices Meeting
(IEDM), pp. 27–6, IEEE, 2018.

[5] A. S. Rekhi et al., “Analog/mixed-signal hardware error modeling for
deep learning inference,” in Proceedings of the 56th Annual Design
Automation Conference 2019, pp. 1–6, 2019.

[6] Y. Park et al., “Unlocking wordline-level parallelism for fast inference
on rram-based dnn accelerator,” in Proceedings of the 39th International
Conference on Computer-Aided Design, pp. 1–9, 2020.

[7] J.-H. Yoon et al., “29.1 a 40nm 64kb 56.67 tops/w read-disturb-tolerant
compute-in-memory/digital rram macro with active-feedback-based read
and in-situ write verification,” in 2021 IEEE International Solid-State
Circuits Conference (ISSCC), vol. 64, pp. 404–406, IEEE, 2021.

[8] B. Crafton et al., “Breaking barriers: Maximizing array utilization for
compute in-memory fabrics,” in 2020 IFIP/IEEE 28th International
Conference on Very Large Scale Integration (VLSI-SoC), IEEE, 2020.

[9] A. Shafiee et al., “Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 14–26, 2016.

[10] P.-Y. Chen et al., “Neurosim+: An integrated device-to-algorithm frame-
work for benchmarking synaptic devices and array architectures,” in
2017 IEDM, pp. 6–1, IEEE, 2017.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 19,2021 at 00:57:46 UTC from IEEE Xplore. Restrictions apply.

