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This work presents a Cross-device Deep-Learning based Electromagnetic (EM-X-DL) side-channel

analysis (SCA) on AES-128, in the presence of a significantly lower signal-to-noise ratio (SNR) compared

to previous works. Using a novel algorithm to intelligently select multiple training devices and proper choice

of hyperparameters, the proposed 256-class deep neural network (DNN) can be trained efficiently utiliz-

ing pre-processing techniques like PCA, LDA, and FFT on measurements from the target encryption engine

running on an 8-bit Atmel microcontroller. In this way, EM-X-DL achieves >90% single-trace attack accuracy.

Finally, an efficient end-to-end SCA leakage detection and attack framework using EM-X-DL demonstrates

high confidence of an attacker with <20 averaged EM traces.

CCS Concepts: • Security and privacy → Embedded systems security; Side-channel analysis and

countermeasures;

Additional Key Words and Phrases: Electromagnetic side-channel attacks, cross-device attack, deep learning,

profiling attacks, end-to-end SCA

ACM Reference format:

Josef Danial, Debayan Das, Anupam Golder, Santosh Ghosh, Arijit Raychowdhury, and Shreyas Sen. 2021.

EM-X-DL: Efficient Cross-device Deep Learning Side-channel Attack With Noisy EM Signatures. J. Emerg.

Technol. Comput. Syst. 18, 1, Article 4 (September 2021), 17 pages.

https://doi.org/10.1145/3465380

1 INTRODUCTION

With the ever-increasing prevalence of embedded devices and the growth of the Internet of

Things (IoT), the security of these devices has become a major concern. Some of the most
serious threats to the security of these devices are side-channel analysis (SCA) attacks. By
analyzing physical leakage information regarding the power [22], timing [23], or electromagnetic
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Fig. 1. Overview of cross-device EM profiled SCA. Profiled EM attacks are some of the most powerful side-
channel attacks. By using EM measurements, the attack is non-invasive, an advantage over power attacks
which require modifying the device under attack. Profiled attacks can reveal secret information using very few
traces, but require a profiling phase. In a real attack, this profiling is done with separate devices completely
under the attacker’s control, then the attack is done on a new device. However, there exist variations from
one instance of a device to another. These cross-device variations can cause problems if not accounted for.

(EM) signatures [2], cryptographic secrets can be extracted. Among the most powerful of these
side-channel attacks are profiled attacks [8], and recently machine learning (ML) models have
been shown to be very effective as both a defense, as in [35], and in the profiled SCA attack
scenario using both power and EM measurements [18, 30].

Profiled attacks are incredibly powerful since far fewer victim measurements are needed to re-
cover secret information compared to non-profiled attacks, reducing the time an attacker needs
to have access to a device. Additionally, EM-based attacks are non-invasive, unlike power-based
attacks, as the victim device does not need to be physically modified in any way to collect mea-
surements. The basic setup of a profiled, EM-based side-channel attack is shown in Figure 1.

The main limitation of ML models for profiling SCA attacks is their portability to other target
devices. Specifically, these models have been shown to work when the same device is used for
both profiling and testing, however, in a real attack, the attacker would use a device to profile,
then attack a separate, identical device. This issue of portability has recently been addressed for
power ML SCA models on AES-128 in [4], [17], and [21], and also with a 3-class DNN attacking RSA
implementations for EM SCA [7]. However, these works only consider high SNR scenarios, and
with the introduction of SNR reducing countermeasures [10, 11, 14, 15], or low-cost, low-sensitivity
EM probes [12, 16, 33], practical attacks must address the reality of low SNR trace measurements. In
this work, we show a deep-learning-based cross-device SCA attack with low-SNR EM signatures.

1.1 Motivation

A 256-class DNN model that can be trained successfully (99% validation accuracy) [17] using raw
time-domain AES-128 power traces for a particular microcontroller is rendered futile for low SNR
EM SCA training even with traces collected from the same device (Figure 2(a)). Figure 2(b) shows
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Fig. 2. (a) DNN training with high SNR raw power and low SNR raw EM traces. The model learns quickly
from the power traces, but is unable to learn from the raw EM traces, demonstrating the need for new
methods to train DNNs with EM traces. (b) The variance of a point of interest (time sample 103) for both
power and EM traces, demonstrating significantly lower SNR of the EM traces.

the variance of a point of interest (POI, determined using the difference of means approach [8, 9])
across 10K EM and power traces. It clearly shows that the variation in the EM traces is much
higher than the power traces, implying significantly lower SNR for the EM signatures. Indeed,

when considering the side-channel SNR as defined in [26] as SNR =
V AR[Q]
V AR[N ] , withQ being the side-

channel leakage and N being the noise, there is a large difference when comparing power and EM
measurements. The side-channel SNR across a random selection of seven devices for power traces
is 19.6 dB, while the SNR of equivalent EM traces is 3.1 dB, as is seen in Figure 3. Note that the
SNR of a single device is comparable for both power and EM, but adding additional devices lowers
the SNR drastically, due to the device-to-device variations. In fact, a majority of the lower SNR
in the EM realm is due to inter-device variations being more prominent in EM compared to power,
again looking at Figure 3. So, to solve the problem of portability, we need to take into account the
inter-device variations [32]. To resolve all these issues, we utilize averaging to enhance the SNR,
analyze different pre-processing techniques to reduce the dimensionality of the data, and develop
an intelligent algorithm to choose the set of training devices for efficient profiling, given the need
for more training devices to train a model due to the larger effect of inter-device variations. Finally,
we also propose an end-to-end EM-X-DL attack framework to perform EM scanning and find the
best point of leakage on an unseen target device. A combination of these techniques allows us to
achieve >90% cross-device test accuracy.

1.2 Contribution

The specific contributions of this work are:

• This work presents a cross-device deep-learning-based EM SCA (EM-X-DL) on an AES-128
encryption engine using a 256-class DNN in a low SNR scenario, with ten devices for training
and tested on a different set of ten test devices (Section 3).
• Effect of different pre-processing techniques including principal component analysis

(PCA), linear discriminant analysis (LDA), fast Fourier transform (FFT), spectrogram,
on handling the portability issue is analyzed and compared, showing that the LDA is the
most efficient approach to achieve maximum average cross-device key prediction accuracy
of ∼91.5% with minimum training time (Section 3.3).
• An algorithm for the optimal selection of the training devices is proposed, so that the number

of training devices and thus the overall training time is minimized (Section 4, Algorithm 1).
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Fig. 3. Change in side-channel SNR as devices are added to the dataset for both power and EM. While the
power SNR remains fairly high as additional devices are added, the EM SNR drops sharply, indicating a much
larger effect of cross-device variations on side-channel leakage in the EM domain compared to power.

2 BACKGROUND & RELATED WORK

2.1 EM Side Channel Attacks

Since the inception of power SCA [22], a wide variety of attacks have been demonstrated, which
can be broadly classified into non-profiled attacks like differential/correlational power/EM analysis
(DPA, CPA, DEMA, CEMA) [5, 22], and profiled attacks, such as the statistical template attacks [8]
and ML SCA attacks. While non-profiled attacks perform an attack in a single phase on a target
device, profiled attacks consist of two phases, a profiling phase, to learn a leakage pattern and
an attack phase, to attack with only a few traces, which practically operate on different devices.
During the profiling stage, the attacker will collect traces from a “profiling” device identical to the
victim device to build a model. During the attack, this model is then used to recover cryptographic
secrets from the victim device.

2.2 ML-SCA Attacks

Template attacks have been shown [8] to be capable of recovering secret keys with a small number
of traces, making them among the most powerful side channel attacks. More recently, supervised
ML techniques have been used for profiling SCA [18]. Among these techniques, DNNs have been
one of the most successful, defeating many common countermeasures, such as masking [20] and
clock jitter [6]. Table 1 provides the summary of related works on profiling attacks. Till date, only
one prior work [7] has focused on cross-device EM ML SCA attack using only one test device
running RSA. Note that this attack required a 3-class DNN [7], whereas the proposed single-trace
(averaged) EM-X-DL attack on AES-128 requires a 256-class DNN, and thus the effects of portability
across devices is significantly more prominent. Additionally, AES measurements have significantly
lower side-channel SNR compared to a public key algorithm such as RSA.

3 SIDE-CHANNEL ATTACK USING EM-X-DL

This section evaluates the single-trace (averaged) EM-X-DL attack on AES-128 using a 256-class
DNN. For profiling the DNN, EM traces are collected from a set of ten training devices (8-bit
Atmega microcontrollers) using the Chipwhisperer [29] platform, specifically the CW-Lite capture
board, along with an off-the-shelf H-field sensor (10 mm loop diameter) and a 40 dB wideband
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Table 1. Literature Review for Profiled-Attack Scenario

Profiled-Attack

Scenario

Measure-

ment Type

Profiling

Method

Corresponding

Article(s)

Same-Device
Power

TA Chari et al. [2003] [8]
SVM, RF Bartkewitz et al. [2013] [18]; Lerman et al. [2014] [24]

DNN Maghrebi et al. [2016] [25]

EM
TA Chari et al. [2003] [8]

DNN Prouff et al. [2018] [30]

Cross-Device

Power
TA Choudary and Kuhn [2018] [9]

DNN Das et al. [2019] [17]; Bhasin et al. [2019] [4]

EM

TA Montminy et al. [2013] [27]
3-Class
DNN

Carbone et al. [2019] [7]
(RSA)

256-Class

DNN

This Work*

(AES-128)

*First EM Cross-Device Deep-Learning Attack on a Symmetric Key Algorithm.

amplifier. The efficient selection of the training devices is discussed in the subsequent section. For
evaluating the attack, ten different devices are reserved separately and the cross-device (EM-X-DL)
accuracy is reported as an average of these ten test devices.

3.1 Effect of EM Probe Choice

The EM probe used to collect both training and testing traces has an effect on the side-channel
EM signals recorded. Two probes were considered: first a Langer probe with very high spatial
sensitivity (100 − μ m diameter), and second a texbox probe with low spatial sensitivity (10 −mm
diameter). In order to estimate the leakage captured by each of the probes, the test vector leakage

assessment (TVLA) [3] was used to measure side channel leakage, scanning over the surface of
one of the 8-bit X-MEGA devices under attack. The results of these scans can be seen in Figure 7. As
expected, the Langer probe finds high leakage in a very small area, while the larger probe detects
leakage over a much larger area of the chip. Additionally, the larger probe detects a much higher
level of leakage overall. Since the X-MEGA device is running a software implementation of AES-
128, side-channel leakage is not highly localized, as it would be in a hardware implementation,
and the high spatial sensitivity of the Langer probe does not provide a large benefit in rejecting
algorithmic noise, as there is not a single register to target during an attack. For the rest of this
work, results will be shown from the larger probe, as the leakage levels are already lower than
power, and a variety of effects can be more easily investigated with the relatively higher leakage
levels with the larger Tekbox probe—a t-value of 8 on the Langer probe vs. a t-value of 22 with the
Tekbox probe, as seen in Figure 7.

3.2 DNN Architecture & Training

Figure 4 shows the architecture of the proposed 256-class fully connected (FC) DNN for the
EM-X-DL attack. It should be noted that the EM traces captured using Chipwhisperer are time-
synchronized and hence use of a convolutional layer is not necessary [21]. Three thousand time
samples for each trace were collected from the 8-bit microcontrollers running AES-128, clocked
at 7.37 MHz. Three thousand samples cover the entire AES encryption. Reducing the number of
samples could affect accuracy if samples containing side-channel leakage are removed, but would
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Fig. 4. Architecture of the proposed DNN. The network contains three dense layers, following each dense
layer is a ReLU activation function, batch normalization, and finally a dropout layer. The final output layer
provides the output class predictions - the key byte, and thus is size 256, and uses a softmax activation
function.

Fig. 5. Effect of averaging on the test accuracy of the 256-class DNN when using raw traces and PCA-
transformed traces. Increasing averaging hardly allows the DNN to learn from the time-domain EM traces.
With PCA used as a pre-processing step, averaging upto 20× smoothly increases the test accuracy to >99%

for the same device.

be unlikely to otherwise—especially when PCA or LDA is used as a pre-processing method, as these
methods will reduce the dimension of the trace, leaving only relevant side-channel information.

The DNN has a 3,000-neuron input layer, followed by three hidden layers with 100, 1,024, and
512 neurons, respectively, and finally the 256-neuron output layer. Rectified Linear Unit (ReLU)

activation functions along with batch normalization and dropout used to achieve generalization
are utilized for training the DNN. The Adam optimizer, with an initial learning rate of 0.005, which
is halved whenever five consecutive training epochs pass without any validation accuracy improve-
ment, is used for training. The effect of different hyperparameters is shown in Figure 6. A dropout
of 0.45 is the most optimum for the first hidden layer (Figure 6(a)), while 1,024 hidden neurons for
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Fig. 6. Effect of hyperparameters on both same- and cross-device test accuracy for the PCA-DNN model.
(a) Dropout between the first and second hidden layers helps prevent overfitting, maximizing cross-device
test accuracy at a dropout rate of 0.45. (b) Layer size also demonstrates a similar trend, and reaches maximum
cross-device test accuracy at ∼1000 for the second hidden layer.

Fig. 7. Heatmaps created by performing a fixed vs. random TVLA on a 10 × 10 grid spanning the surface
of the chip. (a) shows results obtained from a Langer ICR HH100-27 probe, while (b) shows results from a
Tekbox probe. The leakage patterns of the two probes are quite different, which is not unusual as the Langer
probe has a much higher spatial resolution. The Langer probe also measured the lower side-channel leakage
overall, even at the maximum location.

the second hidden layer (Figure 6(b)) provides the maximum cross-device test accuracy without
overfitting to the training devices. For all the results that follow, unless otherwise mentioned, the
DNN is trained with ten devices for 100 epochs with a batch size of 64.

Now, as the raw EM traces collected from the ten training devices (100K traces each) are fed
to the DNN classifier, the validation accuracy remains low (<1%) although training accuracy in-
creases, even after 100 epochs. Figure 5 (blue curve) shows the effect of averaging on the same-
device (test) accuracy. Even with 20× averaging, the time-domain traces shows a test accuracy of
<1%, while a dimensionality reduction using PCA achieves >99% test accuracy for the same device.
For cross-device attacks, the accuracy is lower, only 90% with 20× averaging and PCA. Figure 9
shows this result in terms of SNR, and shows the DNN’s accuracy for lower levels of SNR as well
(achieved by lowering the amount of averaging). As expected, the accuracy lowers with the SNR,
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Fig. 8. PCA and LDA reach their respective peaks (250 and 10) with relatively few features compared to the
size of the original traces (3000). As LDA features are chosen to maximize the class separation, while PCA
maximizes variance, LDA is a more efficient technique for this higher dimensional data as it can train the
DNN significantly faster.

following a similar pattern to Figure 5. Next, we will look into the effect of 20× averaging and
different pre-processing strategies on the cross-device test accuracy. Note that, unless otherwise
specified, cross-device test accuracy refers to the average key prediction accuracy of the EM-X-DL
attack across all the ten test devices.

3.3 Single-trace Attack With Pre-processing

In the previous subsection, it was shown that the averaged time-domain EM traces (100K × 10 de-
vices) do not train the DNN efficiently, while dimensionality reduction techniques like PCA have a
significant impact in training the DNN. Here, we show results of using PCA [21] and LDA [32] on
the time-domain EM traces, as well as the effects of frequency-domain-based processing (FFT, spec-
trogram [31, 36]) on the cross-device test accuracy for a DNN implemented using Tensorflow [1].

3.3.1 Dimensionality Reduction Using PCA & LDA. PCA transforms the input EM trace samples
to their principal sub-space where individual features maximize the variance, while LDA achieves
the same effect by maximizing the inter-class separation. As seen in Figures 8(a) and 8(b), the opti-
mal number of features to use in these techniques is much lower than the dimensionality of the raw
trace, around 250 in the case of PCA, and a mere 10 in the case of LDA. As shown in Figures 10(a)
and 10(b), both of these techniques lead to roughly similar cross-device test accuracy, 91%. How-
ever, LDA is more efficient as it requires significantly lower training time (< 10×) than PCA to
achieve the same level of accuracy. This can be seen in Figure 10, which shows that the accuracy
of the LDA-based method stops increasing after ∼10 epochs, while in the PCA-based method, accu-
racy increases throughout all 100 epochs. In our case, this means that the time required to achieve
iso-accuracy for LDA-based EM-X-DL is ∼100 seconds, while it is ∼1,000 seconds for PCA-based
EM-X-DL. For both methods, as well as the others presented in this section, the time needed to re-
cover the secret key is essentially the same and is low, as only 20 traces are needed, and prediction
is done with a single evaluation of the neural network.

3.3.2 Frequency Domain Analysis Using FFT & Spectrogram. Using FFT on the time-domain
averaged (20×) EM traces produces an EM-X-DL attack accuracy of ∼91% (Figure 10(b)), which
is similar to PCA/LDA. However, it requires higher training time than both PCA and LDA, and
hence is not the most efficient approach. Spectrogram combines both time- and frequency-domain

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 1, Article 4. Pub. date: September 2021.



EM-X-DL: Efficient Cross-device Deep Learning Side-channel Attack 4:9

Fig. 9. Effect of side-channel SNR on the test accuracy of the 256-class DNN when using PCA-transformed
traces. As expected, at higher SNR levels, the DNN achieves higher levels of cross-device test accuracy. Note
that the limited SNR range is due to the use of avegraging to change SNR, while a majority of SNR reduction
is a result of cross-device variations, as seen in Figure 3.

information and is naturally two-dimensional. Hence, a 2-D CNN [34] is used for the spectrogram,
which achieves a cross-device test accuracy of 74.6% (Figure 10(b)).

4 EM-X-DL SCA: EFFICIENT SELECTION OF TRAINING DEVICES

As shown in the previous works [4, 17], the challenge of a ML SCA model being able to accurately
classify traces collected from devices it has not been trained with, can be addressed by training
with a variety of devices, so that the model does not overfit to the particular leakage pattern of one
device. This remains true when using EM traces; however, many more devices are required to gain
a high level of cross-device test accuracy, because, as seen in Figure 3, EM measurements are more
sensitive to cross-device variations. Moreover, averaging clearly plays a key role, further increasing
the number of traces required. Thus, it is of interest to be able to train using the smallest possible
set of devices, reducing both the number of traces needed as well as the training time for the DNN.
For this, two things must hold true: First, the choice of devices must affect the cross-device test
accuracy for a given number of devices, and second, there must be a way of determining whether
or not to include a device for training from a small sample of traces.

4.1 Cross-device Accuracy Variance

To address the first point, the effect of the subset, the EM-X-DL model is trained with a random
subset of six devices, then tested against all the remaining fourteen devices. As shown in Figure 11,
the average cross-device test accuracy can vary greatly even for a set of only six devices, with
accuracy ranging from 10% to 75% for different six-device combinations. This shows that there are
subsets of training devices that can improve accuracy rather than simply adding more

devices. However, as there are a large number of possible subsets for a given size, an algorithm
is necessary to choose one such subset which results in high cross-device test accuracy. Such an
algorithm would then enable an attacker to gather quick measurements from a large set of devices,
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Fig. 10. Effect of the different pre-processing techniques on (a) the DNN training accuracy, (b) the cross-
device attack (EM-X-DL) accuracy. While all the pre-processing techniques result in high validation (same-
device) accuracy, PCA, LDA, FFT result in >90% cross-device test accuracy, while spectrogram yields 74.6%

cross-device test accuracy.

and determine a small subset of devices to collect a large number of traces from, for training the
DNN model.

4.2 Bivariate POI Based Device Selection

The proposed algorithm begins by identifying two points of interest (POIs) in the traces. This can
be done through any POI identification technique, here POIs are chosen as time samples which
have the highest difference of means (DOM). Once the top two POIs are found, the mean μi =

(μPOI 1, μPOI 2) of this POI pair is calculated across all traces for each device. Then, to construct
the subset of devices for training, one device is initially chosen arbitrarily, and additional devices
are added as follows: The mean POI pair of all devices currently included in the training subset,
μt r ain is calculated. Then, the next device is chosen such that | |μi −μt r ain | |2 is maximized, where
i varies over all devices not already included in the training subset. In this way, at each step, the
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Fig. 11. Distribution of cross-device test accuracy of the 256-class PCA-DNN trained on random subsets of
six devices. The mean accuracy is 60%; however, depending on the subset, it can vary significantly between
30–75%, highlighting the need for an intelligent selection of the training devices.

ALGORITHM 1: Algorithm for Device Selection

Input: Trace Samples from all Devices: TraceData, Number of Devices to select: nDev

Output: Subset of size nDev

for dev = 1 : length(TraceData) do

μ1 = mean(TraceData[dev][:,POI[1])

μ2 = mean(TraceData[dev][:,POI[2])

meanMap.append(dev, (μ1, μ2))

end for

subset = [1]

for i = 1 : nDev−1 do

μtr ain = mean(meanMap[subset])

nextDev = argmaxj | |μtr ain−meanMap[j][2]| |
subset.add(meanMap[nextDev][1])

meanMap.remove(nextDev)

end for

return subset

device whose top two average POIs are furthest from the average POIs of the currently selected
devices is added to the training set. This method is detailed in Algorithm 1, and depicted as a flow
chart in Figure 12. The algorithm has a computational complexity of O (mn + n2) where m is the
number of traces for each device, and n is the number of devices.

Figure 13 shows the 2-D bivariate normal distribution of the first three devices chosen using this
algorithm, along with the total distribution of all devices. With these three devices, a large portion
of the distribution spanned by all the devices is covered, revealing the successful operation of the
algorithm. Importantly, this algorithm also provides the desired results during training, shown in
Figure 14, as using this algorithm to choose the training devices gives higher cross-device (EM-
X-DL) accuracy for any number of devices. Additionally, training with the devices closest to the
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Fig. 12. Flow chart depiction of Algorithm 1. Each device is first characterized by a pair of mean POI values.
Devices are then chosen for training by finding the device whose POI values are furthest from the mean POI
of the currently selected devices.

current training set, as opposed to the furthest away, results in cross-device test accuracy signif-
icantly lower than the maximally different devices, and generally lower accuracy than randomly
selected devices as well. These results were obtained with the proposed 256-class DNN, using 20×
averaging and PCA-based pre-processing. From Figure 14, we also see that to attain a certain cross-
device test accuracy, this algorithm requires between 20%–40% fewer training devices compared
to random device selection.

5 EM LEAKAGE ASSESSMENT & ATTACK

Once the DNN model for the EM-X-DL SCA is trained, the main goal of an attacker is to break
the secret key with minimum number of traces from an identical but unseen target device. This
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Fig. 13. Bivariate analysis of the first three devices chosen by Algorithm 1. The top three chosen devices
already span a large portion of the distribution containing all devices.

section demonstrates an end-to-end attack strategy using the EM-X-DL model on a new device.
By scanning the surface of the victim microcontroller and collecting traces at each point (seen in
Figure 15(a)), the heatmap in Figure 15(b) was created by classifying the traces and determining
the test accuracy for each point. As all training traces were collected from the same location (with
maximum leakage on the chip evaluated using test vector leakage assessment (TVLA)), as expected
the accuracy is highest in this region, then drops off sharply further from the measurement point.
Figure 15(c) shows the minimum traces to disclosure (MTD) from a CEMA attack over the same
chip. Comparing this to the accuracy heatmap shows that the ML model can correctly classify
traces that are collected from a location which has an MTD less than 250.

Now, in this virtual grid, to converge to the best location for the EM-X-DL attack on the new de-
vice, the attacker can query the EM-X-DL model with multiple averaged traces collected from the
test device and observe if the frequency of the highest predicted key byte is distinguish-

able from the next. Should leakage be present, the correct key byte would be predicted more
often than others. If leakage is not present, predictions would be split between several key values.
Thus, the ratio between the first and second most commonly predicted values provides a measure
of the attacker’s confidence in the prediction. This effect is shown in Figure 15(d), which shows
the five most common predictions for both a location of high leakage (1,2) (left) and low leakage
(2,9) (right). Note that, with this prior knowledge of the heatmap, the attacker can also divide the
chip into four quadrants (for this particular chip) and get the correct key from the leftmost quad-
rant with a very high confidence. The correct key byte should be distinguishable because when
the DNN is predicting correctly, that is, when there is leakage that the DNN was trained on, the

softmax function (σ (zi ) = ezi
∑K

j=1 e
zj

) makes the highest guess much higher than the next, due to the

exponential nature of the softmax function. That is, if the DNN cannot predict when leakage is not
present, then all values will be close, and even with softmax, there will not be a large separation
between the first and second keybytes.

6 REMARKS & CONCLUSION

This work showed a Cross-device Deep Learning based EM (EM-X-DL) SCA attack on a symmetric
key encryption engine (AES-128) in a low SNR setting. Utilizing a 256-class DNN, averaged EM
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Fig. 14. Depending on the choice of devices used for training, cross-device test accuracy varies significantly.
Choosing “dissimilar” devices by Algorithm 1 gives high accuracy, while choosing “similar” training devices
yields a low cross-device test accuracy. Randomly selecting devices shows slightly higher test accuracies
than choosing “similar” devices.

Fig. 15. (a) 10 × 10 virtual grid overlay of the chip. (b, c) Comparison of EM-X-DL model accuracy to CEMA-
MTD. The ML model is able to predict with high accuracy in the region of the chip with low MTD values,
however, when the MTD rises above 250, the model is unable to correctly predict the key values. (d) EM-
X-DL model predictions on 20 samples from a high leakage location (1,1), and a low leakage location (9, 4)
on a test device. At a location with high leakage, the frequency of the highest predicted key byte value is
distinguishable from the next, demonstrating the high confidence of the attacker.

traces from 10 training devices along with dimensionality-reduction-based pre-processing (like
LDA) the model achieves∼91.5% EM-X-DL single-trace (averaged) attack accuracy against another
set of ten test devices. Table 2 summarizes the EM-X-DL attack accuracy for each of the different
techniques studied in this article, while Table 3 compares EM-X-DL with other works. Note that
the high accuracy of other works can be attributed to one of a number of factors. In the case of [7],
the classifier is only 3-class, as the target algorithm is RSA, making training far simpler. In [17], the
power side-channel is used, and has a considerably higher SNR compared to the EM side-channel
considered in this work. Finally, Montminy et al. [27] uses an additional 500 traces from the test
device to account for side-channel variations, easily an order of magnitude more than the number
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Table 2. Cross-Device Attack Performance of Deep
Learning-Based Methods for Different

Pre-Processing Techniques

Preprocessinд Cross − Device Accuracy (%)
Technique Minimum Average Maximum

Time Domain 0.28 0.37 0.45
PCA 81.27 90.72 96.77
LDA 81.21 91.52 96.42
FFT 82.40 91.07 95.50

Spectrogram 30.53 74.58 94.02

Table 3. Comparison among EM-X-DL and Related Works

Corresponding
Article

Target
Algorithm

Measurement
Type

Number of
Classes

Profiling
Method

Traces
Required

Accuracy

Carbone et al. [2019] [7] RSA EM 3 DNN 15 99.91%
Das et al. [2019] [17] AES-128 Power 256 DNN 1 99.9%

Montminy [2013] [27] AES-128 EM 256 TA 515 99.6%
This Work AES-128 EM 256 DNN 20 91.5%

of traces used in this work. An algorithm for efficient selection of training devices is proposed
to speed up the profiling phase. Finally, an end-to-end attack using EM scanning is demonstrated
showing that the attacker can detect the position of highest leakage on the chip using the proposed
EM-X-DL model along with the secret key with high confidence.

For the future scope of this work, the end-to-end EM-X-DL attack can be more generalized by
capturing traces from multiple locations across the chip, rather than a single location, for training
the DNN. This would make the EM-X-DL attack much more efficient and faster as the attacker
would be able to extract the key without having to detect one of the highest leakage locations on
the chip.

Additionally, it was shown that the SNR of traces used for training and testing have a strong
impact on the accuracy of the produced DNN as expected. This encourages development of coun-
termeasures focused on reducing the SNR of side-channel signals, such as [13], [15], [19] and
[28]. While such countermeasures can always fundamentally be defeated by collecting additional
traces, by reducing the SNR significantly, collecting a sufficient number of traces from a large
enough variety of devices becomes infeasible.
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