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Abstract— Analog-domain compute-in-memory (CIM) is a
technique that has emerged in part as a response to the memory-
intensive vector-matrix-multiplications (VMMs) required to
implement important emerging applications, notably machine
learning inference. Implemented CIM systems have demonstrated
good energy efficiency for lower-precision systems and/or with
loosened compute-level accuracy requirements. A priori it is
unclear exactly how the efficiency advantages of CIM emerge
and therefore the generalizability of these advantages, beyond
the specific demonstrated examples, is unclear. Noting that
not all VMM-heavy workloads can tolerate imperfect accuracy
and/or reduced precision, this work combines high-level models
with circuit models and simulations to examine the efficiency
gains and penalties associated with CIM in static random-access
memory (SRAM) arrays. Extracted models which are needed
to make assertive statements about CIM are developed and
discussed. An energy comparison to standard SRAM is made, and
the issues of accuracy loss and area are contextualized. Finally,
a few example models comparing the energy efficiency of CIM
to that of SRAM are shown to verify that CIM is most effective
for error-tolerant, low-precision applications.

Index Terms— Compute-in-memory, analog, modeling, SRAM,
memory, multiply-accumulate, practicality.

I. INTRODUCTION

THE vector-matrix multiplication (VMM, or a series of
multiply-accumulates, MACs) is a fundamental computa-

tional building block which finds important use in many mod-
ern computing applications. Popular among these is machine
learning inference which, as is typical of VMM-based tasks,
combines this digital computing workload with a large mem-
ory access requirement. This challenging combination has
encouraged system designers to propose novel digital hardware
architectures which specifically address the need for large
amounts of weight data to be accessed during compute [1].
Two additional observations can be made which encourage
an analog, compute-in-memory (CIM) approach to VMMs
for machine learning: a VMM amounts to a set of scaled
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sums of stored weights, and machine learning applications are
relatively tolerant to computing error [2], [3].

In light of this apparent opportunity for performance gains
and the plethora of fabricated and modeled designs which
leverage CIM, a few analytical works have sought to model
the costs (accuracy) and benefits (primarily energy but poten-
tially throughput). Rekhi, A.S. et al. [2] analyze the energy-
accuracy tradeoff via a specific computing task (ImageNet
using ResNet-50). Accordingly, the authors create a simple
energy-accuracy abstraction by assuming the analog MAC
energy is analog-to-digital converter (ADC)-dominated. Gonu-
gondla, S.K. et al. [4] focus on the theoretical derivation of
signal-to-noise ratio (SNR) for various CIM architectures, and
do not present a ground-up energy model for use in high-
level analysis. Finally, Murmann [5] provides insight into
the breadth of CIM design possibilities and their potential
to achieve competitive energy efficiencies but, similarly, does
not present present energy models targeted to implementation-
specific circuits.

To supplement these prior works, this work focuses
on a deliberately narrow subsection of the CIM design
space to enable both the development of detailed models
from circuit fundamentals and the construction of strong
conclusions. While chip demonstrations have shown the poten-
tial for emerging technologies such as resistive random-
access memory (RRAM) to implement energy-efficient CIM
([6]–[9]), resistive memory technologies have yet to reach
maturity and still present practical issues including low
endurance and high write voltages [10]. The scope of this
work is therefore limited to standard CMOS-based static
random-access memory (SRAM)-based CIM designs, which
additionally enables modeling and simulation using a foundry
process design kit (PDK). Limiting scope further, this work
focuses on CIM designs whose readout is analogous to
traditional SRAM in that the bitcells directly pull current
from a precharged bitline without transferring their value
onto another device (such as a capacitor). The purpose of
Section II is to describe and motivate this second scope
limitation.

The contributions of this work are as follows, in the order
they are presented. This work will:

1) categorize CIM systems to enable more detailed discus-
sion and modeling of energy and design challenges;

2) construct a comparative model of the digital-compute
advantage of CIM relative to traditional systems;

3) present a circuit-based model of CIM energy use,
in analogy to standard SRAM;

1549-8328 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 12,2022 at 17:41:13 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1627-9002
https://orcid.org/0000-0001-8391-0576


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

TABLE I

CIM-SPECIFIC ABBREVIATIONS USED IN MODELS

Fig. 1. (a) Traditional and (b) CIM memory systems shown with 1:1 column
multiplexing (unlikely) for simplicity. Four important degrees of freedom
are introduced in the CIM system: (i) there may be more than two allowed
input (WL) states, (ii) multiple WLs may be enabled at once, (iii) there may
be more than two allowed output (BL) states, and (iv) these multiple states
may require a more complex ADC than a 1-bit sense amplifier. Feature (ii) is
the hallmark feature of CIM. Bitcell is abbreviated as ‘BC.’

4) estimate the severity of three challenges imposed by
CIM by presenting analysis of read disturb, showing a
novel analytical technique for assessing state separation
for certain systems, and discussing accuracy issues;

5) summarize the results of these analyses by way of four
illustrative example system models, and present brief
design guidance based on the analysis.

Some CIM-specific abbreviations are introduced in this
work, and a set of these is shown in Table I.

II. A BRIEF TAXONOMY

In this work, a CIM system is any system which enables
the values of multiple memory cells to be combined in the
analog domain then read out, as a single value, into the digital
domain. Additionally, the number of output states may be
increased by allowing more than two wordline (WL) states.
To introduce CIM, four important differences between CIM
and traditional memory systems are outlined in Figure 1.

An initial distinction must be drawn between systems which
perform readout by directly measuring bitline (BL) voltage due
to a pull-down (PD) operating step (during which a current
proportional to the number on-state selected SRAM cells is
pulled on the BL) and systems which measure the BL state
indirectly by, briefly, using the BL to control a separate system
which performs an analog computing step. These two methods
are described below:

Fig. 2. Symbolic representations of the (a) resistive-capacitive pull-down
(RC-PD) and (b) resistive-dividing (R-dividing) flavors of direct CIM systems.

A. The Direct Approach

The direct systems [11]–[14] operate analogously to tra-
ditional binary-BL SRAM: a single read-step produces the
analog value on the BL which is then quantized. The read
PD circuit formed in an SRAM cell when its wordline (WL)
is selected may be viewed as a variable current source,
and the read step may therefore be viewed generically as
a current to voltage conversion. This conversion may take
one of two forms, which further classifies the direct systems
(Figure 2). In resistive-capacitive-pull-down (RC-PD) macros,
which operate almost identically to traditional SRAM, the BL
is first precharged (e.g. to a positive rail) after which a set
of WLs is enabled. The on-state selected cells create a PD
current which causes the BL to slew downward. After a period
of time, the value of the BL is quantized. In resistive-dividing
(R-dividing) macros, a pull-up (PU) device flows an active
current on the BL while the selected cells are activated. In the
simplest case, the relationship of the large-signal resistance of
the PU device to that of the PD circuit formed by the on-state
selected cells creates a steady-state output voltage on the BL.

B. The Indirect Approach

As will be demonstrated later in this work, the direct
systems present a set of challenges including (1) reduced and
variable state separation leading to restricted sensing margins
and nontrivial reference generation, (2) inconsistent (noisy)
state placement due to poorly matched SRAM PD circuits, and
(3) limited and non-ideal mechanisms for multi-bit inputs and
no native compatibility with analog-domain multi-bit weights.

These challenges may be avoided by shifting the analog
computing operation away from the SRAM storage cells and
onto a special-purpose summing apparatus. These special-
purpose analog add-ons are characteristic of indirect sys-
tems [15] and are typified by well-matched metal-oxide-metal
(MOM) capacitors [16], [17], shared transistors with improved
characteristics [18]–[21], or time-domain computing [22]. The
effect is to decouple the (usually, matching and linearity)
behavior of the analog compute from the nonideal density-
oriented storage cells. These systems operate in a weaker
analogy, relative to direct systems, to traditional SRAM - area
efficiency and memory frequency are expected to scale worse
in these systems than in typical SRAM due to the increased
hardware and timing complexity; the approximate trend toward
lower array density in indirect systems is visible in Table II.
Due to this practical advantage, we choose to analyze direct
systems in Sections IV and V.
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TABLE II

SORTING RECENT CIM SRAM SYSTEMS BY OPERATING SCHEME1 (RC-PD AND R-DIVIDING SYSTEMS HIGHLIGHTED)

C. Example Sorting

This taxonomy as it applies to a sample of CIM SRAM
examples is presented in Table II. Low-precision inputs and
outputs are preferred by designers, especially when reporting
energy efficiency, which aligns with the trend that will be
shown by examples in Section V.

III. COMPARATIVE APPROACH

The energy cost of modern MAC workloads consists of
digital logic and memory access components, the latter having
become more important in recent years [1], [24]. CIM has the
potential to address both, as it offers:

1) Higher effective memory bandwidth for improved mem-
ory access energy, and

2) Reduced digital logic workload due to analog-domain
computing.

To maintain generalizability across technology generations
and applications (for which the compute/memory energy bal-
ance shifts), we develop separate comparisons for (a) energy
cost per effective bit accessed and (b) overall digital workload
under traditional vs. CIM regimes. Since the magnitude of
CIM’s advantages in both areas is proportional to the allowed
parallelism (P, i.e. the number of output states allowed to be
accumulated in analog), analysis in this work will relate energy
penalties or the severity of area, robustness, and accuracy
concerns to P. In this section, we will first frame memory-
access energy before estimating the digital workload savings
due to CIM.

A. Effective Memory Bandwidth

The memory-bandwidth CIM thesis holds that there is
an advantage to be gained by reading out the sum of the
values of a subset of memory cells rather than area- or time-
serially reading the subset and performing the MAC entirely in
digital. A single read operation is used to simultaneously read
PW L weight bits (on a single BL). The sum across element-
wise products in a Bx - by Bw-bit precision MAC with PW L

elements is an implicit lossy compression operation in the
weights; a group of PW L same-binary-position weight bits
need only be represented by at most log2 P bits when added
together.

The lossy compression applies a penalty in the form of input
bit striping: multiplying the same weight against several inputs
or input bits requires additional read operations. If analog
multi-bit inputs are used, then the input-bit-striping penalty
is divided by the precision available on each WL. In net, the
number (Ms ) of equivalent SRAM single-cell reads required
to emulate the CIM system is shown in Equation 1, where
Px is the analog-hardware-implemented input precision (N.B.
PW L is linear and Px is binary weighted).

Ms = PW L × Px

Bx
(1)

Note that Px ≤ Bx . It is convenient to use a system
parameter P = PW L × (2Px − 1) to represent one less than
the total number of states allowed on a BL (# of state bound-
aries). Equation 1 computes the per-memory-read increase in
throughput of any CIM system. It remains to apply an analog
multiplier to Equation 1 to account for changes in per-read
energy (Section IV).

B. Digital Workload

The most straightforward benefit of performing addition in
analog is to reduce the digital (multiplying and summing)
workload. This advantage is softened by two factors: first,

1This table is not exhaustive and rather includes some representative
examples from the past few years.

2This is the number of bits that can be applied simultaneously (within one
read cycle/path) on the WL and the precision of the ADC.

3This is a tera-operations per watt (TOPS/W) reported in the cited work.
4This is the bit precisions describing the operation for which the nominal

TOPS/W was reported in the cited work.
5This is the density of storage cells themselves, excluding peripherals. *

Indicates that the array-only value was unavailable and an estimate or provided
value was used which includes peripheral area.
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Fig. 3. Each bit shown as a square for (a) the analog addition performed on the BL in a CIM system, (b) the pre-result combining workload needed by a
CIM system, and (c) the same MAC performed completely in digital. The shown dots correspond to an 8-wide MAC with 4-bit input and weight precisions.

implementation realities (e.g. pertaining to the ADC) may
add back in some of the saved compute. For example, typical
Flash ADCs require thermometer-to-binary conversion, whose
implementation may approximately be viewed as a P-wide
one-bit adder (the Flash ADC may also require bubble error
correction, [25]). Second, the limited (analog-domain) input
and stored weight precision of CIM systems may necessitate
striped inputs and weights, which implies an added pre-result
combining step (Figure 3 (b)) to produce the MAC output. The
first issue is not explicitly accounted for in this work; instead,
this added digital energy is included in the literature-derived
constant ADC energy assumption motivated in Section IV. The
second issue is the focus of the remainder of this section.

We are interested in the fraction of saved compute due to the
analog-domain sums. Figure 3 breaks down the components
of the CIM (a, b) and traditional (c) adding workloads along
feasible lines. For example, (b) assumes the input is applied
across all weight bits and that these pre-results are immediately
combined, then barrel shifted and accumulated onto the sum
corresponding to the bit-striped input. Two ad hoc methods
will be used to compare the energy of the traditional system’s
digital workload (Figure 3(b)) to that of the CIM system’s
digital workload (Figure 3(c)). The simplest method is to
consider the total digital MAC workload as consisting of
Figure 3(a) followed by Figure 3(b). The fraction of saved
compute can then be computed by dividing (a) by (a) + (b).
To approximate the computing cost of these sums, we observe
that both (a) and (b) correspond in shape to the partial product
reduction of a standard multiplier; typically, an algorithmic
method [26], [27] will be employed to construct adder trees to
reduce these sums. Counting the bits to be combined therefore
provides a compact, although approximate, representation of
complexity. Omitting algebra, the ratio (ν) of this bit count for
the saved CIM compute to that of the total compute is given
by Equation 2:

ν = PW L

PW L + 1 + log PW L
Px

+ 1
Px

+ 1
Bw

+ log PW L
Px ×Bw

(2)

More detailed estimation is possible by modeling gate-
level implementations of (b) and (c) and counting gates each
time they are used to estimate energy. This implies further

Fig. 4. The fraction of MAC computing workload saved by using CIM in
the case of Px = 1 (one-bit WLs, with up to P wordlines active at once)
and Px = 4 (four-bit WLs). For this example, the MAC precision is set to
Bx = Bw = 8. These curves are not very sensitive to MAC precision.

assumptions: the adders are formatted as in a fast multiplier
with some specific kind of partial product reduction step
followed by a ripple-carry adder, noting that additional carry
look-ahead logic may be important in a practical implementa-
tion. Registers are not modeled, and a simple greedy algorithm
for forming adder trees is used where appropriate. The value
of interest is ((c) - (b)) / (c).

The two methods for approximating the digital compute
savings due to CIM are plotted in Figure 4 for Bx = Bw = 8
(example case) across increasing CIM parallelism. The results
of this analysis are shown in Figure 4. The methods generally
agree, and the models show that the analog-domain compute
is a dominant portion of overall compute for large P . This
also confirms that supporting more states on the WL is
less favorable (than enabling more WLs) for reducing digital
adding workload due to the linear benefit to the striping
penalty at exponential cost in terms of states represented on
the BL. A synthesized area and energy analysis of this digital
workload is not appropriate in this work as it suffices to
estimate the relative fraction of digital workload that is saved,
and the preference is toward maintaining generality.

To recap, the first portion of analysis showed the effects
of PW L , PX , and BX on the effective memory bandwidth,
leaving open the need for circuit-level models to combine with
Equation 1. which will be presented next. The second portion
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of analysis showed that for large P , the bulk of the digital
energy can be saved via analog-domain compute (Figure 4).

IV. CIRCUIT ANALYSIS

This section will develop circuit models toward two distinct
goals. First, a CIM energy model will be developed to provide
circuit-level energy estimates to be combined with the analyti-
cal multiplier given by Equation 1. Second, circuit models will
be developed to estimate the outlook for CIM with SRAM
with respect to three major challenges: read stability, ADC
area, and accuracy. Unless otherwise noted, simulations are
performed using TSMC’s 28nm PDK [28] and abbreviations
are described in Table I.

A. Energy Accounting

Leakage energy is not analyzed in this work as it relates
to technology and the amount and format of storage cells
rather than to read peripherals and techniques. Active energy
for a CIM array can be broken into components just as with
a traditional SRAM array [29], as long as some components
(configuration and sensing energy) are generalized and others
(WL and BL energy, which relate to input and input/weight
values, respectively) are converted to expected values. Single-
BL read energy is shown in Equation 3:

ERd = E (EW L) + EC O N F + i

m
ES E N S E + i

m
E (EB L) (3)

Each of these components will now be analyzed in the con-
text of CIM. For the remainder of this section, the assumption
is made that the systems under consideration are direct systems
(Subsection II-A) which allows principled analysis. Notably,
the coefficient of EB L is i

m rather than i since well-designed
CIM systems, with their larger BL slews, may avoid wasting
BL energy on non-selected columns. This benefit will be given
to the SRAM system used for comparisons, as well.

1) Wordline Energy: In contrast with traditional SRAM,
the number of WLs which are enabled in any CIM read-step
depends on input value - this provides an area for potential
overall energy savings. In multi-bit-input systems, the voltage
on the WL may be amplitude modulated (pulse-width and
pulse-count modulation are more typical), otherwise, the WL
will be zero with some probability that is likely close to 50%.
Generally,

E (EW L) = CW L VD D

PW L∑
j=1

E
(
VW L j

)
(4)

If the input bits are independent, identically distributed:
E (EW L) = PW LCW L VD DE (VW L) (5)

In the binary-input case, where WLs are set to 0 or VW L :

E (EW L) = PW LCW L VD DVW LP (Bit = 1)

≈ PW L
2 CW L VD DVW L

where the last approximation holds if input bits are bino-
mial distributed with probability 50% (or, e.g., if ampli-
tude modulated inputs are used with a mean amplitude of
VW L/2). If multi-bit WLs are applied using a train of identical
pulses ([23]), a multiplier of 2PX generally applies.

2) Configuration Energy: Expanding on the column-select
energy (ES E L) of traditional SRAM, the EC O N F term
here represents the average reconfiguration energy incurred
between each P-wide CIM read operation. This means:

EC O N F = CC O N F V 2
D D (6)

where CC O N F corresponds to the average capacitance of any
reconfiguration switching nodes.

3) Sensing Energy: In binary-output systems, the analogy
to traditional SRAM holds and, given some CS A which
characterizes the capacitance of switching nodes in the sense
amplifier (SA):

ES A = CS AV 2
D D (7)

It is possible to hypothesize about sensing energy from
design principles or to reference the energy efficiency of
implemented ADCs. We use a hybrid approach: for lower
precision outputs, we assume the CIM system has access to
an SA (as a starting point for modeling a Flash ADC) at least
as good as that in the reference traditional SRAM system.
At some point, the Flash energy exceeds that of the trend
seen in published ADC designs, and the model switches.

In a simple comparator (without offset cancellation), capac-
itance must track effective precision because reduced state
separation requires larger input device scaling. This implies,
extending Equation 7, that comparator energy must scale
quadratically [30] as:

ES E N S E = S(PE Q )2

S(P)2 CS AV 2
D D (8)

where CS A is the equivalent switching capacitance of a ref-
erence SRAM’s SA and PE Q is the value of P for which
the SRAM’s SA would provide sufficient matching in a CIM
system. PE Q captures differences in design margin (CIM
systems might tolerate more readout errors) and the effect of
state separation. It will be shown later that S(P) ≈ K VD D/P
for some constant K (K is the effective fraction of available
dynamic range used to separate states) which depends on
CIM system behavior, confirming that the overall sensing
energy trend is indeed quadratic. Simplifying, the energy trend
becomes:

ES E N S E ≈ POU T
P2

P2
E Q

CS AV 2
D D (9)

where, using S(P) ≈ K VD D/P:

PE Q ≈ K VD D × D

VS N S
(10)

where the name VS N S is maintained from [29] and refers to
the typical BL swing, due to a single on-state cell, required
by an SRAM to make an accurate read. If the reference
SRAM uses differential sensing (typical) PE Q is additionally
divided by two. D is the matching design margin ratio of
the SRAM comparator to the CIM comparators. For example,
if the standard SRAM requires 6σ margin and the CIM system
requires only 2σ between the reference voltage and the nearest
state, then D = 3. The interaction of D, K , and PE Q are
shown for a typical case in Figure 5.
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Fig. 5. Sensing energy example following the introduced model. (a) shows
the fitting constant, PE Q , for comparing sensing energy in CIM and SRAM.
Computed as in Equation 10 with VDD = 900mV and VSN S = 100mV.
(b) shows the per-output-state sensing energy as in Equation 8, where
POU T = P . SA energy (V 2

DDCS A) and a rough blocked-region (where
the SA energy trend is no longer observed) are extracted from schematic
simulation and combined with the results in (a).

If POU T ∝ P , naïve energy scaling is cubic in allowed
output states. Avoiding this trend requires a topological change
to, at least, reduce the matching requirement. ADC designs
which offer superior energy performance at higher precision
by way of a different operating mechanism will now be
evaluated via a study of published designs. Analysis will be
based on ADC survey data [31] as in [2]. Figure 6(a) shows
two kinds of trend lines: the dashed black line shows an
approximate 2b/decade trend for decreasing per-state energy
as precision increases. This trend, however, cannot be a
result of physical design restrictions, since it corresponds
to decreasing total energy as precision increases, and must
therefore indicate application trends (e.g. design effort and
more modern processes being dedicated to higher-precision
designs). An approximate envelope is drawn by the dotted grey
(constant total energy) lines which project the total energy
of a few performant higher-precision (ENOB ≈ 9) designs
backwards assuming that total energy should not get worse as
precision drops. The upper grey line gives an estimate which
holds near to real implementations below about 10-12 bits and
is given by Equation 11:

ES E N S E ≈ 440fJ (11)

This is close to the 0.3pJ estimated in [2] and both will be
considered in this work. The interface between the Flash and
literature-fit models is shown in Figure 5 (b). The PE Q values,
combined with SA energy, determine the per-state energy
up to the point when the constant total ADC energy trend
allows a sharp drop in per-state energy. There is a technology-
dependent region along the bottom of Figure 5 (b), shown
blocked, which is inaccessible. This is due to minimum device
sizes and the fact that capacitive energy due to the large match-
ing pair will eventually become a less-important component
of total comparator energy (secondary, for example, to shoot-
through current or wire parasitic capacitance).

4) Bitline Energy: The analysis of BL energy depends on
how exactly the CIM readout scheme operates. The single-
ended capacitive BL energy is now a function of output state

Fig. 6. ADC survey data [31]. Flash ADCs are highlighted (red cross),
with year shown in color gradient. Dashed black line shows a hypothetical
2b/decade energy trend while lighter dotted lines show exemplary iso-total-
energy trends in (a). Grey lighter dotted line shows an extracted iso-total-area
trend line in (b).

and is generally modeled as an expected value:
E (EB L) = CB L VD DVS N SE (β(p)) (12)

where β(p) is introduced as a multiplier to extend this energy
definition to CIM systems; β(p) is such that VS N Sβ(p) is
the voltage change on the BL required to represent output
state p. The most direct top-down extension of SRAM BL
energy to differential-mode CIM BL energy therefore occurs
if β(p) = p, which implies identical any-error rate at iso-
matching and noise. This is incompatible with bottom-up mod-
eling due to the nonlinear state placement that straightforward
(RC-PD, R-divider) direct operating modes yield and, fur-
thermore, is incompatible with CIM systems for which
P > VD D/VS N S (due to a loosened any-error rate requirement
or improved noise and matching). As a result, bottom-up BL
energy models will now be proposed and discussed.

For generalized energy analysis with respect to 1-bit input
RC-PD CIM systems (and later R-dividing systems), it suffices
to model memory cell PD circuits as perfect resistors with
some resistance R. This analysis roughly extends to multi-
bit (amplitude modulated WL) inputs, although it is useful
to model the 1-bit case as a representative example. It is
helpful also to define a variable, γ = t/RCB L , representing
normalized PD time. It can then be shown that the maximum
worst-case state separation occurs with:

γopt = ln (P) − ln (P − 1) (13)

this gives a (VD D-normalized) BL swing of:
VS N Sβ(p)

VD D
= 1 −

(
P − 1

P

)p

(14)

where p is the number of cells pulling down on the BL.
BL energy is therefore exponential in on-state cells and aver-
age BL energy is highly dependent on application statistics.
As given by Equation 13, optimum PD time is super-linearly
decreasing in P . As a result, BL energy for both differential
and SE schemes tends to decrease as the optimal point is
shifted for larger P . The interaction of Equation 14 and
binomial distributed cells is shown in Figure 7. Two standout
observations: the lowest energy for the differential scheme is
the same as the maximum energy for the SE scheme, and
average energy is likely to consistently be near the median.
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Fig. 7. RC-model BL voltage swing as a fraction of VDD for RC-PD systems
due to Equation 14 at a few values of p. To show smooth trend lines, p is
interpolated between discrete output values. A log-shaded 105-sample Monte
Carlo experiment (using normal approximation to a binomial with probability
= 50%) is used to show long-term energy behavior.

This model does not consider non-optimal PD times, although
reduced PD times are unlikely to be a strong candidate for
energy savings due to the relative insensitivity of overall
power to PD time, compared to the strong dependence of state
separation (and therefore sensing energy) on PD time.

Compared to the RC-PD systems just described, R-divider
systems suffer from increased energy at a given BL slew due to
the added rail-to-rail leakage path. They have nonetheless been
demonstrated in hardware [14] and will be briefly discussed
here. There are two important energy components: capacitive
and feed-through. Capacitive energy is added on top of the
feed-through energy and is modeled as before with Equa-
tion 12, whereas feed-through requires a new model:

EB L SC = pTS N SVD D
(VD D − β(p)VS N S)

R
(15)

where TS N S is the equivalent time spent with the BL voltage
settled during the read operation and β(p) is conceptually
identical to the β(p) in Equation 12. Unlike the RC-PD
case, here ideal (VD D/P) state separation is possible given
an ideal pull-up transfer function (Equation 16, VS is the
state separation voltage). That said, it is unclear how such an
inverted-parabola transfer function could be implemented. It is
more likely that a system designed this way would implement
a voltage regulator combined with current sense to achieve
ideal state separation, although such designs are out of scope
for this work.

IB L(Vo) = 1

RVS
(VD DVo − V 2

o ) (16)

If the pull-up device is modeled as a resistor, the energy
can be compactly written as:

EB L SC = TS N S
V 2

D D

RPU + R/p
(17)

If RPU is set to optimize minimum state separa-
tion given cell resistance R, then the following can

be substituted for RPU :

RPU = R√
P2 − P

≈ R

P
(18)

Considering TS N S may be a few CB L RPU time constants,
feed-through energy can be significant. This observation favors
RC-PD systems.

B. CIM-Specific Challenges

1) Read Stability and Bitcell Implications: Read stability is
an important consideration in any SRAM-based design [32]
and the extended BL swings used in CIM with SRAM may
be expected to cause stability issues in an array designed for
traditional SRAM use. Here, simulation and statistical analysis
will be used to address whether larger (than standard 6T)
bitcells are required to maintain read stability when CIM is
used. Such larger bitcells might feature dedicated read circuitry
(7T, 8T, etc.) or devices sized for read stability.

Popular choices for PD chains are shown in Figure 8. This
figure shows the SE case, in which the pass device on one half
of the cell is supplemented with dedicated read devices. In the
differential case, 8T or 10T are needed instead of 7T or 8T.
In Figure 8 (a), the (Rd) label on the WL and BL indicates that
the cell may be used in an SE mode where only PgR is used
for read (enabled by a dedicated WLRd). This may improve
read margin (RM). Figure 8 (c) shows the characteristic 2T
PD circuit of the traditional 8T bitcell, while (b) shows how,
as in [11], PgRd may be eliminated at the cost of requiring
WLRd to drive a low-impedance node.

This section will use a definition of RM as in, e.g., [33] and
shown in Figure 9, which naturally extends to full-scale BL
swings and lends itself directly to intuitive measurement and
analysis. Using the same terminology as [33] the read-margin
test uses SN1 = H, SN2 = L, and transitions BL(W) from
VD D to −∞. The RM is defined as VD D minus the BL(W)
voltage at which SN2 transitions from L to H (“the amount
of BL read slew allowed before the internal state of a victim
cell flips”). Where write margin is needed, a similar metric,
“combined WL margin” (CWLM), is used [34], [35].

To avoid transitioning to a different cell topology, insuf-
ficient 6T-cell RM may be addressed with two techniques:
scaling Pd: Pg and reducing read WL voltage (VW L Rd).
To show the trends clearly, both techniques are simulated
using minimum-size nominal-Vt transistors and 900mV VD D

(although variation must be considered for robust CIM SRAM
design with respect to read/write margin, even if accuracy loss
is tolerable, to avoid bit flips and stuck cells).

Figure 10 shows the two trade-off spaces. Figure 10 (a)
shows how sizing is generally a poor method for attempting
to achieve read stability across very wide BL swings since
the sensitivity of write margin (CWLM) to stronger Pd is
large relative to that of RM. Not shown for brevity, scaling
Pu: Pg is worse still and results in approximately twice the
relative CWLM sensitivity. Further, while area is not shown
in these plots, in layout experiments the final 10x Pd point
required 235% cell area even relative to the large non-push-
rule minimum bitcell used in this work. More promising is
WL amplitude adjustment, the effects of which are shown
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Fig. 8. SRAM bitcells showing the BL PD circuit in 6T(a), 7T(b), as in [11], and 8T(c) implementations. In (a), the BL net attached to the right side of
PgR can be the complementary BLb in the typical SRAM scenario (and for write, in either case) or a designated SE read BL. In (b) and (c), this pass-device
is exclusively used for write. In (b), a single transistor is used as the dedicated read PD circuit, whereas in (c) two series transistors are used (so that the
WLRd drives a capacitive node).

Fig. 9. The DC BL read margin (RM) test condition. The access device gates
are set to VWLRd (in the case of single-ended read, the write-only access
device, right side, is disabled). Internal nodes are configured, left to right,
to represent ‘1’ and ‘0.’ The BL then slews downward (opposite BL is tied
to the worst-case condition, VDD ) until the stored state flips. The amount of
slew allowed (VDD− final VBL ) is the BL RM.

Fig. 10. Increasing RM in a 6T minimum-sized standard-Vt cell via
(a) scaling Pd and (b) reducing VW L . Schematic-level simulations with
variation omitted for clarity (nominal corner, VDD = 900mV , 25◦ C).

in Figure 10 (b). Here, the trade-off is read current, which
is relatively benign from the perspective of robustness and
energy. It is possible to achieve a full VD D of RM at the
cost of ‘only’ about 50% of read current. In either case, the
greater robustness offered by the SE read is apparent. The SE
and differential cases converge in 10 (b), although this only
occurs as VW L nears the threshold. Most importantly, full BL
swings can be allowed as long as VW L is sufficiently low.

On this concluding point, reducing VW L increases relative
bitcell PD current offset due to Vth variation. This introduces a
more important tradeoff space for VW L scaling than maximum
read current: allowed BL swing (i.e. RM or state separation)

Fig. 11. The sensitivity of bitcell PD current to threshold offset in the two
devices involved in PD is shown in (a), the resulting normalized standard
deviation trend estimate is shown in (b). Same conditions as in Figure 10.

vs. bitcell current error. The ramifications of this point are
shown in Figure 11. A schematic-level sensitivity analysis is
performed using local variation only (Av t = 2.86mV/um as
in [28]) and a segment of the results are shown in Figure 11 (a)
across a 400mV range of VW L . The complete results are used,
with a linear approximation, to calculate the standard deviation
of peak read current that results from local variation in the
minimum, nominal-Vt cell. Note that below VW L ≈ 500mV
the current errors due to Vth offset become enormous and
nonlinear due to the proximity to threshold voltage.

2) ADC Area Trends: The difficulties with estimating ADC
area trends for CIM are the same as those for estimating energy
trends: there is a many-dimensional design space and only two
weak methods for estimating area (simple matching models
under strong topological assumptions or analysis of existing
work) are compelling. If area is determined by a matching-
limited Flash ADC, then the situation for area is the same as
that for energy and Equations 8 and 9 give the trend as long
as area is appropriately substituted for energy.

Figure 6(b) shows the area trend in fabricated ADCs, with a
constant-area 0.001mm2 trend line superimposed, again using
data from [31]. The plot is similar to that for energy although
the alignment of the bulk of the samples with the constant-
area slope is much clearer. As expected, however, the lack
of modern examples showing even a constant-area trend for
lower precision is clear with a large pocket above the trend
line below 6 bits. The 0.001mm2 trend is potentially a problem
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Fig. 12. The state-separation testbench. Note that CBL must be much
larger than active capacitances in switching cells for separation behavior to
be reliably predicted.

for advanced nodes: this is roughly 7.8kb or 37kb of SRAM
cells in 28nm and 7nm, respectively [28], [36], and presumably
several ADCs must be tiled per array to achieve satisfactory
throughput. This encourages development of compact, energy-
efficient ADCs for CIM.

3) State Separation: Modern scaled CMOS processes are
limited in VD D due to reliability issues with scaled devices at
higher voltages and the requirement for low power in logic and
SRAM. It is desirable to have embedded memories operate at
or near logic voltages to simplify design and reduce energy.
This implies that all of the possible CIM output states must
reside in a limited dynamic range; at best:

VS E P = VD D

P
(19)

where VS E P is the characteristic state-to-state separation and
the single-ended sensing margin (here meaning the tolerable
equivalent comparator input-pair offset before error occurs) is
half this. This section will illustrate why Equation 19 gives
an ideal estimate for the common direct CIM SRAM systems
by showing theory, analysis, and simulation to predict state
separation trends. RC-PD systems will be analyzed in the
greatest depth while R-dividing systems will also be discussed.

In the case of RC-PD systems, Equation 19 applies to the
ideal case where bitcells form ideal current sources with:

IPd TPd = CB L VD D

P
(20)

where IPd and TPd are the single-bitcell PD current and the
BL development time. To state the issue compactly, transistor-
based PD circuits can perform poorly for large P because
of finite and voltage-dependent output resistance. In addition
to finite saturated output resistance, the increasing resistance
in the linear region as the BL slews downward causes state
separation to compress. That is, the Vd/Id transistor transfer
function provides feedback from BL voltage to the BL slew
rate. This feedback relationship is key to predicting the PD
“quality” of a transfer function and invites visual analysis -
a priori it is unclear whether to prefer flatter output current,
more time in saturation, etc.

The state-separation testbench is represented in Figure 12
and features a system with N on-state cells and another with
N−1 on-state cells. State separation is zero at t = 0, increases,
hits a peak, and starts to collapse (exponential convergence)
approaching zero at t = ∞. State separation must start to
collapse when the PD currents are equal - i.e. when the

Fig. 13. 32-cell PD “quality” (allowed state separation during BL slew)
for a few PD configurations (nominal-Vt, minimum size) are shown with a
reference line drawn to show roughly which section of each curve is relevant
for state separation: (i) is VW L = 0.9, (ii) is VW L = 0.5, (iii) is with VDD and
VW L ports swapped and VW L = 0.5, and (iv) is a single-T with VW L = 0.5.

difference in BL voltage, translated by the transfer function,
suffices to cause the N − 1 system to start to catch up to the
N system. Concisely,

(N − 1)IPd(VB L ,N−1) = N IPd (VB L ,N ) (21)

where IPd (V ) is the I/V transfer function of interest. There-
fore, a quality of import which determines achievable state
separation is the required increase in BL voltage for an
(N − 1)-on-cell system relative to the N-on-cell system to
equalize the PD rate of the BLs.

This quality (“allowed state separation at some point in the
slew”) is plotted with N = 32/31 and VD D = 0.9 for a
variety of PD circuits in Figure 13. A reference line with slope
1/32 is drawn from right to left showing ideal state separation,
during BL slew, as a function of BL voltage. The intersection
of this line with the quality metric curves estimates the state
separation allowed by the transfer function at this value of N .
The achieved separation will be lower than this, since the slope
of a true state-separation line will decrease across the slew
as the BLs converge. This predicts that the resistor model
yields the worst state separation, since it lacks any current
saturation, followed by the shown PD chain with simple
biasing VW L = 0.9 = VD D. Reducing VW L to 0.5 reduces
current but allows the output device to remain saturated deeper
into the curve, greatly improving state separation. Reversing
the two transistors to form a more typical cascode causes the
peak allowed separation to dramatically increase, but results
in worse separation. A single-T PD circuit and a current
source with large finite output resistance are also shown. The
predictions of the model are confirmed with state-separation
simulations (not shown). Concluding, it is important, for state
separation, to maintain current-source behavior as deep into
the BL swing as possible. This can supersede the importance
of the value of output resistance while saturated.

Assessing state separation is further complicated since the
time at which peak state separation occurs shifts lower as
more cells are enabled - e.g. the optimal time when comparing
1 vs. 2 is much longer than that for comparing 31 vs. 32.
Application statistics might inform the choice of PD time,
but it can be shown that optimizing timing for minimum
state separation causes an attractive near-constant set of state
separations whereas optimizing for mean or median can result
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Fig. 14. As shown in (a), when PD time is chosen to optimize the minimum
(P vs. P - 1) neighbor-state comparison, the result is a flatter distribution of
state separations with potentially usable higher-value states. This contrasts
with the case when mean or median state separation are chosen used to
optimize PD time, where lower-value states use a disproportionate amount of
the BL swing. The ideal state separation is overlaid with a dotted line. In (b),
the minimum or median state separations are shown when PD time is chosen
to optimize for one or the other (over a range of maximum allowed output
state, P). Simulated using the PD circuit as in Figure 13(ii) with large CBL .

Fig. 15. Worst-case (highest-value state) state separations under the following
conditions, from top to bottom: ideal current source, RC-PD with VW L = 0.5
and 0.9, RC-PD with a resistor, and R-dividing with a PMOS pull-up sized
as in Equation 18. These separations are optimistic and do not consider any
problematic capacitances, i.e. simulations were performed numerically using
extracted 25◦ C DC transfer functions to avoid these effects.

in good separation for low- and medium-value states but
unusable high-value states (detailed in Figure 14).

Minimum state separations for a few readout methods are
shown in Figure 15. As per the above discussion, the RC-PD
system is biased as in Figure 13 with VW L � VD D and the PD
time is set to optimize the state separation of the highest output
state. For the R-dividing system, recalling the discussion from
Section IV-A, RPU is chosen, as in Equation 18, as an
appropriately-sized pull-up PMOS (simulation confirms that
sizing PMOS for drive strength according to R/P is optimal
for minimum state separation to within the 5nm grid step).
The results are as expected with the naive R-dividing method
performing substantially worse for worst-case state separation.
For RC-PD, even the optimized transistors do not dramatically
outperform the resistor. A useful observation is that the slope
consistently corresponds to 1/P , e.g. whereas the ideal state
separation is defined by VD D/P , the VW L = 0.5 worst-
case state separation under optimized conditions is defined by
K × VD D/P for K ≈ 2/3.

4) Cell, Timing, and Noise-Induced Errors: In addition to
increasing the chance of extrinsic errors by requiring the ADC

to work with very small sensing margins, greater P increases
the chance of intrinsic errors in which the BL voltage itself
is incorrect due to cell current errors, timing errors, or noise.
The most straightforward effect is accumulating cell current
errors as the number of on-state cells is allowed to increase.
Indirectly, however, system accommodations which may be
required when increasing P can also increase the chance of
error: as mentioned, reduced VW L is desirable for increased
state separation in RC-PD systems (and robustness in the
6T case), and reduced PD time is required to optimize state
separation for higher-number states which increases sensitivity
to PD timing errors. Furthermore, in extreme cases of small
state separation the BL noise could become important.

These intrinsic error sources, cell current, timing, and noise,
will now be briefly discussed. Before doing so, it is worthwhile
to note that there is no clear way to discuss error in CIM results
in an application-agnostic sense. In the most direct analogy to
traditional bit-error rate (BER), it may be useful to consider
any-error rate (AER). It should be noted, however, that errors
due to the sources discussed here are typified by less severe
compute consequences relative to an SRAM bit-error since,
briefly, the error is always least-significant-bit (LSB) weighted
with respect to the current binary position. For this reason, it is
useful to model standard deviation (std. dev.) of BL voltage
as a function of error source std. dev. as will be done in this
section.

Ignoring systemic offsets, cell current errors arise due
to random deviations in an individual cell’s Id/Vd transfer
function relative to the expected transfer function. Cell current
variation vs. WL voltage has already been briefly discussed
above (Figure 11), so this section will focus on two aspects:
the relationship between random cell threshold offset-induced
current error and BL voltage error, and the accumulation of
BL voltage error when more cells are turned on. Modeling is
simplified importantly if cell current error can be modeled as
a BL-voltage-independent constant multiplier, that is:

IC E L L(VB L) = (1 + εC E L L)IC E L L ,N O M (VB L) (22)

where IC E L L ,N O M is the nominal cell current and εC E L L is
the normalized and appropriately (e.g. normally) distributed
error term. If Equation 22 is obeyed, then a BL-current
induced error occurs in isolation when

∑
i εC E L Li ≥ 1

for the set of on-state cells. For p (independent, identically
distributed) on-state cells, BL current error has std. dev.
σC E L L

√
p where σC E L L is the std. dev. of εC E L L under this

model. While the fractional amount of sensing margin lost is
roughly

∑
i εC E L Li , a more accurate model must incorporate

the nonlinear mapping of count of on state cells onto resulting
BL voltage, for example:

σV B L ,C E L L(p) ≈ σC E L L
√

p
∂VB L(p)

∂p
(23)

where VB L(p) is the nominal mapping of cell count to BL
voltage and σV B L ,C E L L(p) describes the std. dev. of BL
voltage error due to cell current error.

While cell current error applies to any direct system,
WL-timing induced error is particular to RC-PD systems and
is an artifact of static references used for a dynamic process
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Fig. 16. Loss of sensing margin relative to cell current and WL timing errors.
Timing errors assume CBL = 100 f F and sensitivity scales inverse-linearly
with BL time constant. Trends when PD time is optimized for both P = 128
and P = 32 (magnified) are shown.

(or mismatched timing between the true WL and the reference
generator). The analysis is similar to the above and an effective
model is:

σV B L ,t(p) ≈ σt
∂VB L(p)

∂ t
(24)

Note that in either case VB L is a function of many other
system parameters, including P . The trends for the two coef-
ficients of error are shown in Figure 16 with the coefficients
normalized to state separation at p. After normalizing to state
separation, cell current error sensitivity is just

√
p as expected.

Timing error sensitivity depends on the P chosen to set the PD
time, and example lines for P = 32 and P = 128 are shown.
Simulations show that under an example CB L of 100fF, the
sensitivity of RC-PD systems to a few picoseconds of timing
error is a potentially large problem (as might be predicted due
to the very small time constant) whereas the importance of
bitcell current error is largely a function of process.

The final potential contributor to readout error which must
be considered is noise. A full noise analysis is outside the
scope of this work, but two comments can be made. First,
noise on power rails, coupled through the substrate, due to
adjacent BLs, and so on are more important in CIM than
in standard SRAM due to the lower sensing margins and
acceptable coupling noise immunity is unlikely without design
changes relative to a normal SRAM. Second, total bitcell-
induced BL noise is not necessarily a problem: flicker noise
decreases with p (which increases the effective size of the PD
device), and thermal noise is inversely a function of potentially
large CB L .

V. ENERGY EXAMPLES AND METHODOLOGY

A. Methodology

Two principles enable strong conclusions based on the
energy comparison examples that will be shown in this section.
First, all analysis is stated in terms of the ratio of energy
used by a CIM system to that used by the corresponding
SRAM system. This enables generalized analysis of trends
from circuit fundamentals (using models from Section IV)

TABLE III

EXAMPLE CIM SRAM SYSTEMS AND REFERENCE SRAM

while ensuring that any comparison is intrinsically apples-
to-apples: both systems use the same array with the same
capacitances, have access to the same SA with the same
scaling trend, and so on. The basis of this ratio-driven analysis
is the choice to model total MAC energy as consisting of
a digital-logic component (Section III) added to a memory-
access component (Equation 1, Section IV), where the ratio
of the former to the latter in a traditional implementation is
a function of technology generation, application, and design
choices. Second, only direct, RC-PD CIM systems are ana-
lyzed due to the practical advantages in area, energy, and state
separation that such systems offer as described above.

The goal of this section is therefore not to compare total
energy of the CIM and traditional systems but rather to com-
pare memory access energy. CIM designs are compared to an
SRAM design with the same dimensions which uses SE read.
To this end, a standard-Vt 6T minimum-transistor 0.320um2

SRAM cell layout was created to generate extracted SRAM
array parasitics. A 128 × 128 array is used to extract capac-
itances while avoiding boundary effects, then scaled numeri-
cally. Transistors without push rules are used to align with the
devices whose parameters have been simulated throughout this
work. 512×128 is chosen for the presented results because it is
a physically-square array, meaning the BL and WL capacitance
are weighted equally. The model follows Equation 3 and
subsequent analysis. WL energy is modeled as in Equation 5,
and BL energy is modeled using Equations 12 and 14. The
ADC energy model has two components: to provide more
accuracy relative to Equation 9, SA (and Flash ADC) energy
figures are modeled using schematic-level voltage comparator
simulations following a standard design [37] across a range of
input-pair sizes; as the number of output states is increased,
Flash ADC energy eventually exceeds the constant-energy
ADC models, and ADC energy is clipped at 440fJ (300fJ
model shown in dotted line).

The relationship between BL capacitance and SA energy
has an effect on the active-energy-optimal BL PD time in a
standard SRAM array. That is, more PD time creates a larger
sensing margin and allows for a smaller, lower-energy SA.
Therefore, to strike a fair comparison between SRAM and
CIM SRAM, the SA sizing is set so that the chosen SA model
achieves minimum total energy while satisfying 6σ of design
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Fig. 17. Predicted CIM performance results using the extracted models. Parameters for (a) - (d) are defined in Table II. Array capacitances and SA energy
are extracted from layout and schematic simulations, respectively. SAs are extracted across a range of matching requirements to extract a trend line for use
across varying achieved state separation. Energy is normalized to an energy-optimized SE 6T SRAM array conforming to the same models and accomplishing
the same memory task. Secondary energy sources such as multiplexer switching are ignored. These models use 440fJ as the upper-limit on sensing energy
(see Equation 11 and discussion) with the 300fJ upper-limit [2] overlaid with a dotted line. For (d), this may be interpreted as a high-precision offset cancelled
comparator (although such a comparator will likely, in fact, outperform 300fJ or 440fJ, this is tangential to the trend shown in here).

margin. Parameters for these demonstrative simulations are
given in Table II.

A few assumptions simplify the modeling process. Bits and
memory cells are assumed to be binomially distributed (50%)
rather than following any specific application. Also, auxiliary
energy costs (CC O N F ) are not modeled and, importantly, data
movement costs are not modeled (as if the MAC logic were
directly abutted to the SRAM).

B. Results

Modeling results are presented in Figure 17 as ratios of
memory access energy across increasing parallelism PW L .
As mentioned, these examples have omitted the effects of
digital workload savings which were shown to be plausible by
Figure 4 and associated discussion. All the shown examples
demonstrate an energy peak at which the constant-energy
ADC model outperforms the scaled Flash ADC. Figure 17 (a)
illustrates the most pessimistic case for CIM: the MAC is
computed in full 8-bit precision, and the ADC is designed to
recover the full precision (1+ P bits) on the BL while satisfy-
ing 3σ of design margin. Loosening these three requirements
yields improvements and the potential for energy-efficient
designs. Figure 17 (b) demonstrates 4-bit inputs, which halves
the energy ratio relative to (a), and only requires the ADC
to achieve 6 bit precision with 1σ of design margin. The
last change improves Flash ADC energy scaling and push the
extrema toward higher PW L , although CIM memory accesses
remain more expensive than SRAM out to PW L ≈ 28.

One recent work ([23]) showed high efficiency (>351
TOPS/W) using RC-PD. It is challenging to contextualize
the performance of a 7nm 4-bit MAC engine, but this
work provides the framework for a higher-efficiency example.
Three changes allow CIM to consistently outperform SRAM
(Figure 17 (c)): the ADC precision is reduced to the input
precision (POU T = 15), 4 bits are applied on each WL, and
most importantly the design margin is aggressively reduced
to 0.075σ .6 This allows >50% reduction in memory access

6Extracted from [23] for the case of 210 states on the BL and 700mV
dynamic range. [23] actually applies many more than 210 states to the BLs,
as binary weighted versions of 4 columns are combined before sensing.

energy across a range of PW L . As in [23], the 4-bit WLs
have been modeled as successive (thermometer-coded) pulses
applied on the WL, and reducing the BL MUX ratio for this
example is critical to dilute the increased WL energy. Energy
efficiency achieves its logical maximum with a binary CIM
example (Figure 17 (d)): even if the ADC design margin is
tightened to 1σ , and the BL MUX ratio is reduced back to
8:1, the lack of input striping penalty and quadratic (vs. cubic)
Flash scaling allow very efficient memory accesses.

VI. DISCUSSION AND CONCLUSION

A. Design Insights

The models in this work support certain guidelines about
CIM system design. From Figure 15, state separation in
RC-PD systems can easily be below 10mV when P ≥ 26;
this sets a stringent requirement for noise coupling onto the
BL (not simulated in this work). Accurate readout is further
limited by cell current variation, WL timing errors, and ADC
limitations. These present complex interactions: since Flash
energy is inversely quadratic in K , and noise-induced accuracy
issues are reduced with larger K , wide voltage swings on
the BL are desired. SRAM cells are not natively robust to
full-swing reads, and sizing is largely ineffective at correcting
read margin to the extent needed (Figure 10). Reducing
VW L improves read margin, reduces the effect of absolute
timing errors (Figure 16) by increasing the BL pulldown time
constant, and improves state separation (Figure 15). However,
decreased VW L linearly to super-linearly increases cell current
offset (Figure 11). If VW L is reduced as far as allowed
by design accuracy requirements and read margin, channel
resistance, and/or state separation requirements are not met,
the logical step is to increase the length of the read pass-
device which improves read margin, channel resistance, and
cell current offset at the cost of write margin.

Generally, single-ended implementations are preferred since
they offer better read margin and reduced BL energy. That
said, for CIM, BL energy (Equation 12 and Figure 17) is
less relevant for large P as per-state BL swing is necessarily
reduced. This motivates taller arrays with more CB L which
improves density, increases the PD time constant (reduced
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sensitivity to timing offsets), potentially reduces coupling
noise, and offers a lower-noise sampling capacitor to benefit
a high-precision ADC if one is used. This also may allow
R-dividing systems (or more complex BL-regulating systems)
to perform well, since they trade added BL energy for reduced
sensitivity to absolute BL timing errors.

At a higher abstraction level, Equation 1 shows that CIM
performance is proportional to PW L and PX and inversely
proportional to BX due to bit striping. PW L is preferred to
PX since PX exponentially increases the number of states
on the BL. Similarly, PX shows inferior trends to PW L in
Figure 4, as well, in terms of saved compute vs. states on BL.
PX is valuable if application or array parameters restrict PW L ;
without specific reason otherwise, it is better to scale PW L .

B. CIM Outlook

From Figure 17 and the motivating analysis, a few state-
ments can similarly be made about how CIM systems can
outperform SRAM. First, if a traditional system is heavily
biased toward compute energy, especially at lower preci-
sions, then CIM (analog compute) may improve efficiency
by reducing digital computing workload (Figure 4) at similar
memory access costs. Second, at higher (input) precisions,
RC-PD systems struggle to overcome the linear penalty of
striped input bits (Figure 17(a)). Third, if a CIM system is
to directly achieve improved memory access costs, the fol-
lowing flow defines the energy savings: (1) the input-striping
penalty applies a multiplier to energy that must be overcome;
(2) increasing P through PW L and potentially PX eventually
reduces per-memory-cell EB L (Equation 12 and Figure 7),
trading away sensing margin; (3) the sensing system (ADC)
accommodates the reduced sensing margin without imposing
an unmanageable energy cost or at reduced per-state memory
cost. Since, per-state, Flash ADCs are characterized by super-
linear costs and CIM ADC costs are only linearly amortized,
achieving (3) implies reduced ADC design criteria (accuracy,
precision) or a design which places enough states on the BL
(P) to amortize a high-precision high-efficiency ADC.

Accuracy loss in these systems relates directly (and poten-
tially super-linearly) with energy efficiency. The accuracy
characteristics of the ADC, and overall system, are core to
understanding the merit of a CIM implementation - accuracy
notwithstanding, it is possible to place arbitrary numbers
of states on the BL for arbitrary efficiency. Works like [2]
and [4], which relate analog computing errors to viability for
larger networks (or other such real-world tasks) are therefore
important for designing and assessing this kind of CIM system.

Representing fewer states on the BL typically corresponds
to better accuracy due to less accumulating error and less
sensitivity to noise, and potentially enables better generality
across applications (which might have lower-dimension vec-
tors). Moving forward, we expect designers to continue to
focus on CIM systems with ADC designs that are energy
efficient across a lower precision range (e.g. 2-7 bits),
like the medium-precision successive-approximation regis-
ter (SAR) designs recently shown in some CIM SRAM works
[17]–[19], [21]. To avoid poor array efficiency and a resulting

potential increase in expensive off-chip data movement, suc-
cessful designs will likely demonstrate novel ADC architec-
tures with smaller footprints, the popular trend so-far having
been not to report detailed peripheral area breakdowns.
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