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Abstract

We develop a mathematical framework for solving
multi-task reinforcement learning (MTRL) prob-
lems based on a type of policy gradient method.
The goal in MTRL is to learn a common policy
that operates effectively in different environments;
these environments have similar (or overlapping)
state spaces, but have different rewards and dy-
namics. We highlight two fundamental challenges
in MTRL that are not present in its single task
counterpart, and illustrate them with simple ex-
amples. We then develop a decentralized entropy-
regularized policy gradient method for solving the
MTRL problem, and study its finite-time conver-
gence rate. We demonstrate the effectiveness of the
proposed method using a series of numerical exper-
iments. These experiments range from small-scale
"GridWorld" problems that readily demonstrate
the trade-offs involved in multi-task learning to
large-scale problems, where common policies are
learned to navigate an airborne drone in multiple
(simulated) environments.

1 INTRODUCTION

In reinforcement learning (RL), an agent tries to learn an
optimal policy through repeated interactions with its envi-
ronment, modeled as a Markov decision process (MDP),
with the goal of optimizing its long-term cumulative re-
wards. Combined with powerful function approximation
such as neural networks, (deep) reinforcement learning has
received great successes in solving challenging problems in
different applications, including game playing [Mnih et al.,
2015, Silver et al., 2016, OpenAI et al., 2019], healthcare
[Yu et al., 2019, Esteva et al., 2019], robotics [Kober et al.,
2013, Haarnoja et al., 2019], and autonomous navigation
[Kretzschmar et al., 2016, Zhu et al., 2017, Anwar and Ray-

chowdhury, 2020]. These results, however, are primarily
achieved only on a single task, and every new task almost
requires the agent to be re-trained from scratch.

Multi-task reinforcement learning (MTRL) addresses this
problem by finding a single policy that is simultaneously
effective for a number of tasks. We are interested in devel-
oping a new method for MTRL by using a group of learning
agents. We consider a scenario where multiple agents, each
learning in its own environment, work together to learn a
common policy by sharing their policy parameters. This
common policy may perform slightly worse than the opti-
mal policy for each local task, but is general enough to solve
all local tasks reasonably well. In other words, the agent
learns how to perform well not only in its own environment
but also in unseen environments explored by other agents.

Existing approaches to solving problems of this nature [Hes-
sel et al., 2019, Espeholt et al., 2018, Yu et al., 2020] typ-
ically use a specific “master/worker” model for agent in-
teraction, where worker agents independently collect ob-
servations in their respective environments, which are then
summarized (perhaps through a gradient computation) and
reported to a central master. We are interested in understand-
ing MTRL under a more flexible, decentralized communi-
cation model where agents only share information with a
small subset of other agents. This framework is inspired
by applications where centralized coordination is unwieldy
or impossible; one example would be a network of mobile
robots exploring different parts of an area of interest that can
only communicate locally. This question has not yet been
addressed in the existing literature, and our focus, there-
fore, is to solve this important problem by developing a
decentralized policy gradient method.

Main Contributions
•We present a clean mathematical formulation for MTRL
problems over a network of agents, where each task is as-
signed to a single agent. Framing the problem in the lan-
guage of distributed optimization allows us to develop a
decentralized policy gradient algorithm that finds a single
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policy that is effective for each of the tasks.
•We present, in Section 2.2, two simple examples that illus-
trate the fundamental differences between learning a policy
for one task and learning for multiple tasks.
•We provide theoretical guarantees for the performance of
our decentralized policy gradient algorithm. We show that
in the tabular setting, the algorithm converges to a stationary
point of the global (non-concave) objective. Under a further
assumption on the structure of environments’ dynamics, the
algorithm converges to the globally optimal value.
•We demonstrate the effectiveness of the proposed method
using numerical experiments on challenging MTRL prob-
lems. Our small-scale “Grid World” problems, which can
be reliably solved using a complete tabular representation
for the policy, demonstrate how the decentralized policy
gradient algorithm balances the interests of the agents in
different environments. Our experiments for learning to nav-
igate airborne drones in multiple (simulated) environments
show that the algorithm can be scaled to problems that re-
quire significant amounts of data and use neural network
representations for the policy function.

1.1 RELATED WORKS

In recent years, multi-task RL has become an emerging topic
as a way to scale up RL solutions. This topic has received
a surge of interests, and a number of solutions have been
proposed for solving this problem, including policy distil-
lation [Rusu et al., 2015, Traoré et al., 2019], distributed
RL algorithms over actors/learner networks [Espeholt et al.,
2018, Hessel et al., 2019, Liu et al., 2016, Yu et al., 2020],
and transfer learning [Gupta et al., 2017, D’Eramo et al.,
2020]. Distributed parallel computing has also been applied
to speed up RL algorithms for solving single task problems
[Mnih et al., 2016, Nair et al., 2015, Assran et al., 2019].

Similar to our work, Espeholt et al. [2018], Hessel et al.
[2019] also aim to solve MTRL with policy gradient algo-
rithms in a distributed manner. These works propose sharing
the local trajectories/data collected by workers in each envi-
ronment to a centralized server where learning takes place.
When the data dimension is large, the amount of information
required to be exchanged could be enormous. In contrast,
exchanging the policy parameters could be a more com-
pact and efficient form of communication in applications
with a large state representation but a much smaller policy
representation. Moreover, we observe that a wide range of
practical problems do not allow for a centralized commu-
nication topology [Ovchinnikov et al., 2014]. Motivated
by these observations, we consider a decentralized policy
gradient method where the agents only exchange their pol-
icy parameters according to a decentralized communication
graph. This makes our work fundamentally different from
the existing literature. Indeed, our work can be considered as
a decentralized and multi-task variant of the policy gradient

method studied in Agarwal et al. [2020], where the authors
consider a single-task RL.

Other works in meta-learning and transfer learning also es-
sentially aim to achieve MTRL, where these two methods
essentially attempt to reduce the resources required to learn
a new task by utilizing related existing information; see for
example Wang et al. [2016], Nagabandi et al. [2018], An-
war and Raychowdhury [2020]. Our work is fundamentally
different from these papers, where we address MTRL by
leveraging the collaboration between a number of agents.

We also note some relevant works on decentralized al-
gorithms in multi-agent reinforcement learning (MARL),
where a group of agents operate in a common environment
and aim to solve a single task [Zhang et al., 2018, Chu et al.,
2020, Qu and A. Wierman, 2019, Doan et al., 2019, Ding
et al., 2019, Li et al., 2020, Wai et al., 2018, Kar et al., 2013,
Lee et al., 2019, Zhang et al., 2019]. The setting in these
work is different from ours since we consider multi-task RL,
which is more challenging than solving a single task.

2 MULTI-TASK REINFORCEMENT
LEARNING

We consider an MTRL problem with N agents operating
in N different environments. These environments, each
characterized by a different Markov decision process (MDP)
as described below, might also be interpreted as encoding
a different task that an agent attempts to accomplish.
Although each agent acts and makes observations in a
single environment, their goal is to learn a policy that is
jointly optimal across all of the environments. Information
is shared between the agents through connections described
by edges in an undirected graph. We do not require the
state spaces to be the same in each of the environments;
in general, the learned joint policy is a mapping from the
union of state spaces to the action space.

2.1 MTRL FORMULATION

The MDP at agent i is given by the 5-tuple Mi =
(Si,A,Pi,Ri, γi) where Si is the set of states, A is the set
of possible actions, which has to be common across tasks,
Pi is the transition probabilities that specify the distribution
on the next state given the current state and an action,Ri :
Si ×A → R is the reward function, and γi ∈ (0, 1) is the
discount factor. We denote by S = ∪iSi, where Si can share
common states. We focus on randomized stationary policies
(RSPs), where agent i maintains a policy πi that assigns to
each s ∈ Si a probability distribution πi(·|s) over A.

Given a policy π, let V πi be the value function associated
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with the i-th environment,

V πi (si) = E

[ ∞∑
k=0

γki Ri(ski , aki ) | s0i = si

]
, aki ∼ π(·|ski ).

(1)
Similarly, we denote by Qπi and Aπi the Q-function and
advantage function in the i-th environment

Qπi (si, ai) = E

[ ∞∑
k=0

γki R(ski , aki ) | s0i = si, a
0
i = ai

]
,

Aπi (si, ai) = Qπi (si, ai)− V πi (si). (2)

Without loss of generality, we assume thatRi(s, a) ∈ [0, 1],
implying for any policy π and ∀s ∈ Si, a ∈ A

0 ≤ V πi (s) ≤ 1

1− γi
, − 1

1− γi
≤ Aπi (s, a) ≤

1

1− γi
·

(3)

Let ρi be an initial state distribution over Si, and with some
abuse of notation we denote the long-term reward associated
with this distribution as V πi (ρi) = Esi∼ρi [V

π
i (si)].

To parameterize the policy, we consider the scenario where
each agent maintains θi ∈ R|S|×|A| and uses the popular
softmax parameterization1, i.e.

πθi(a | s) =
exp (θi ; s,a)∑

a′∈A exp(θi ; s,a′)
· (4)

The goal of the agents is to cooperatively find a parameter
θ∗ that maximizes the total cumulative discounted rewards

θ∗ = argmax
θ
V πθ (ρ) ,

N∑
i=1

V πθi (ρi), ρ = [ρ1; . . . ; ρN ],

(5)
which is a non-concave objective [Agarwal et al., 2020].

Treating each of the environments as independent RL prob-
lems would produce different policies π∗i , each maximizing
their respective V πi . Our focus in this paper is to find a single
π∗ that balances the performance across all environments.

2.2 MTRL CHALLENGES

While solving single task RL is well understood at least
in the tabular settings, MTRL is more challenging than it
appears from (5). Here, we provide two fundamental chal-
lenges of MTRL, which make this problem much more
difficult than its single-task counterpart.

Deterministic vs stochastic policies. In single task RL it is
known that under mild assumptions there exists a determinis-
tic policy π∗ that maximizes the objective [Puterman, 1994].
In addition, the value function of the optimal deterministic

1Note that our method also works with other forms of stochas-
tic policies.

Figure 1: 2-Task GridWorld Problem

policy satisfies the Bellman optimality equation, motivat-
ing the development of the popular Q-learning method. In
MTRL, where each task operates under different dynam-
ics (transition probability matrices), there need not be an
optimal deterministic policy, and hence there is no natural
analog to the Bellman equation. We illustrate this below
with a simple “GridWorld” example.

In the two-task GridWorld problem shown in Fig. 1, there
are two environments with the same state and action spaces.
The dynamics and reward functions, however, are different.
The two actions, labeled L and R, deterministically move
the agents to the left and right, respectively, in all states in
Task 1. In Task 2, the effect of L and R is reversed for states
S2 and S4: applying L (R) in S2 transitions to S3 (S1),
while applying L (R) in S4 transitions to S5 (S3). In both
environments, the agents stay in states S1 and S5 when they
reach them. In Task 1 there is a reward of +1 for reaching
S1 and a penalty of −1 for reaching S5; these rewards are
reversed for Task 2.

We now consider what happens when we are asked to find
a single policy that maximizes the sum of the cumulative
rewards of the two tasks. It is obvious that the optimal
policy for state S2 and S4 is to always take action L in
order to reach the positive reward or to stay away from
the negative reward. The only state whose optimal policy
remains unclear is S3. With the detailed computation left
to the supplementary material, we find that the optimal
(stochastic) policy π∗ is

π∗(a|S3) =

{
0.5, a = L,

0.5, a = R,

which yields V π
∗
(S3) =

2γ
2−γ2 ·

By symmetry, the two possible deterministic policies

πl(a|S3) =

{
1, a = L

0, a = R
and πr(a|S3) =

{
0, a = L

1, a = R

produce the same value for state S3. For example, if the
agent takes πl as an action in S3, it keeps moving left in task
1 and oscillates between S2 and S3 in task 2. In this case,
one can show that due to the discount factor V πl(S3) = γ.
A similar argument holds for the case when the agent takes

1004



πr in S3, where we have V πr (S3) = γ. In both cases,
V πl(S3) = V πr (S3) < V π

∗
(S3) when γ > 0, which

implies that any deterministic policy is sub-optimal.

As a consequence, RL methods that implicitly rely on the
existence of a deterministic optimal policy (e.g., Q learning)
cannot solve this type of problem. This provides additional
motivation for us to study randomized policies and take on
a policy gradient approach.

Gradient domination condition. In single task RL, it has
been shown that the objective function, despite being non-
concave, satisfies a kind of “gradient domination” condition
[Agarwal et al., 2020], which implies that every stationary
point is globally optimal. This is important as it guarantees
that the policy gradient algorithm, by reaching a stationary
point in single task RL, can find the globally optimal pol-
icy. As we show below, in the multi-task problem we cannot
expect to have this condition in the general setting. The land-
scape of the MTRL objective is so irregular that there could
exist multiple stationary points which are not global optima.
We illustrate this issue with another simple example below.

Let us consider again the 2-task GridWorld problem in Fig.1.
Here we make a slight modification to the dynamics of the
tasks. In task 1 and task 2, regardless of the action taken in
state S2 and S4, the transition probability is

P1(s|S2) =

{
1− p, s = S1

p, s = S3

P1(s|S4) =

{
1− p, s = S3

p, s = S5

P2(s|S2) =

{
p, s = S1

1− p, s = S3

P2(s|S4) =

{
p, s = S3

1− p, s = S5

for some 0.5 < p ≤ 1.

It is obvious that the policy gradient for states S2 and S4

will always be zero as the value function is a constant in
terms of the policy at these two states. We only have to
optimize the policy for state S3.

Under the softmax parameterization, we maintain parame-
ters θS3,L and θS3,R to encode the policy

πθ(L|S3) =
eθS3,L

eθS3,L + eθS3,R
and πθ(R|S3) =

eθS3,R

eθS3,L + eθS3,R
·

We consider the case where the agents always start from
state S3. It can be shown that θS3,L = 1, θS3,R = ∞
(always taking action R) and θS3,L = ∞, θS3,R = 1
(always taking action L) are both stationary points and
achieve the global maximum of the objective (5), while
θS3,L = 1, θS3,R = 1 (taking action L and R each with

probability 0.5) is a non-globally optimal stationary point2.
When gradient based methods are used to optimize (5), it
could be trapped at the stationary points without finding the
global optimality. In Section 4.1 and 4.2, we dive deeper
into the problem and show that globality optimality can be
reached under a restrictive structural assumption.

3 DECENTRALIZED POLICY
GRADIENT

One advantage of using softmax policies is that θ is uncon-
strained, making (5) an unconstrained optimization problem.
One may attempt to apply (stochastic) gradient ascent and
utilize the existing standard techniques in (stochastic) opti-
mization to analyze its performance. However, the optimal
policy, which is possibly deterministic, may be attained
only by sending θ to infinity. Such an exponential scaling
with the parameters makes studying the convergence of this
method more challenging. To handle this challenge, a com-
mon approach in the literature is to utilize the entropy-based
regularization [Mnih et al., 2016, Agarwal et al., 2020]. In
this paper, we use the relative-entropy as a regularization
for the objective in (5) inspired by Agarwal et al. [2020].
Specifically, the relative-entropy of πθ is given as

RE(πθ) , Es∼UnifS [KL (UA, πθ(·|s))]

= − 1

|S||A|
∑
a∈A

log πθ(a | s)− log |A|, (6)

whereUA is the uniform distribution overA and KL(p, q) =
Ex∼p[− log(q(x)/p(x))]. The relative-entropy regularized
variant of (5) is then given as

Lλ(θ;ρ) =

N∑
i=1

Lλi (θ; ρi) =

N∑
i=1

(V πθi (ρi)− λRE (πθ)) ,

(7)
where λ is a regularization parameter. Defining the dis-
counted state visitation distribution dπθi under a policy πθ
in the i-th environment

dπθi (s | s0) , (1− γi)
∞∑
k=0

γki P
πθ
i (ski = s | s0i = s0),

and dπθi,ρi(s) = Es0∼ρi [d
πθ
i (s | s0)]. The gradient of Lλi is 3

∂Lλi (θ; ρi)

∂θs,a
=

1

1− γi
dπθi,ρi(s)πθ(a | s)A

πθ
i (s, a)

+
λ

|S|

(
1

|A|
− πθ(a|s)

)
. (8)

2Derivation details can be found in Section A of the supple-
mentary material.

3The derivation is in Section B.4 of the supplementary mate-
rial.
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Our focus now is to apply gradient ascent methods for op-
timizing Lλ in a decentralized setting. In fact, under some
proper choice of λ the proposed algorithm can get arbitrarily
close to the stationary point of problem (5).

To optimize (7), we use the decentralized policy gradient
method formally stated in Algorithm 1. In this algorithm,
each agent can communicate with each other through an
undirected and connected graph G = (V, E), where agents
i and j can exchange messages if and only if they are con-
nected in G. We denote by Ni = {j : (i, j) ∈ E} the set of
agent i’s neighbors. In addition, each agent i maintains its
own local policy parameter θi, as an estimate of the optimal
θ∗ of (5). Finally, µi is the local initial distribution at agent
i, which can be chosen differently from ρi.

Algorithm 1: Decentralized Policy Gradient Algorithm

Initialization: Each agent i initializes θ0i ∈ Rd, an
initial distribution µi, and step sizes {αk}k∈N.;

for k=1,2,3,... do
Each agent i simultaneously implements:

1) Exchange θki with neighbors j ∈ Ni
2) Compute the gradient gki of Lλi (θ

k
i ;µi)

3) Policy update:

θk+1
i =

∑
j∈Ni

Wijθ
k
j + αkgki . (9)

end

At any time k ≥ 0, agent i first exchanges its iterates with its
neighbors j ∈ Ni and compute the gradient gki ofLλi (θ

k
i ;µi)

only using information from its environment. Agent i up-
dates θi by implementing (9), where it takes a weighted
average of θki with θkj received from its neighbors j ∈ Ni,
following by a local gradient step. The goal of this weighted
average is to achieve a consensus among the agents’ param-
eters, i.e., θi = θj , while the local gradient steps are to push
this consensus point toward the optimal θ∗. Here, Wij is
some non-negative weight, which i assigns for θkj . The con-
ditions on Wij to guarantee the convergence of Algorithm 1
are given in the next section.

4 CONVERGENCE ANALYSIS

In this section, our focus is to study the performance of
Algorithm 1 under the tabular setting, i.e., θ ∈ R|S||A|. It
is worth recalling that each function V πi in (5) is in general
non-concave. To show the convergence of our algorithm, we
study the case when gi is an exact estimate of∇Lλi (Eq. (8)),
and consider the weight matrix W satisfying the following
assumption, which is fairly standard in the literature of
decentralized consensus-based optimization [Zhang et al.,
2018, Doan et al., 2019, Zeng et al., 2020].

Assumption 1. Let W = [Wij ] ∈ RN×N be a doubly
stochastic matrix, i.e.,

∑
iWij =

∑
jWij = 1, with Wii >

0. Moreover, Wij > 0 iff i and j are connected, otherwise
Wij = 0.

We denote by σ2 and σN the second largest and the smallest
singular values of W , respectively. Our first main result
shows that the algorithm converges to the stationary point
of (5) at a rate O(1/

√
K), where µi = ρi, for all i.

Theorem 1. Suppose that Assumption 1 holds. Let {θki }, for
all i, be generated by Algorithm 1. In addition, let µi = ρi,
for all i, and the step sizes αk = α satisfying

α ∈
(
0,

1 + σN∑N
i=1

16
(1−γi)3 + 4Nλ

|S|

)
. (10)

Then ∀i, θki satisfies

min
k<K

∥∥∥ 1

N

N∑
j=1

∇Vj(θki ; ρj)
∥∥∥2

≤ O
( 1

Kα
+

α2

N(1− σ2)2
∑N
j=1(1− γj)6

+
λ2

N

)
.

(11)

For an ease of exposition, we delay the analysis of this
theorem to the supplementary material, where we provide
an exact formula for the right-hand side of (11). First, our
upper bound in (11) depends quadratically on the inverse of
the spectral gap 1−σ2, which shows the impact of the graph
G on the convergence of the algorithm. Second, this bound
states that under a constant step size the norm of the gradient
converges to a ball with radiusO(α) at a rateO(1/

√
K). As

the step size is reduced, we get closer to a stationary point of
(5). This rate matches the one for single task RL in Agarwal
et al. [2020]. However, while we only show the convergence
to a stationary point, a global optimality is achieved there.
Below, we provide insight on this discrepancy, which has
already been suggested by the example in Section 2.2.

Remark 1. we note that Algorithm 1 can be applied when
the policy is represented by function approximations (e.g.,
neural networks). Under an function approximation, we
can guarantee the convergence to a stationary point with
the rate stated in Theorem 1 under an assumption on the
Lipschitzness of the function approximation, and the proof
of Theorem 1 in Section B.1 of the supplementary material
still goes through. For conciseness, we do not formally state
the theorem under function approximations, but will provide
numerical simulations using neural networks in Section 5.

4.1 TASK CONFLICTING

For single task RL, policy gradient methods can return a
globally optimal policy in the tabular setting [Agarwal et al.,
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2020]. A natural question to ask is whether multi-task ver-
sions of the policy gradient methods can return a globally
optimal policy in MTRL. Unfortunately, this question is no
in general, which has been shown by the example in Section
2.2. Here we provide a more mathematical explanation of
the issue. First, we consider single task RL with the soft-
max parameterization and relative entropy regularizer. In
this setting, by using policy gradient methods one can show
that ‖∇θLλi (θ;µi)‖ → 0; [Agarwal et al., 2020, Corollary
5.1], which translates to Aπθi (s, a) decaying to zero for all
s, a for a proper choice of λ. The decay of the advantage
function is used to show the globally optimal convergence
of policy gradient methods, where the objective function
satisfies [Agarwal et al., 2020, Theorem 5.2]

V π
∗

i (ρi)−V πθi (ρi) =
1

1− γ
∑
s,a

dπ
∗

i,ρi(s)π
∗(a|s)Aπθi (s, a).

This condition is often referred to as the gradient dom-
ination property, an analog of the Polyak-Lojasiewicz
condition commonly used to show the global optimality
in nonconvex optimatization. Unfortunately, we do not
have this property in the general MTRL setting. Although
each component task function V πi (ρi) satisfies the gradient
domination condition, their sum may not due to what we
call distribution mismatch or task conflicting. To further
explain this, using a step of analysis similar to Agarwal
et al. [2020, Theorem 5.2], we have

V (θ∗;ρ)− V (θ;ρ)

=

N∑
i=1

1

1− γi

∑
s∈Si

∑
a∈A

dπθ?i,ρi
(s)πθ?(a | s)Aπθi (s, a)

=
∑
s,a

πθ?(a | s)
∑
i:s∈Si

dπθ?i,ρi
(s)

dπθi,µi(s)

dπθi,µi(s)

1− γi
Aπθi (s, a).

To achieve the global optimality one needs to have

∑
i:s∈Si

dπθ?i,ρi
(s)

dπθi,µi(s)

dπθi,µi(s)

1− γi
Aπθi (s, a)→ 0,

while the policy gradient algorithm can only return (cf. (8))∑
i:s∈Si

dπθi,µi(s)

1− γi
Aπθi (s, a)→ 0.

With a similar line of analysis, one can show that this issue
also arises in other forms of policy, e.g., direct parameteriza-
tion, and with other types of policy gradient methods, e.g.,
mirror descent [Lan, 2021]. This problem is due to the ratios
dπθ?i,ρi

(s)/dπθi,µi(s) being different across the environments.
We call this ratio the distribution mismatch between the envi-
ronments, representing the conflict between tasks. Because
of this distribution mismatch, gradient descent approach
uses biased gradients in its update. One cannot easily cor-
rect this mismatch since the optimal policy πθ∗ is unknown.

4.2 ACHIEVING GLOBAL OPTIMALITY

Despite the difficulty of the MTRL problem, we provide a
sufficient condition on the structure of the MDPs, where a
global optimality can be achieved by Algorithm 1.

Assumption 2. Let πθ∗ be an optimal policy solving (5).
Then for any πθ and µ we have

dπθ∗i,ρi (s)

dπθi,µi(s)
=
dπθ∗j,ρj (s)

dπθj,µj (s)
, ∀s : s ∈ Si∩Sj , ∀i, j ∈ [N ]. (12)

We know that dπθi,ρi(si) (similarly, dπθi,µi(si)) is the dis-
counted fraction of time that agent i visits state si ∈ Si
when using ρi (similarly, µi) as the initial distribution. Qual-
itatively, this assumption can be interpreted as enforcing
that the joint states between the environments are equally
explored. Mathematically, this assumption guarantees the
objective function (5) obeys a kind of gradient domination
when each function V πi (ρi) satisfies this condition.

We note that Assumption 2 holds in the important case
where the component tasks share the same state space and
transition probability, but differ in their reward functions.

Under Assumption 2, we show that Algorithm 1 finds the
global optimality of (5). For simplicity, we assume without
loss of generality that θ0i = θ0j , ∀ i, j. Let αk = α satisfying

α <
1∑N

i=1

(
8

(1−γi)3 + 2λ
|S|

) (13)

×min
{
1 + σN ;

λN(1− σ2)

4|S||A|
(
2Nλ+

∑N
i=1

1
(1−γi)2

)}.
Theorem 2. Suppose that Assumptions 1 and 2 hold. Given
an ε > 0, let λ = ε / 2N‖dπθ∗ρ /µ‖∞ and αk satisfy (13).
Let θ∗ be a solution of (5). Then ∀i, θki returned by Algo-
rithm 1 satisfies

min
k<K
{V (θ∗;ρ)− V (θki ;ρ)} ≤ ε

if K ≥ O

(
|S|2|A|2

∑N
j=1

1
(1−γj)6

(1− σ2)2ε2

∥∥∥∥dπθ∗ρ

µ

∥∥∥∥2
∞

)
,

(14)

where we denote
∥∥∥dπθ∗ρ

µ

∥∥∥
∞

= max
s∈S
j:s∈Sj

d
πθ?
j,ρj

(s)

(1−γj)µj(s) ·

Under Assumption 2, Algorithm 1 achieves a global op-
timality with the same rates as the ones in Agarwal et al.
[2020], except for a factor 1/(1− σ2)2 which captures the
impact of communication graph G. Eq. (14) also shows the
impact of the initial distribution µ on the convergence of the
algorithm through the distribution mismatch coefficient. A
bad choice of µ may result in a local optimum (or stationary
point) convergence by breaking Assumption 2, as we will
illustrate by simulation in Section 4.2.
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Figure 2: Evaluate Learned Policy in Multi-task GridWorld

5 EXPERIMENTAL RESULTS

5.1 GRIDWORLD PROBLEMS

In this section, we evaluate the performance of our proposed
algorithm on two platforms: GridWorld and drone naviga-
tion. We first verify the correctness of our theoretical results
by applying the decentralized policy gradient (DCPG) algo-
rithm for solving small-scale GridWorld problems, where
each agent uses a tabular policy. We next apply the proposed
method to solve the more challenging problem of large-scale
drone navigation in simulated 3D environments, where the
policy is approximated by neural networks.

General setup. In each simulation, the agents runs a number
of episodes of DCPG. In each episode, each agent computes
its local gradient by using the Monte-Carlo method. Each
agent then communicates with its neighbors over a fixed ring
graph (i.e. agent i communicates with agent i− 1 and i+ 1
for i = 2, 3, ..., N − 1; agent 1 communicates with agent
2 and N ; agent N communicates with agent N − 1 and 1)
and updates its iterates using (9). Given the communication
graph G, we generate the weight matrix W using the lazy
Metropolis method [Olshevsky, 2014].

To illustrate the results in Theorem 2, we apply Algorithm
1 for solving the popular GridWorld problem under tabular
settings, i.e., θ ∈ R|S||A|. This is a notable small-scale RL
problem, which can be solved efficiently by using tabular
methods; see for example Sutton and Barto [2018, Example
4.1]. In this problem, the agent is placed in a grid of cells,
where each cell can be labeled either by the desired goal, an
obstacle, or empty. The agent selects an action from the set
of 4 actions {up, down, left, right} to move to the next cell.
It then receives a reward of +1 if it reaches the desired goal,
−1 if it gets into an obstacle, and 0 otherwise. The goal of
the agent is to reach a desired position from an arbitrary
initial location in a minimum number of steps (or maximize
its cumulative rewards).

For multi-task RL settings, we consider a number of differ-
ent single GridWorld environments of size 10× 10, where
they are different in the obstacle and goal positions. We
assign each agent to one environment. In this setting, the en-

vironments have the same transition probabilities. Therefore,
Assumption 2 is satisfied when agents across environments
use an identical initial state distribution.

For solving this multi-task GridWorld, the agents implement
Algorithm 1 where the local gradients are estimated using
a Monte-Carlo approach, and the states are their locations
in the grid. After 1000 training episodes, the agents agree
on a unified policy, whose performance is tested in paral-
lel in all environments. The results are presented in Fig.2,
where we combine all the environments into one grid. In
addition, yellow and red cells represent the goal and obsta-
cle, respectively. For each environment, we terminate the
test when the agent reaches the goal or hits an obstacle. The
light green path is the route which the agent visits in these
environments. Since we have a randomized policy, we put
the path mostly followed by the agents. Fig.2 (a)–(c) con-
sider experiments on four environments, while (d) and (e)
are on six environments.

In Fig.2(a), we illustrate the performance of the policy when
there is no conflict between the environments, i.e., the block
of one environment is not the goal of the others and vice
versa. In this case, we can see that the algorithm returns an
optimal policy which finds all the goals at the environments.
Next, we consider the conflict setting in Fig.2(b), where
one obstacle of environment 2 is the goal of environment
3. Here, the i number in white and black represents the
goal and the obstacles of the i-th environment, respectively.
Although in this case there is a conflict between the tasks,
it is solvable, that is, the agents still can find the optimal
policy to solve all the task. These simulations agree with
our results in Theorem 2, which finds the global optimality.

We next consider an unsolvable conflict in Fig.2(c), where
the goal of agent 2 is the obstacle of agent 3 and vice versa.
In this case, there does not exists a policy that can always
visit all goal positions without running into an obstacle.
Instead, the agents need to make a compromise, where they
finish three out of the four tasks.

To summarize, the experiments with no conflict and resolv-
able conflict have dynamics that allow the optimal value of
(5) to be the sum of the optimal values of the individual tasks,
while the experiment with unresolvable conflict does not.
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Table 1: MSF of Learned Policy

Policy (REINFORCE) Env0 Env1 Env2 Env3 Sum

SA-0 15.9± 5.3 4.5± 1.2 4.1± 1.3 3.6± 3.0 28.1
SA-1 3.0± 0.2 55.4± 29.3 9.7± 2.8 8.1± 3.8 76.2
SA-2 1.5± 0.5 0.8± 0.2 21.1± 18.3 2.0± 0.6 25.4
SA-3 2.3± 0.5 0.8± 0.2 8.6± 2.0 40.1± 17.4 51.8

DCPG (proposed) 25.2 ± 20.1 67.9 ± 35.5 40.5 ± 18.0 61.8 ± 39.2 195.4
Policy (A2C) Env0 Env1 Env2 Env3 Sum

SA-0 21.8± 6.5 7.0± 0.8 15.1± 5.4 14.9± 8.2 58.8
SA-1 1.3± 0.4 54.1 ± 20.1 2.8± 0.9 6.4± 1.2 59.4
SA-2 1.8± 0.7 3.9± 0.3 105.2± 38.5 9.9± 1.3 120.8
SA-3 1.1± 0.2 1.4± 0.2 15.8± 5.0 78.6± 25.9 96.9

DCPG (proposed) 25.2 ± 7.5 50.1 ± 24.6 165.8 ± 64.6 159.6 ± 61.0 380.7
Policy (PPO) Env0 Env1 Env2 Env3 Sum

SA-0 28.3 ± 15.5 11.2± 6.3 8.7± 5.9 13.5± 5.7 61.7
SA-1 1.1± 0.6 75.3 ± 43.2 1.6± 0.4 1.6± 0.8 79.6
SA-2 2.5± 1.8 3.0± 1.1 63.2± 36.4 15.6± 10.6 84.3
SA-3 1.9± 1.6 1.2± 0.5 14.3± 8.7 139.0± 72.5 156.4

DCPG (proposed) 26.3± 10.9 66.7± 30.8 144.0 ± 82.4 195.2 ± 92.4 432.2

Nevertheless, in all three cases, DCPG successfully finds
the global optimality of the global objective function (5).

Finally, we illustrate the impact of the initial conditions with
the simulations in Fig.2(d) and (e). In (d), if the agents start
from the top left corner they cannot find the optimal solution.
However, when the agents start from the top right corner the
algorithms return the gobal optimality as shown in (e). This
empirical evidence hints that to achieve the global optimality
with the DCPG algorithm, conditions on the initial state
distribution like Assumption 2 may be necessary.

5.2 DRONE NAVIGATION

For the drone experiment we use PEDRA, a 3D stimulated
drone navigation platform [PED]. In this platform, a drone
agent is equipped with a front-facing camera, and takes ac-
tions to control its flight. The reward received by the drone
agent is designed to encourage the drone to stay away from
obstacles. We select 4 indoor environments on the PEDRA
platform (denoted as Env 0-3), which contain widely differ-
ent lighting conditions, wall colors, furniture objects, and
hallway structures. The performance of a policy is quan-
tified by the mean safe flight (MSF), the average distance
travelled by the agent before it collides with any obstacle.
This is a standard criterion in evaluating the performance of
flying autonomous vehicles [Sadeghi and Levine, 2016].

Instead, to evaluate the policy learned using Algorithm 1
(DCPG), we compare it with the single agent trained in-
dependently in each environment. For brevity, we denote
by SA-i the single agent trained in environment i. We note

Figure 3: MSF During Training (REINFORCE)

that the SAs can be considered as the solutions to the local
objective functions, while DCPG optimizes the sum of the
local objective functions. Therefore, if trained to the global
optimum, each SA provides an upper bound on the perfor-
mance of the DCPG policy in the respective environment.
The aim of the experiments is to show in practical problems,
the DCPG policy often performs close to this bound.

To demonstrate the compatibility of our algorithm with a
wide range of policy gradient methods, we conduct three
sets of experiments, where we run Algorithm 1 with the
gradient gki estimated by three popular variants of policy
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gradient algorithms: REINFORCE, advantage actor-critic
(A2C), and proximal policy optimization (PPO). In each
case, a 5-layer neural network is used to approximate the
policy4. We stress that in each set of the experiments, the
SAs and DCPG are trained identically, with the only differ-
ence being whether the agents communicate their policies.

In Fig.3, we show MSF of the DCPG and SA policies in the
training phase with the REINFORCE algorithm.

Finally, we test the policies learned by DCPG and SAs in
the four environments. The results are presented in Table
1. Across the three sets of experiments, we consistently see
the performance difference between DCPG and the SAs.
As expected, SA-i only performs well in i-th environment
but does not generalize to environment it has not seen. On
the other hand, the policy returned by DCPG performs very
well in all environments. Surprisingly, DCPG often performs
even better than each SA-i in the i-th environment, which we
observe is due to the benefits of learning common features
and representation among the agents.

6 CONCLUSION

By combining consensus optimization with the policy gra-
dient algorithm, we propose a decentralized method that
aims to learn a unified policy in MTRL problems. We theo-
retically show that the convergence of multi-task algorithm
achieves the same convergence rate as the single task algo-
rithm within constants depending on the connectivity of the
network, and support our analysis with a series of experi-
ments. Future directions from this work include investigat-
ing the possibility of relaxing Assumption 2 in achieving
the global optimality and improving the convergence rate.
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