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Abstract— Computing-in-memory (CIM) architectures have
gained importance in achieving high-throughput energy-efficient
artificial intelligence (AI) systems. Resistive RAM (RRAM) is a
promising candidate for CIM architectures due to a multiply-
and-accumulate (MAC)-friendly structure, high bit density,
compatibility with a CMOS process, and nonvolatility. Notwith-
standing the advancement of RRAM technology, the reliability of
an RRAM array hinders the spread of RRAM applications such
that a circuit-technology joint approach is necessary to attain
reliable RRAM-based CIM architectures. This article presents a
64-kb hybrid CIM/digital RRAM macro supporting: 1) active-
feedback-based voltage-sensing read (RD) to enable 1–8-b pro-
grammable vector-matrix multiplication under a low-resistance
ratio of the high-resistance state to the low-resistance state in an
RRAM array; 2) iterative write with verification to secure a tight
resistance distribution; and 3) online RD-disturb detection in the
background during CIM. The test chip fabricated in a 40-nm
CMOS and RRAM process achieves a peak energy efficiency
of 56.67 TOPS/W while demonstrating the eight-bitline hybrid
CIM/digital MAC operation with 1–8-b inputs and weights and
20-b outputs without quantization.

Index Terms— Computing-in-memory (CIM), convolutional
neural network (CNN), multiply-and-accumulate (MAC),
processing-in-memory, read (RD) disturb, resistive RAM
(RRAM), write (WR) verification.

Manuscript received April 16, 2021; revised June 28, 2021 and
July 27, 2021; accepted July 27, 2021. This article was approved by Associate
Editor Tanay Karnik. This work was supported in part by the Semiconduc-
tor Research Corporation through the Center for Brain-Inspired Computing
(C-BRIC) under Grant 2777.005 and Grant 2777.006, in part by the Appli-
cations and Systems-Driven Center for Energy-Efficient Integrated Nano
Technologies (ASCENT) under Grant 2776.037, and in part by TSMC
with technical discussions and chip fabrication. (Corresponding author:
Jong-Hyeok Yoon.)

Jong-Hyeok Yoon was with the School of Electrical and Computing
Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA. He is
now with the Department of Information and Communication Engineering,
DGIST, Daegu 42988, South Korea (e-mail: jonghyeok.yoon@dgist.ac.kr).

Muya Chang and Arijit Raychowdhury are with the School of Electri-
cal and Computing Engineering, Georgia Institute of Technology, Atlanta,
GA 30332 USA.

Win-San Khwa and Meng-Fan Chang are with TSMC Corporate Research,
Hsinchu 30075, Taiwan.

Yu-Der Chih is with TSMC Design Technology, Hsinchu 30075, Taiwan.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/JSSC.2021.3101209.
Digital Object Identifier 10.1109/JSSC.2021.3101209

I. INTRODUCTION

THE ever-increasing demands on energy-efficient comput-
ing systems in artificial intelligence (AI), including edge

intelligence and its applications, have piqued our interest in
recent years. The von Neumann architecture is widespread
to support various tasks using processing elements (PEs),
control units, and memory. Since the advent of AI systems and
deep neural networks (DNNs), the von Neumann architecture
has struggled to accommodate DNNs. DNNs in AI systems
have a significant depth of layers and require a huge amount
of parallel multiply-and-accumulate (MAC) operation. During
the MAC operation, the inevitable data transfer of numerous
weights and intermediate outputs between PEs and memory
incurs prohibitive power dissipation and latency, thereby pre-
cluding certain AI applications such as battery-powered edge
devices [1]–[3]. Thus, computing-in-memory (CIM) archi-
tecture has emerged to perform the energy-efficient paral-
lel MAC operation by concurrently accessing multiple cells
at a bitline (BL) of on-die memory. SRAM-based CIM
architectures [4]–[14] shed light on the feasibility of CIM
with appropriate energy efficiency while outperforming von
Neumann architectures. However, SRAM has a large cell
size (>100 F2) and it even worsens in 8T-SRAM dedicated
to CIM architectures [13], [14]. The limited capacity of
on-die memory restricts the complexity of AI. Thus, emerging
memory using resistances, such as resistive RAM (RRAM),
magnetoresistive RAM (MRAM), and phase-change RAM
(PCRAM), has been in the spotlight due to inherent MAC
functionality, high bit density, and nonvolatility. PCRAM
provides a moderate ON/OFF current ratio, thereby facilitat-
ing reliable CIM operation [15]. However, PCRAM requires
longer read (RD) time such that dynamic power consumption
is higher than other emerging memory [16]. Compared to
PCRAM, MRAM features short RD pulses and the resultant
energy-efficient RD [17]. On the other hand, the ON/OFF

ratio of MRAM, called a tunneling magnetoresistance ratio,
is extremely lower than the other emerging memory such that
reliable CIM architectures cannot be achieved. On the contrary,
RRAM features the aforementioned advantages of MRAM
and PCRAM, such as energy-efficient RD and an appropriate
ON/OFF ratio. Due to the virtues, RRAM has been used in CIM
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Fig. 1. Current-sensing RRAM-based CIM at the BL.

Fig. 2. Conductive filaments in RRAM cells and the tradeoff between the
ON/OFF ratio and the damage to RRAM cells over WR operations.

architectures [18]–[26]. However, there are some challenges
of RRAM-based CIM (RCIM) architectures. Fig. 1 shows
the current-sensing RCIM at the BL. The current-sensing
CIM is widespread in RCIM architectures. Each RRAM
cell is programmed in a low-resistance state (LRS) or a
high-resistance state (HRS) to represent the weights of DNNs.
The output of the current-sensing RCIM is determined by the
ratio of the total current at the BL to the LRS current. The
HRS current is neglected on the premise that an RRAM
array has a sufficiently high ON/OFF ratio. In the case of a
low ON/OFF ratio, the aggregate current from accessed HRS
cells is prone to exceed the amount of the LRS current,
thereby incurring logic ambiguity. Thus, in the current-sensing
RCIM, a high ON/OFF ratio should be guaranteed to support
error-free MAC functionality. However, the drawback to a high
ON/OFF ratio should also be considered in view of the device
characteristics of RRAM [27]. Fig. 2 shows the conductive
filament in RRAM cells and the tradeoff between the ON/OFF

ratio and the damage to RRAM cells over write (WR) opera-
tion. The formation and rupture of conductive filaments over
WR operation gradually damage RRAM cells. In particular,
a high ON/OFF ratio is prone to introduce the defect to the
conductive filaments over WR operation, thereby restricting
the advanced AI systems with frequent weight updates such as
online learning. Thus, the desirable RCIM architecture should
support reliable MAC performance under a low ON/OFF ratio
considering both inferences and weight updates in AI systems.
Besides the tradeoff regarding the ON/OFF ratio, the reliability
of the resistances of RRAM cells is another challenge in
RCIM architectures [27]. Fig. 3 shows the resistance variations
of RRAM cells over WR and RD operations. In the WR
operation, RRAM has a different sensitivity to a WR pulse
over RRAM cells. Furthermore, RRAM has no complete set or
reset state in contrast with DRAM that can be fully charged or
discharged. It leads to a wide distribution of resistances across
RRAM cells, thereby entailing a low readout margin and the
resultant error probability during CIM. In addition, RRAM
may suffer from resistance variations due to temperature and

Fig. 3. Resistance variations of RRAM cells over WR and RD operations.

RD-disturb, which is the resistance drift over RD operation.
Thus, the feature to secure a tight distribution of resistances
in WR and RD operations should also be addressed in RCIM
architectures.

In this article, a hybrid voltage-sensing CIM/digital RRAM
macro [28] is proposed to support reliable CIM operation
under a low ON/OFF ratio of RRAM cells for both inferences
and reliable weight updates. The proposed RRAM macrofea-
tures hybrid CIM/digital post-MAC operation to enable 1–8-b
programmable vector-matrix multiplication for versatile AI
systems. Voltage-sensing RD employing the input-aware (IA)
BL current control and an active feedback amplifier renders
the linearized readout BL voltage (V.RBL) representing the
CIM result, thereby surmounting the logic ambiguity that
precludes the RCIM architectures under a low ON/OFF ratio.
In situ iterative WR with verification (IWR) achieves a tight
resistance distribution of RRAM cells with two thresholds for
a target resistance state in WR operation. An online RD-disturb
detector is employed to monitor RD-disturb in the background
during CIM, thereby maintaining a target resistance with the
restoration of resistances. We demonstrate a test chip with a
64-kb RCIM architecture performing the programmable hybrid
CIM/digital MAC operation for AI systems with an energy
efficiency of 56.67 TOPS/W.

The rest of this article is organized as follows. Section II
describes the architecture of the proposed hybrid CIM/digital
RRAM macro. Section III discusses the detailed implementa-
tion of the voltage-sensing RD enabling reliable CIM opera-
tion under a low ON/OFF ratio. Section IV delineates the IWR
in the proposed RRAM macro. Section V describes the online
RD-disturb detector. Section VI presents the measurement
results. Section VII presents the conclusions drawn from this
study.

II. PROPOSED HYBRID COMPUTING-IN-MEMORY

AND DIGITAL RRAM MACRO

As a circuit-technology joint approach, the proposed RRAM
macro provides circuit solutions to the following challenges
in RRAM technology regarding the ON/OFF ratio and the
reliability in the WR and RD operations. When RRAM
cells are programmed with a high ON/OFF ratio for lower
RD-failure, the defect is introduced to RRAM cells over WR
operation [27], which necessitates the use of circuit techniques
that provide a high RD margin under a low ON/OFF ratio.
Regarding the reliability, a single WR pulse creates a wide
resistance distribution of RRAM cells, thereby affecting the
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Fig. 4. Top block diagram of the proposed voltage-sensing hybrid CIM/digital
RRAM macro.

accuracy and resolution in CIM. Besides, consecutive RDs in
CIM operation lowers the HRS resistance and can eventually
cause data corruption and RD-disturb. Thus, a circuit solution
tightening and retaining the resistance distribution of RRAM
cells is desirable for reliable RCIM architectures.

Fig. 4 shows the top block diagram of the proposed
voltage-sensing hybrid CIM/digital RRAM macro. The pro-
posed RRAM macro consists of a 64-kb 1T-1R RRAM array,
the IA BL current control with a feedback amplifier, a 4-b
flash ADC with an IA ADC decoder, a digital post-MAC
block, the IWR, and the online RD-disturb detector. As the
filter size in convolutional neural networks (CNNs) such
as MobileNet for versatile AI systems is 3 × 3, the pro-
posed RRAM macro features concurrent nine-wordline (WL)
accesses. In the CIM operation, the input is fed to the WL
decoder to access the nine WLs. Then, through the eight-BL
MUX and the four-sourceline (SL) MUX, designated RRAM
cells are selected for concurrent CIM operation. Due to the
two-BL/one-SL structure of the RRAM array [29], the size of
the SL MUX is reduced by 2 compared to the BL MUX. The
IA BL current control activates unit BL current sources over
the number of accessed RRAM cells (N.RRAM) to mitigate
the nonlinearity of the V.RBL. Considering the combinations
of accessed RRAM resistances, the active feedback amplifier
suppresses the remaining nonlinearity of the V.RBL, thereby
attaining the linearized V.RBL that represents the CIM result.
The V.RBL is applied to the 4-b flash ADC. The IA ADC
decoder sets the logic thresholds considering the N.RRAM to
generate the 4-b CIM output, which is the intermediate output
of the proposed RRAM macro. The intermediate output is fed
to the digital post-MAC block. Considering the MAC config-
urations, the final MAC output is obtained in the post-MAC
block.

In the proposed RRAM macro, 1–8-b programmable MAC
is achieved with CIM and digital post-MAC operation across

Fig. 5. Multibit CIM at the BLs of the proposed RRAM macro.

Fig. 6. Bitwise-shift-based binary weighting for the intermediate outputs in
the digital post-MAC block and the structure of the final MAC output across
eight BLs over multi-bit CIM modes.

eight BLs. Fig. 5 shows the multi-bit CIM at the BLs of the
proposed RRAM macro. To support the multi-bit input and
weight with binary RRAM cells, the binary weight of the input
and weight is represented in a temporal and BL-wise manner,
respectively. In the binary CIM mode, each BL demonstrates
single-cycle 3 × 3 kernel CNN operation using the binary
input fed to nine WLs and the binary weights programmed
at accessed RRAM cells. The resultant V.RBL is converted
to the 4-b CIM output by the ADC-based readout circuit.
The CIM output is directly set to the final binary MAC
output of each BL without quantization. In the 2k-bit CIM
mode (when k = 1–3), each significant bit of the weight is
distributed over 2k BLs. The multi-bit input is fed to nine
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Fig. 7. Nonlinearity of the readout BL voltage with a fixed amount of the
BL current, the structure of the IA BL current control, and the remaining
nonlinearity over combinations of accessed RRAM resistances.

WLs from the LSB in each clock cycle. The 4-b CIM output
with each significant bit of the input is the intermediate output
without the consideration of the binary weight of the input and
weight. Fig. 6 shows the bitwise-shift-based binary weighting
for the intermediate outputs in the digital post-MAC block
and the structure of the final MAC output across eight BLs
over 2k-bit CIM modes. The digital post-MAC block conducts
bitwise-shift-and-add computation to convert the nonweighted
intermediate output to the binary-weighted output. The binary
weight of the input and weight at the intermediate output
is considered with the clock cycle and the position of BLs,
respectively. The unsigned 3-bit clock counter and the modulo
operator extract the binary weight of the input considering the
2k-bit CIM configuration. Then, the digital post-MAC block
aggregates the weighted outputs, thereby obtaining the final
1–20 b MAC output over 2k-clock cycles without quantization.

It is worth noting that current-sensing RCIM architectures
under a low ON/OFF ratio cannot obtain accurate MAC out-
puts even if quantization is employed due to the aggregated
HRS current incurring the aforementioned logic ambigu-
ity. The prior art regarding the serial-input parallel-weight
RCIM architecture successfully performs the RCIM opera-
tion by using current- and voltage-sensing CIMs [19], [20].
The current-sensing RCIM architecture [19] demonstrates the
current-sensing CIM and MAC operation with the 2-b input
and weight by using the analog post-MAC block, such as
a time-interleaving binary-weighted current mirror. However,
apart from the logic ambiguity, the prior work suffers from
the lack of scalability to various AI systems due to the analog
post-MAC structure designated to a certain resolution. Further-
more, the aggressive timing margin in the time-interleaving
operation for the input limits the maximum bit resolution of
the input. The prior work regarding the voltage-sensing RCIM
architecture [20] achieves the flexibility in the bit resolution
of CIM. However, it suffers from a lack of sampling margin
over the nonlinear readout voltages. Thus, the proposed hybrid
CIM/digital RRAM macro outperforms the prior arts in view
of reliability and flexibility of the multi-bit MAC operation in
RCIM architectures while achieving higher energy efficiency.

Fig. 8. Equivalent BL model under the IA BL current control and the
remaining nonlinearity over the number of accessed LRS cells.

Since a single RRAM array is employed, the proposed RRAM
macro supports only positive weights compared to the prior
designs supporting negative weights with two RRAM arrays.
However, this is not a critical obstacle in AI applications where
weight normalization and ReLU activation functions can be
used to maintain positive operands only [30]. In addition,
due to the hybrid architecture for CIM and digital MAC,
the feature to support negative weights can be readily achieved
by employing an additional RRAM array for negative weights.

While providing the aforementioned circuit solution under
a low ON/OFF ratio, the remaining challenge in RRAM tech-
nology, the reliability of RRAM cells, is also addressed in the
proposed RRAM macro. To tighten the resistance distribution
of RRAM cells, resistance monitoring is conducted over
WR and RD operations. Due to the linearized V.RBL in
the proposed RRAM macro, the V.RBL in single-cell access
indirectly represents the resistance of the accessed RRAM cell.
Thus, during the initial forming process and WR operation,
the IWR estimates whether an RRAM cell is programmed
within the target range of resistances by using the 4-b ADC.
If the resistance is out of the target range, the WR iteration is
conducted while adjusting the WR pulsewidth (PW) until the
resistance is placed within the target range. It eventually attains
a tight resistance distribution of RRAM cells. In the RD opera-
tion, the online RD-disturb detector monitors the resistance of
RRAM cells when a single RRAM cell is accessed and detects
the drift of the resistances in the background without hindering
CIM operation. In case the drift is detected, the RRAM cell
is programmed again to prevent RD-disturb.

III. ACTIVE-FEEDBACK-BASED VOLTAGE-SENSING READ

A key RCIM requirement is a high-resolution,
quantization-free readout for all input-weight combinations.
In current-sensing RD, the maximum number of concurrent
accesses to RRAM cells is restricted even using quantization
due to the logic ambiguity. The proposed RRAM macro
features voltage-sensing RD to surmount the logic
ambiguity under a low ON/OFF ratio, thereby achieving
the aforementioned virtues such as scalability to reliable
high-resolution MAC. The proposed voltage-sensing RD
is comprised of the IA BL current control with an active
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Fig. 9. Simplified BL structure of the proposed RRAM macro employing
the IA BL current control with a feedback amplifier.

Fig. 10. Simulated readout voltages with a feedback amplifier over the
number of accessed RRAM cells.

feedback amplifier to linearize the V.RBL over the N.RRAM
in addition to the ADC-based readout circuits to obtain the
digital CIM output.

A. Input-Aware Bitline Current Control With a Feedback
Amplifier

To obtain the CIM outputs in a voltage-sensing RRAM
macro, the nonlinearity of the V.RBL should be addressed.
Fig. 7 shows the nonlinearity of the V.RBL in traditional
voltage-sensing RD with a fixed amount of the BL current
and the structure of IA BL current control. In the case of the
voltage-sensing RD with a fixed current, the V.RBL drastically
decreases over the N.RRAM due to the parallel resistance,
thereby exhibiting an extremely narrow sampling margin at the
V.RBL as more LRS cells are accessed in parallel. It eventually
limits the accuracy of the CIM result even employing the
ADC with nonlinear references. In addition, the V.RBL lies
on different regions over the N.RRAM such that the readout
circuits should support a wider sampling region that requires
excessive resolution. We address this challenge by rendering
the BL current proportional to the N.RRAM. The IA BL
current control suppresses the aforementioned nonlinearity and
attains a constant region of the V.RBL which lessens the
burden in resolution. However, the nonlinearity of the V.RBL
still remains over combinations of accessed RRAM resistances
(see Fig. 7). Fig. 8 shows the equivalent BL model under
the IA BL current control and the remaining nonlinearity
over the accessed resistances. The remaining nonlinearity

Fig. 11. Structure of the proposed voltage-sensing BL and the simplified
model of the readout voltage.

can be estimated by using the equivalent model considering
the combinations of accessed RRAM resistances. The model
assumes a unit current source and the equivalent resistance,
which is the parallel resistance multiplied by the N.RRAM.
Since the V.RBL is inversely proportional to the ratio of the
number of accessed LRS cells to the N.RRAM, the V.RBL
suffers from high nonlinearity (see Fig. 8). Thus, a feedback
amplifier is employed to suppress the remaining nonlinearity
in the proposed RRAM macro. Fig. 9 shows the simplified BL
structure of the proposed RRAM macro employing the IA BL
current control with the feedback amplifier. Since RRAM cells
retain weights in RCIM architectures, the change of RRAM
resistance cannot be conducted to suppress the remaining
nonlinearity. Thus, intuitively speaking, to attain the linear
V.RBL, another nonlinearity should be introduced at the BL
current, which neutralizes the nonlinearity incurred by the
resistance (see Fig. 8). A diode-connected current source used
in the current-sensing RD can provide the nonlinear BL current
even in voltage-sensing RD [31]. However, the dynamic range
of the BL current is still limited in suppressing the nonlinearity
entailed by the resistances. In the proposed RRAM macro,
the feedback amplifier shifts the bias voltage of the current
source (V.ctrl) to provide a wider dynamic range of the
nonlinear BL current, thereby linearizing the V.RBL. Fig. 10
shows the simulated V.RBL with a feedback amplifier over
the N.RRAM. With a nominal gain of the feedback amplifier,
the V.RBL is sufficiently linearized over the combinations
of resistances. Even if the range of the V.RBL is decreased,
the worst case sampling margin increases such that the feed-
back amplifier helps achieve reliable voltage-sensing RCIM
architectures. Besides, the V.RBL is distributed between the
V.RBL with an LRS cell (V.LRS) and that with an HRS
cell (V.HRS) regardless of the N.RRAM. Thus, the V.RBL
linearly represents the ratio of the number of accessed LRS
cells to the N.RRAM compared to the current-sensing RD
where the BL current directly represents the number of
accessed LRS cells. It is noteworthy that the gain of the
feedback amplifier should be carefully set to compensate for
the nonlinearity of resistances. In case the gain is excessively
high, the V.RBL demonstrates a fixed value regardless of the
resistances, which is desirable in the current-sensing RD, not
in the voltage-sensing RD.
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Fig. 12. (a) Block diagram of the ADC-based readout circuits and
(b) distribution of the reference voltages and the logic threshold in the IA
ADC decoder over the number of accessed RRAM cells.

Fig. 13. (a) Schematics of the ADC comparator and (b) reference voltage
generator.

The structure of the proposed voltage-sensing BL and the
simplified model of the V.RBL is shown in Fig. 11. The input
concurrently accesses nine RRAM cells via the BL and SL
MUX to conduct CIM. The MUX using IO-voltage devices
isolates the IA BL current control and the feedback amplifier,
which consists of core-voltage devices from high voltages used
in the WR operation, thereby protecting the BL peripheral
circuits. Each BL MUX is placed to separately connect the
IA BL current control and the feedback amplifier with the
accessed RRAM cells. The V.RBL is affected by the total
resistance comprising the accessed RRAM resistance and the
parasitic resistance of the MUX switch where the BL current
flows. Thus, the V.RBL is fed to the feedback amplifier and the
following readout circuit via another MUX switch apart from
the path of the BL current. It helps the V.RBL to be dominantly
determined by the accessed RRAM resistance. Due to the IA
BL current control with the feedback amplifier, the proposed
BL structure can be modeled as a voltage-averaging circuit
with V.HRS and V.LRS. The V.RBL represents the normalized
CIM output over the N.RRAM.

Fig. 14. Schematics of the WR circuit of the proposed RRAM macro.

It is worth noting that the proposed voltage-sensing RD can
increase the N.RRAM under a low ON/OFF ratio. In the case of
the current-sensing RD, the logic ambiguity due to the HRS
current limits the maximum N.RRAM, which is the size of
kernels in CNNs, thereby restricting RCIM architectures from
supporting advanced AI systems. On the contrary, the voltage-
sensing RD can support the scalability to larger filters in
CNNs. In the case of increasing the filter size, the number
of the current source in the IA BL current control is set to
the filter size that has a negligible overhead compared to the
readout circuits. Furthermore, even if the sensitivity of the
readout circuits is insufficient, the proposed voltage-sensing
RD can support the CIM operation by employing quantization,
whereas the current-sensing RD cannot due to the logic
ambiguity. Thus, the proposed RRAM macro demonstrates the
feasibility of advanced AI systems in RCIM architectures.

B. ADC-Based Readout Circuits

To convert the V.RBL to the CIM output, the ADC-based
readout circuits are employed in the proposed RRAM macro.
Fig. 12 shows the block diagram of the ADC-based readout
circuits, the distribution of the reference voltages (V.REFs),
and the logic threshold in the IA ADC decoder over the
N.RRAM. In the proposed RRAM macro, the V.RBL repre-
sents the normalized CIM output, which has a constant region
from V.HRS to V.LRS where the CIM output is from 0 to the
N.RRAM. Thus, to obtain the CIM output from the V.RBL,
the readout circuit should consider not only the V.RBL but also
the N.RRAM. The V.RBL exhibits various voltage levels over
combinations of the number of accessed LRS cells and the
N.RRAM such that a nine-level ADC is insufficient to sample
the V.RBL when a fewer number of RRAM cells are accessed.
Thus, the extra V.REF is employed to secure the sampling
margin of the readout circuits over the N.RRAM. The V.REF
consists of the nine-level V.REF for the case that the maximum
number of RRAM cells is accessed (when N.RRAM = 9) and
the additional six-level V.REF for the other cases. The extra
V.REFs are placed between nine-level V.REFs except for the
highest and lowest V.REFs (see Fig. 12). The logic threshold
in the IA ADC decoder is composed of the sampling margin
for various voltage levels of the V.RBL. Then, according to
the N.RRAM, the IA ADC decoder obtains the CIM output
considering the output of the ADC comparators.

Fig. 13 shows the schematics of the ADC comparator and
the V.REF generator. The strong-arm comparator is used to
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Fig. 15. (a) Distribution of reference voltages in the WR operation and
the threshold in iterative WR with verification, (b) schematics of the PW
adjustment, and (c) flowchart of iterative WR with verification in reset
operation.

Fig. 16. RRAM cells under the readout voltage.

achieve high sensitivity in the ADC. The current clamp is
employed in the strong-arm comparator to mitigate the varia-
tion of the input offset over the V.RBL. The voltage-sensing
RD has a wide-range V.RBL from V.HRS to V.LRS such
that the current flowing at the input stage of the comparator
varies over the V.RBL during sampling. The varying current
leads to the wide-range input offset depending on the V.RBL
and V.REF. By limiting the current, the ADC comparator
suppresses the input offset over the V.RBL. Considering the
range of V.REF, the 8-b V.REF generator is employed with 3-b
thermometer and 5-b binary codes achieving monotonicity of
the V.REF.

The proposed voltage-sensing RD facilitates the
quantization-free CIM operation with a less number of
ADC references. Compared to the current-sensing RD where
the range of ADC references significantly varies over the
N.RRAM [18], the proposed voltage-sensing RD with only
six-level extra V.REFs supports the CIM operation without
quantization and logic ambiguity.

Fig. 17. Threshold and flowchart of the RD-disturb detection.

IV. ITERATIVE WRITE WITH VERIFICATION

An open-loop single-cycle WR operation creates a wide
distribution of RRAM resistance that depends on the PVT
conditions of RRAM cells. In addition, RRAM has no com-
plete set or reset state since the conductive filament cannot
be completely ruptured or formed at the RRAM cells. Thus,
the memory effect that the RRAM resistance in the WR
operation is affected by the initial resistance exacerbates the
wide distribution of RRAM resistance. This leads to errors at
the CIM output. We address this challenge using in situ IWR
with negligible overhead. Fig. 14 shows the WR circuit of the
proposed RRAM macro. The WR circuit and WR MUX use
IO-voltage devices to support high WR voltages, including the
forming voltage of 4.0 V. The WR MUX selects an RRAM cell
to be programmed. Based on the set/reset selector, the direction
of the WR current is determined to set/reset the selected
RRAM cell. The WR current is set to 200 µA considering the
device characteristics of RRAM. The active-low WR pulse
from the IWR is level-shifted and injected into the PMOS
switch to apply the WR current to the RRAM cell.

Fig. 15 shows the IWR, the schematics of the PW adjust-
ment, and the flowchart of IWR in the reset operation. In the
WR operation, the resistance of an RRAM cell changes over
WR pulses. After every WR pulse, the ADC-based readout
circuit can estimate the resistance of the RRAM cell since
the V.RBL indirectly represents the resistance of an accessed
RRAM cell. The V.REFs are uniformly distributed in the LRS
or HRS regime for the set or reset operation, respectively. The
resistance distribution of HRS cells is much wider than that
of LRS cells such that the V.REF in the reset operation has a
wider range than in the set operation. The resistance threshold
of the IWR is set by a digital code, which is compared with the
output of the readout circuit. In the WR operation, the ADC
decoder works in a normal 4-b ADC mode. The flowchart
shows the reset operation with the IWR. From an LRS cell,
the WR pulse is applied, and the resistance of the RRAM cell
is estimated by the readout circuit. In case the V.RBL of a
programmed RRAM cell is below the lower threshold in the
HRS regime, the PW is increased since it is not sufficient
to reset the RRAM cell. If the V.RBL is above the upper
threshold in the HRS regime, the PW is decreased. The initial
PW is 100 ns and it is updated in the unit of 10 ns. The
initial PW and the amount of the PW update are programmable
considering the WR voltages. In the set operation, the WL
voltage (V.WL) and BL WR voltage (V.WBL) of 2.2 V are
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Fig. 18. Measured CIM operations over bitwise shifts of the input.

Fig. 19. Measured linear readout voltages over the number of accessed LRS
cells in the proposed RRAM macro.

used. The V.WL of 3.0 V and the SL voltage (V.SL) of 2.8 V
are used during reset. A higher V.WL is employed in the reset
operation considering the body effect at the NMOS switch
in the 1T-1R structure (see Fig. 11). After the PW update,
to mitigate the aforementioned memory effect regarding the
initial resistance, the RRAM cell is set to LRS, which has
a narrower resistance distribution than HRS. Then, another
reset process is initiated with the updated WR pulse. Finally,
the tightened distribution of RRAM resistances is achieved.
Once all the RRAM cells are programmed within the target
range of resistance, the proposed RRAM macro starts the CIM
operation with the designated V.REF distribution, as shown
in Fig. 12. The prior work regarding the WR-verify achieves
narrow resistance distribution without the return to the initial
resistance [32]. The proposed IWR may need more iterations
at the first WR process due to the reinitialization. However,
the IWR can obtain the optimal WR PW that resets the RRAM

Fig. 20. Measured V.HRS distribution with and without the iterative WR
with verification.

cell with a single WR pulse. Thus, the IWR enables fewer
iterations over further back-to-back WRs.

It is worth noting that there is a tradeoff between the
range of thresholds in the IWR and the number of WR
iterations. In case a wider distribution of resistance is allowed,
the number of iterations is decreased. In addition, since the
IWR uses the 4-b ADC in sensing the RRAM resistance,
the proposed IWR can employ a variable PW update consider-
ing the distance from the target resistance, thereby decreasing
the number of iterations in the IWR.

V. ONLINE READ-DISTURB DETECTOR

The nonvolatility of RRAM helps avoid a frequent data
refresh process in RCIM architectures. In addition to data
retention in RRAM technology, RCIM architectures should
monitor whether the RRAM resistance is placed within the
target range to secure reliable error-free CIM operation as
a solution to long-term functionality in a circuit-domain
approach. Since RRAM exhibits appropriate data retention,
the RD-disturb detection in the background is desirable.
Fig. 16 shows the RD-disturb at LRS and HRS cells. The
V.RBL during CIM gradually lowers the RRAM resistances
since the RD operation is the same as the set operation with
a low V.WBL. In particular, HRS cells more suffer from
RD-disturb since a higher voltage per unit length is applied to
the insulator. Thus, the online RD-disturb detector is employed
to maintain HRS resistances over RD operation.

Fig. 17 shows the threshold and the flowchart of the
RD-disturb detection. The distribution of the V.REFs is the
same as the CIM mode since the online RD-disturb detector
operates in the background without hindering the CIM oper-
ation. The highest V.REF is employed as the threshold in the
RD-disturb detection. In case a single RRAM cell is accessed
(when N.RRAM = 1) during CIM, the online RD-disturb
detector checks whether the accessed RRAM cell is in HRS
or not by using the logic threshold (see Fig. 12). In case a
single HRS cell is accessed, the decrease of HRS resistances
is monitored by using the threshold of the online RD-disturb
detector. In case the V.RBL of the HRS cell is lower than
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Fig. 21. Measured drift of the normalized HRS resistance over RD operation
and the reset of the HRS cell owing to the online RD-disturb detector.

Fig. 22. Measured peak and average energy efficiency and the simulated
power breakdown of the proposed RRAM macro.

Fig. 23. Estimated inference accuracy over tasks and network architectures.

the threshold, the reset operation is initiated for the accessed
HRS cell. A single WR pulse is sufficient to reset the HRS
cell that suffers from RD-disturb since the resistance of the
RRAM cell is still close to the HRS resistance. An HRS cell

TABLE I

SYSTEM SUMMARY AND COMPARISON

Fig. 24. Microphotograph of the test chip.

is intermittently monitored on the premise that the input bit
is independent across WLs. Considering nine-WL accesses
in the proposed RRAM macro, the probability to access a
single RRAM cell is 1/512. This rate of the RD-disturb
detection is sufficient to provide RD-disturb-free operation
with no performance or power penalty due to the excellent data
retention in RRAM. The online RD-disturb detector is also
expected to address other time- and temperature-dependent
drifts common in RRAM.

VI. MEASUREMENT RESULTS

The proposed hybrid CIM/digital RRAM macro is fabri-
cated in a 40-nm CMOS and RRAM process and assembled in
a QFN48 package. The test chip supports voltage-sensing pro-
grammable multi-bit CIM and MAC operation while achiev-
ing the reliability of RRAM cells. The measured 1-b CIM
operation in the RRAM macro is shown in Fig. 18 where
the logic waveform is enhanced for visibility. During the
measurement, the weight is comprised of four consecutive
LRS cells and five HRS cells, and the input with four-cell
accesses (when N.RRAM = 4) is bitwise shifted. The resul-
tant CIM output is generated with the latency of eight unit
intervals. The data and data strobe of 50 Mb/s are applied to
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the proposed RRAM macro and the system clock frequency
is 100 MHz in the digital post-MAC block. The latency is
dominantly incurred by the digital post-MAC block supporting
the programmability of multi-bit CIM operation. Fig. 19 shows
the measured linear V.RBL over the number of accessed LRS
cells in the proposed RRAM macro. We indirectly measure
the V.RBL for varying N.RRAMs and show the measured
results. The linearized V.RBL is achieved due to the IA BL
current control with the feedback amplifier. Regardless of the
N.RRAM, the V.RBL is placed in a constant region such that
the ADC-based readout circuits can obtain the CIM output.
In addition, the proposed voltage-sensing RD provides more
sampling margin in the case of lower N.RRAMs, thereby
attaining additional reliability under sparse inputs compared
to the current-sensing RD. The discrepancy of the lowest
V.RBL when the N.RRAM is 1 and 9 is incurred by the
parasitic resistance of an SL MUX switch (see Fig. 11). This
discrepancy can be mitigated by adjusting the combinations
of the ADC threshold in the readout circuit (Fig. 12), thereby
obtaining the reliable CIM output. With a low bias voltage (V.b
in Fig. 11) of the feedback amplifier, the V.RBL demonstrates
semi-constant voltages that are desirable in the current-sensing
RD. Thus, the bias voltage is carefully set to demonstrate the
linearized V.RBL for the voltage-sensing RD. Fig. 20 shows
the measured V.RBL distribution of HRS cells with and with-
out the IWR. The V.RBL indirectly represents the resistance
of an accessed RRAM cell. Without the IWR, a single reset
operation leads to a wide distribution of the HRS tail bits
that are the outlier in the HRS distribution. By employing the
IWR, the distribution of HRS resistances is tightened over WR
operation. Thus, the tail bit is suppressed. Due to the IWR,
the standard deviation of V.RBL of HRS cells is decreased
from 37.74 to 12.78 mV. The average number of iterations
is 5.07. Fig. 21 shows the measured drift of the normalized
HRS resistance over RD operation and the restoration of the
HRS resistances due to the online RD-disturb detector. In this
measurement, the extreme condition where the V.WL of 1.5 V
and the VDD of 1.1 V for the BL peripheral circuits are
applied in conjunction with the external heat of 85 ◦C is used
to accelerate the RD-disturb. Under the condition, the HRS
resistance decreases over RD operation. Then, once the HRS
resistance reaches the threshold of the RD-disturb detector,
the flag to reset the HRS cell is asserted. Finally, the HRS
cell is reset to restore a high resistance. The online RD-disturb
detector successfully detects the decrease of HRS resistances
without hindering CIM operation. Fig. 22 shows the measured
energy efficiency and the simulated power breakdown of
the proposed RRAM macro. For CIM, the proposed RRAM
macro achieves the average (peak) energy efficiency of 4.15
(56.67) TOPS/W for 1-bit operations. The energy efficiency is
limited by low RRAM resistances providing appropriate data
retention in the current process. The peak energy efficiency
is measured when the 9-bit input has the sparsest vector and
the weight is randomly distributed. The measured peak energy
efficiency in the 2k-bit CIM modes (k = 1, 2, and 3) are 28.1,
14.1, and 7.0 TOPS/W, respectively, since the 2k-clock cycles
are required in the multi-bit CIM operation. The simulated
power breakdown is shown in the case of the average energy

efficiency, which has the 50% activity of the inputs and
weights. The corresponding power consumption per BL is
0.205 mW. The power consumption of V.REF generators
is excluded since it is negligible in high-parallelized RCIM
architectures sharing V.REFs across BLs. Fig. 23 shows the
estimated inference accuracy over tasks and network archi-
tectures. The estimation is conducted by applying the worst
case error rate of the CIM output to the MAC operation of AI
systems. The measured worst case error rate is 13% when the
number of accessed LRS cells and N.RRAM is 9. It is worth
noting that the error rate is dominantly determined by the
noise of RRAM cells since the readout circuit attains error-free
CIM outputs when external voltages are applied instead of
the V.RBL. The inference accuracy in MNIST and ImageNet
is estimated with LeNet, VGG, and MobileNet architectures.
The proposed RRAM macro sheds light on the feasibility of
supporting high algorithm-level accuracy across a suite of AI
benchmarks with less than a 6% loss of accuracy. The accuracy
shown in Fig. 23 is derived from simpler DNNs. The state-of-
the-art accuracy on more complex networks is higher and can
be analyzed as a part of future work. Table I summarizes and
compares the state-of-the-art CIM architectures. Compared to
the prior arts, the voltage-sensing CIM architecture enables
the reliable CIM and MAC operation under a low ON/OFF

ratio while monitoring the RRAM resistance in WR and RD
operations. In addition, the proposed RRAM macro supports
the programmable 1–8 bit MAC operation. The die photograph
is shown in Fig. 24. The test chip is fabricated in a TSMC
40-nm CMOS and RRAM process.

VII. CONCLUSION

This article presents a voltage-sensing hybrid CIM/digital
RRAM macro for the reliable CIM and programmable MAC
operation. RCIM architectures are of importance in achiev-
ing energy-efficient computing systems due to an inherent
MAC-friendly structure, high bit density, and nonvolatility of
RRAM. However, some challenges of RRAM technology, such
as the tradeoff between the ON/OFF ratio and the damage
to RRAM cells, should be addressed in a circuit-domain
approach. In particular, under a low ON/OFF ratio, widespread
current-sensing RD cannot provide reliable CIM due to the
logic ambiguity incurred by the high HRS current. Thus,
the design presented in this article surmounts the drawback
of a low ON/OFF ratio by incorporating voltage-sensing RD
with the resistance calibration in WR and RD operations.
The proposed RRAM macro enables voltage-sensing RD due
to the IA BL current control with the feedback amplifier.
The proposed BL structure attains the linearized V.RBL rep-
resenting the CIM output without suffering from the logic
ambiguity. Furthermore, the resistance distribution of RRAM
cells is tightened by the IWR in the WR operation and retained
by the online RD-disturb detector without hindering CIM
operation. The digital post-MAC block renders programmable
1–8-b MAC operation to support both versatile AI systems.
The proposed RRAM macro with a 64-kb RRAM array
demonstrates the correct CIM and MAC operation. The test
chip fabricated in a 40-nm CMOS and RRAM process exhibits
a peak energy efficiency of 56.67 TOPS/W.
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