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Abstract— It is well understood that data-acquisition by
distributed sensors and subsequent transmission of all the
acquired data to the cloud will produce a “data deluge” in
next-generation wireless networks leading to immense network
congestion, and data back-logs on the server which will prevent
real-time processing and control. This motivates in situ data
analytics in energy-constrained wireless sensor nodes that can
perform context-aware acquisition and processing of data; and
transmit data only when required. This paper presents a camera-
based wireless sensor node with a self-optimizing end-to-end
computation and communication design, targeted for surveil-
lance applications. We demonstrate support for multiple feature-
extraction and classification algorithms, tunable processing depth
and power amplifier gain. Depending on the amount of infor-
mation content, accuracy targets and condition of the wireless
channel, the system choses the minimum-energy operating-point
by dynamically optimizing the amount of processing done on
the sensor itself. We demonstrate a complete system with ADI
ADSP-BF707 image processor, OV7670 camera sensor, and USRP
B200 software defined radio; and achieve 4.3× reduction in
energy consumption compared with a baseline design.

Index Terms— IoT, adaptive radio, video surveillance, 5G.

I. INTRODUCTION

W ITH the proliferation of small form factor distributed
sensors and Internet of Thing end-nodes, aggregate

data transfer to the back-end servers in the cloud is expected
to become prohibitively large. For example, 100 image sensors
in a sensor network transferring HD data can result in an
aggregate throughput of over 1GBps and significantly increase
the network’s drop rate [1]–[4] as is shown in Fig. 1. This
large amount of data transfer not only results in high energy
expenditure and hence low battery life of the sensor node,
but it will also results in network congestion producing severe
quality of service (QoS) degradation in the form of queueing
delay at best, and packet loss or blocking of new connections
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Fig. 1. (a) Aggregate throughput increases with number of sensor node in
the network and the data volume the sensor acquired. (b) Drop rate of the
network increased significantly with source rate [3].

in the worst case [5]. This data back-log on cloud servers
also precludes any real-time processing and network control,
which is a requirement in a myriad of monitoring and sensing
applications [6], [7]. Moreover, with the expected rapid growth
both in the number of sensors and raw data, the IoT network
design itself will only become more complex increasing both
the implementation and deployment costs.

To achieve both high energy efficiency in the end-node and
seamless network operation, in-situ data analysis capability
has to be enabled in the end-node itself [6]–[8]. Limited intel-
ligence and decision making, under strict energy constraints,
embedded in ubiquitous IoT sensors can reduce the volume
of transmitted data by either transmitting only the data of
interest or compressing raw data into features or decisions of
much smaller volume. It will greatly reduce the volume of data
the network has to handle and relieve bandwidth burden on the
back-end servers. Although in-situ data-analytics reduces the
communication energy at the sensor nodes, it places extra
burden on processing. One of the key challenges in IoT nodes
is power consumption and system design in pivoted upon
reducing the total dissipated power [8]. As we introduce in-situ
processing, the computation power increases at the sensor,
as it acquires data and analyzes it for possible information
content. However, the energy to compute and the energy to
communicate are not constants [6], [9], [10]. Rather, they
are context and environment dependent. For example, a clean
wireless channel would lead to lower communication power,
with channel adaptive radios. Similarly, if there is no (or little)
information contained in the sensed data, then it should be
detected early in the processing pipeline. Hence, an energy-
optimal system should: (1) allow in-situ data-analytics to
extract information from the sensed data to reduce the power
overhead of communication, and (2) perform optimal trade-off
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Fig. 2. (a) Pipelined operations at different processing depth (PD), including
temporal difference of consecutive frames (TD), compression (CR), feature
extraction (FE) and classification (CL). (b) Power consumption changes with
PD and the optimal PD for minimum-power consumption also varies under
different channel conditions. For example, a noisy channel results in more
embedded processing.

between the depth of computation and the amount of commu-
nication to enable lowest possible power at the sensor node.

This paper presents a prototypical camera based wire-
less IoT sensor node for detecting the presence of human
beings, with applications in video surveillance. The sen-
sor node supports multiple machine learning algorithms to
meet target accuracy requirements. The image processing
pipeline (IPP) consists of hardware supported object segmen-
tation and localization through temporal difference (TD) fol-
lowed by compression (CR), feature extraction (FE) and finally
classification (CL). We define processing depth (PD) as the
stages of computation that are performed in the sensor node,
before the data is transmitted to the cloud server. The details
of the PD are tabulated in Fig. 2a. For example, PD = 1
means that only TD and CR are performed on the sensor
node and then the data is transmitted. A PD=2 means that
TD, CR and FE are performed before transmission, and so
on. The sensor node transmits the output of the processed
data and the depth of processing (i.e., PD = 1, 2 or 3)
for each video frame to the cloud. For PD<3, the rest of
the pipeline is implemented in the cloud. An adaptive radio
provides power scalable transmission, depending on the signal
to noise (SNR) characteristics of the channel. It is intuitive to
understand that as the PD increases, the energy cost to compute
increases, but the data volume required to transmit decreases,
thus reducing the energy cost to communicate. As the channel
condition changes (from clean to noisy channel), the minimum
energy point also changes. For a clean channel, a lower PD is
preferred (as the energy to communicate is low), whereas with
increasing path-loss a higher PD is preferred. This is shown
qualitatively in Fig. 2b, where the energy to compute and
communicate (for two channel conditions) have been shown
and we note that the minimum energy point is observed at two
different PD points. With this motivation, we demonstrate an
end-to-end self-optimizing node, which can dynamically adapt
the PD depending on the channel condition, to always track the
point of minimum total energy. Further, we support multiple
CR, FE and CL algorithms depending on the accuracy/power
consumption target set by the cloud back-end and the user.
Our experimental results show measurements in a dynamic
environment where both the information content of the video
and the channel conditions are constantly changing. This
is due to (1) a mobile sensor node and (2) time varying
path-loss.

Fig. 3. End-to-end system architecture showing the different hardware
components, the data processing pipeline and the software defined transceiver.
CQI is the channel quality index quantified by path-loss and S is the
information content size which will be defined in Section III.

The complete hardware system consists of an ADI
ADSP-BF707 image processor, OV7670 camera sensor and
USRP B200 software defined radio. The IPP is implemented
on the ADSP-BF707. Measurements have been carried out
with a variety of channel conditions and contexts (input image)
and, compared with full-transmission and full-computation
strategies, we measure a maximum of 4.3× reduction in
energy consumption through end-to-end self-optimization.
To the best of our knowledge, this is the first paper to
report fine-grain power management between computation and
communication on a self-optimizing sensor node. We have
compared our design with baseline designs where (1) Full-
Computation is performed on the sensor node independent
of the channel conditions and (2) Full-Transmission of all
the acquired data is performed at the sensor node without
any “in-sensor” intelligence. The proposed system shows a
peak of 4.3× improvement in energy efficiency. We have
also compared the design with state-of-art camera based
sensor nodes and adaptive wireless systems. These systems
do not exhibit any self-optimization between computation and
communication. We note 2× to 45× improvement in energy-
efficiency (measured in terms of energy/frame) compared to
the state-of-the-art designs.

The rest of this paper is organized as follows. In Section II,
the hardware platform is described. Section III introduces the
IPP and the embedded human detection algorithm(s) and the
tradeoff between detection accuracy and energy-efficiency.
The communication system is described in Section IV. Self-
optimization between computation and communication in the
end-to-end system is discussed in Section IV, followed by
experimental results in Section V and finally conclusions are
drawn.

II. PROTOTYPE HARDWARE PLATFORM

Before we dive into the algorithms and results for
in-sensor processing and wireless transmission, let us discuss
the hardware platform which forms the basis of the rest of the
paper. In the remainder of the paper, we will present measure-
ment results to support theory of computation/communication
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Fig. 4. Experimental setup showing the system components.

and optimization, based on this embedded platform. The
proposed video based sensor platform comprises of camera,
image processor, software defined radio, and a PC based
controller and configuration control as is shown in Fig. 3 and
Fig. 4. The camera (OV7670) captures 8-bit gray-scale VGA
video frames at 10-30fps (frames per second) and consecutive
frames, Fi and Fi-1, are stored in a 1.53MB off-chip SDRAM.
Temporal difference (TD) is computed in the blackfin image
processor (ADSP-BF707) with the two subsequent frames
fetched from SDRAM to identify, localize and segment a
moving object in the image frame. When a moving object is
detected, the segmented image of interest is processed through
the different IPP stages. Human detection templates are stored
in off-chip SDRAM on the board and fetched during CL.

The transceiver (Ettus B200) works in half duplex mode.
During transmission, it receives data from the processor (data
can be the output of any PD). This data is wrapped in packages
with prefix containing information of the algorithm, PD,
package length and total data volume. Packages are modulated
in GMSK and transmitted at 985Mhz. Channel condition
(in terms of path-loss) is evaluated at cloud back-end (which
also consists of an identical transceiver board) and sent to
the IoT node. The transceiver at the sensor node, adjusts the
power amplifier gain accordingly to meet a bit error rate (BER)
target, as will be described in Section IV. The configuration
settings and end-to-end controller parameters (transmitter gain,
PD, choice of algorithm, energy models for each operating
condition) are currently implemented in a PC; and can be
ported to an embedded hardware for deployment. Platform
hardware and architecture is previously discussed in [11].

III. EMBEDDED COMPUTATION

Our current platform is designed for detecting the presence
of human beings (henceforth, called human detection) in the
field of view. The IPP for human detection is composed of
four processing stages: object localization and segmentation
through temporal difference (TD), compression (CR), fea-
ture extraction (FE) and classification (CL). As discussed in
Section I, PD is a direct control knob that allows us to trade-off
computation vs. communication at the sensor node. Besides a
dynamically tunable PD, the prototype platform offers three
algorithm choices with different level of computation com-

Fig. 5. Embedded human detection computation and design points of
different algorithms/operations.Algorithm-1 (highest accuracy) applies CR
ratio of 2:1, 7 feature gradients and SVM classification template; Algorithm-2
(nominal) compresses input frame 4 times, extracts 5 gradients per feature and
applies NB human detection template; Algorithm-3 (most energy-efficient)
heavily compresses input frame 8 times, extracts 3 feature gradients and
classifies with the tree template.

Fig. 6. Algorithm demonstration with a real video frame.

plexities and detection accuracy to provide higher level of
power-performance trade-off. The target accuracy is set by
the cloud back-end and is typically application specific. As is
shown in Fig. 5, in our design, Algorithm-1 compresses the
input frame at the least compression ratio, extracts feature
with the most gradients and classifies the feature descriptor
with the most computationally-intensive SVM template; and
thus achieves best performance in terms of human detection
accuracy.On the contrary, Algorithm-3 adopts maximum com-
pression of the acquired frame, extracts the least number of
gradient feature and applies the tree based template, which
offers a low-power implementation apt for severely energy-
constrained systems. Algorithm-2 is the nominal design point.
The design parameters of each algorithm are also listed in
the Fig. 5. Depending on the trade-off between accuracy
requirement and energy budget, a particular algorithm should
be selected. This offers programmability on the platform for
specific applications and energy constraints. Fig. 6 demon-
strates how a single frame with a moving object is processed
through the IPP and each stage of the IPP are described below.

A. Objection Localization and Segmentation

Object localization and segmentation is the pre-processing
stage to detect whether a certain frame contains a moving
object and segment the object for further computation or trans-
mission. The pre-processing stage prohibits unnecessary com-
putation or communication of following stages when the field
of view (FoV) is empty. As pre-processing is always on,
the low-power requirement of this algorithm is a primary con-
sideration. There are three major approaches for object activity
detection and segmentation: temporal difference [12], model

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:48:44 UTC from IEEE Xplore.  Restrictions apply. 



CAO et al.: SELF-OPTIMIZING IOT WIRELESS VIDEO SENSOR NODE 2473

based object localization [13], [14] and optical flow [15]. Opti-
cal flow method can obtain complete information and detect
the moving object from background better, but requires clus-
tering, which is computationally expensive and unsuitable for
real-time IoT operation. Model based background subtraction
relies heavily on dynamically calibrated background models,
which has a large overhead in an embedded systems, especially
under strict power constraints. Compared with optical flow
and model-based background extraction, temporal-difference
computes moving object area with the least operation and
consumes least energy.Hence, in the current implementation,
we use temporal-difference for its simplicity and high energy
efficiency [13] in the low-power pre-processing stage. In the
temporal difference method, we subtract two consecutive video
frames. The pixels whose difference is greater than a certain
energy threshold, Eth, are labeled as activated pixels with label
value of 1. Otherwise, label value 0 is assigned. This can be
summarized as:

Di(m, n) = |Fi(m, n) − Fi-1(m, n)| (1)

L i(m, n) =
{

0, |Di(m, n) − Di-1(m, n)| ≤ Eth

1, |Di(m, n) − Di-1(m, n)| > Eth
(2)

The area of interest is defined as the pixels within the
rectangular boundary with label value of ‘1’. We quantify the
“information content” (S) of a frame as the number of activated
pixels (normalized to the total number of pixels) and it forms
a consistent measure of context in camera based sensor nodes.
If information content is less that 3.125% (60×40 in a QVGA
frame), we do not perform any further processing and the
entire system is gated till the next frame is captured.

B. Compression

The second stage of IPP is image compression. The pur-
pose of compression is to reduce the amount of data to
compute or communicate while maintaining a target accuracy
requirement. This is simply performed by averaging the pixel
values over a sliding window. In our design, compression
further scales down the segmented image from pre-processing
by evenly averaging pixels at certain compression ratio. CR1,
CR2 and CR3 represents increasing compression as shown
in Fig. 5.

C. Feature Extraction

Feature extraction derives informative and non-redundant
values to facilitate the subsequent stages to generate better
classification results. In human detection, feature extraction
is crucial to discriminate human from cluttered background.
Different feature descriptors are available, including wavelets,
SIFT and HOG. Among all feature extractors, Histogram
of Gradient (HOG) is chosen for its excellent performance
and large INRIA human dataset availability [16], [17]. HOG
first divides the input image matrix evenly into M×N cells.
Gradient angle and gradient magnitude of each pixel are
computed. Each pixel within the cell votes for an orientation-
based histogram channel by comparing gradient angle with
angle bins with weight of gradient magnitude. Angle bins
evenly spread on (−π, π] range and number of bins is Nbin.
Then the spatially connected cells form a block of size

Fig. 7. (a) Measured detection accuracy vs. compression ratio. (b) Measured
detection accuracy vs. number of gradients extracted from HOG feature
extraction. (c) Measured detection accuracy vs. number of blocks to extract
feature vectors in HOG feature extraction. (d) Power consumption and
accuracy at design points in different algorithms.

(M−1)×(N−1) to be locally normalized to account for
changes in illumination and contrast where M and N stands for
number of rows and columns of cells. The hardware supports
three FE options, as shown in Fig. 5.

D. Classification

Classification is the final step in the IPP. The classifier is
trained offline in testing phase and classification template is
generated and stored in the SDRAM. Different machine learn-
ing classifiers have different performance-power trade-offs.
We employ three different classification schemes depending
on the target accuracy set by the cloud back-end depending
on the application. Based on our simulations, we support
Support Vector Machine (SVM) for highest performance,
Naı̈ve Bayes classifier (NB) for nominal performance, binary
tree classifier for highest energy efficiency, as three classifiers
to offer different trade-offs of complexity/accuracy in human
detection.

In Support Vector Machine-based classificaiton [18], [19],
a feature set with Nin predictors are mapped to a vector in
Nin-dimensional space. The space is divided into two separate
spaces by a hyper-plane obtained from training. Margins
between the two spaces are two parallel hyper-planes with
distance of 2 supported by N-dimensional support vectors. The
number of support vectors, Nsup, is determined by the training
set. The relative distances to the two marginal hyper-planes
determines which class it belongs by computing:

Y (�x) = sign(

Nsup∑
i=0

α_iyi �Vi �x + βi) (3)

Where Y (�x) is the classification result of input feature
vector �x, and αi, yi, �Vi, βi are Nin-dimensional support vector,
weight, label and offset.

Naı̈ve Bayes (NB) classifier [20]–[22] assumes strong inde-
pendence between individual descriptors and applies Bayes’
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Fig. 8. (a) Measured human detection accuracy with three different
algorithms. (b) Number of estimated operations in millions of multiplication-
accumulation-counts (MMAC) for different algorithms/depths.

theorem, which describes stochastic event based on related
conditions, on test data to predict class:

P(Ck|�x) = P(Ck)

P(�x)

Nin∏
i=1

p(xi|Ck); (4)

CK = argmax Ck P(Ck|�x) (5)

where Ck is the kth class and �x is the input test descriptor.
P(Ck), P(�x) and p(xi|Ck) are constants and obtained from
training and the predicted class, CK, is the one with highest
conditional probability for all classes. In the current set-up,
there are only two labels: human and non-human.

Binary tree or decision tree, is composed of nodes, branches
and leaves representing test, test-outcome and labels respec-
tively [23], [24]. The configuration of a tree, including shape
and test condition on each node is obtained by observation.
The tree classifier in our application is binary, which means,
starting from root node, on each node, one of the predictors in
feature set is compared with a certain threshold. Then it either
goes left or right depending on comparison result till it reaches
the one of the leaves which contains one of the classification
results.

E. Comparative Analysis of Classification Schemes

The three classification schemes have been mapped to the
ADI camera processor and optimized for minimum area on the
on-board memory. Benchmarking is carried out on the INRIA
human dataset [16], [17]. Tree classifiers use cascaded com-
parators of depth 10, and are the most energy efficient scheme.
SVMs demonstrate highest performance but require more than
500 support vectors and hence dissipate the highest power.
NB shows nominal performance and power dissipation. Fig. 7
illustrates how detection accuracy changes with CR, number
of gradients and number of blocks in different classification
algorithms. Accuracy improves when CR is low and more
gradient features where number of blocks in feature extraction
does not show strong tendency. The design parameters for each
algorithm selected for our platform are also denoted in the
figure. The compression ratio are designed as 2:1, 4:1 and 8:1
for three algorithm with 3, 5 and 7 gradient orientations in each
block of feature extraction. Number of blocks in extracting
gradient orientation is designed to be 21 for all algorithms.

Accuracy measurements in Fig. 8a were carried out on
human detection database, INRIA [16] because of its rel-
evance to surveillance. The design parameters are chosen
from Fig. 7. Algorithm-1 is designed to provide a target

accuracy of 91% while Algorithms-2 and 3 provide target
accuracy of 83% and 77% respectively. Fig.8b illustrates how
the number of computations (in terms of 106 MAC operations)
changes with both the algorithm of choice and the PD. Higher
accuracy and deep embedded processing suffer from heavy
computation which is expected to result in high computation
energy expenditure.

As the PD is increased, the amount of data required to
transmit to the backend (including all the header informa-
tion) is reduced. Fig. 9a illustrates the transmitted (Tx) load
(i.e., the amount of data to be transmitted per frame) for each
computation depth. Fig. 9b, illustrates the measured compu-
tation energy per frame for the three different algorithms and
PDs as discussed above. We note that the lowest computational
energy of 0.71mJ/frame is recorded for Algorithm-3 and
PD-1 while the highest computational energy of 8.2mJ/frame
is measured for Algorithm-1 and PD-3, thus showing a span
of 8X/9X depending on the choice of algorithm and PD.
We also note that as the computation energy at the sensor node
increases (higher PD), the total data volume decreases sharply
thus allowing a smooth trade-off in the cost of computation
and communication. Key results are tabulated in Fig. 9d.

IV. ADAPTIVE WIRELESS COMMUNICATION

Wireless communication conventionally is the major cause
of energy expenditure and shortened lifetime of wireless sen-
sors, especially when the sensors are experiencing expanding
bandwidth, rapid growth of nodes and ever-increasing data
volume with the development Internet of Things [6], [7].
To implement energy-efficient wireless design on SDR
(software defined radio), the power/energy characteristics of
the adaptive radio is first explored. As is shown in Fig. 10a,
transceiver power, first dominated by standby power at low
loads, increases with output power and dynamic power grad-
ually dominates which is generally the case with noisy chan-
nels or long-distance transmissions. In Fig. 10b, it is observed
that with the increase of data rate, energy per byte transmitted
decreases tremendously. In our system, data rate is set at
125kBps by GNUradio.

Traditionally, transceivers are designed for the worst-case,
hence maximum power consumption, to guarantee target per-
formance, such as bit-error-rate (BER). However, as channel
condition of wireless sensors varies significantly from time to
time [25], adaptive wireless communication is desired which
adjusts the transceivers dynamically to operate marginally
with respect to performance according to temporal channel
quality to save energy [9], [10], [26]–[33]. Channel quality is
affected by (1) Path Loss (2) Interference Strength. (1) can be
compensated by increasing transmitted power amplifier (PA)
output power, (2) can be handled by increasing receiver
linearity. Since we focus on co-optimizing computation and
transmitter power, we mostly focus on (1) in this work.
Path-loss in dB is expressed as [34]

Path_loss = 20log10(
4πd f

c
) (6)

Here d is distance, f is the carrier frequency and c is the speed
of light. In our design, the carrier frequency is 985Mhz.
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Fig. 9. (a) Measured transmission load vs. processing depth with different
algorithms and PD. (b) Measured front-end computation energy per frame vs.
processing depth. (c) Estimated Tradeoff between transmission data volume
with computation energy (d) different detection accuracy requirements result
in different algorithm chosen, computation energy (Ecomp) and transmission
data volume.

Fig. 10. Measured (a) transceiver power vs. output power. (b) energy per
byte vs. data rate.

Fig. 11. Measured (a) Bit-error-rate vs. path-loss under different PA gain.
(b) PA gain and transceiver power vs. path loss under BER requirement
of 10-4 and 10-8.

To compensate for path-loss, the power amplifier gain is
adjusted dynamically to guarantee minimum BER. Measured
BER vs. path-loss for different PA gains of the SDR are
shown in Fig. 11a. The PA gain and the total transmission
power required to meet a target BER=10-8 and BER=10-4

for different path-loss are also shown in Fig. 11b. For the rest
of the paper, we will use these two target BERs. BER=10-8

is a conservative target ,which represents minimal error detec-
tion/correction and channel coding and high communication

Fig. 12. Measured (a) transmission energy per frame vs. transmission data
volume under various channel conditions. (b) Transmission energy per frame
vs. processing depth under different path-loss conditions.

Fig. 13. Breakdown of computation energy and TX energy in different
processing depth and path-loss.

Fig. 14. Calibration and runtime self-optimization scheme.

energy. On the other hand, a more relaxed BER target of 10-4,
with complex channel coding employed, illustrates usage
models where the energy cost of computation can dominate
the energy cost of communication, particularly for cleaner
wireless channels. In this paper, we have not considered
the network aspect of the wireless node. Hence, we present
results for both a conservative BER target and a relaxed BER
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target that encompasses typical ranges for wireless nodes.
We measure the total transmitted energy as a function of
the total transmitted data volume (also referred to here as
Tx load). For low path loss, the standby power dominates,
however with increasing path loss and PA gain we see a near-
linear increase in total transmission energy as a function of the
data volume (Fig. 12a). Since, the volume of transmitted data
decreases with PD, we can now estimate the total transmission
energy per frame of video data as a function of PD, as shown
in Fig. 12b. With clean channel (40dB path-loss), transmission
energy per frame is 1mJ for transmission after PD1, while for
noisy channel (70dB path-loss), transmission energy per frame
can be as high as 17mJ.

The energy breakdown of the system is demonstrated
in Fig. 13. Here, we can observe that in a noisy channel
with a path-loss=70dB, transmitter energy occupies more total
budget as compared to a clean channel. At the same time, with
deeper processing depth, transmitter energy can be saved at the
expense of computation energy. The overall self-optimization
of total energy will be introduced in the section V.

V. SELF-OPTIMIZATION PROCEDURE AND SYSTEM SETUP

In the previous sections we have seen the strong trade-off
between transmission energy, PD and the algorithm of choice.
A self-optimizing system needs to be cognizant of this, and
adjust its operating point dynamically based on the choice of
algorithm and channel conditions.

A. Energy Model

We first develop a model for the total energy of the sensor
node. The total energy, E, includes computation energy, Ep,
and communication energy, ETX; and is a function of temporal
variables of information content (S), processing depth (PD),
and path-loss, (PL), under the constraint of accuracy require-
ment, (Acc0), as defined by application/cloud server when
choosing the most-energy efficient algorithm, ALG.

E = Ep + ETX = f (S, P D, P L), Acc(ALG) > Acc0;
(7)

Once the most energy-efficient algorithm is chosen accord-
ing to minimum accuracy requirement, computation energy is
only a function of information content and processing depth
independent of path-loss and it can be further decomposed into
dynamic energy and static energy per frame. With processing
period fixed at T, i.e., 1/frames per second, Ep changes
with processing time (τp), a function of information con-
tent and processing depth. Large information content size,
deep embedded processing and more complex algorithms will
result in high computation energy. Pdynamic,p and Pstatic,p are
the dynamic processing power and static processing power
respectively which are obtained from the image processor
measurement. The processing energy can then be expressed
in terms of S, PD and other parameters as

Ep = f1(S, P D) = Pdynamic,p · τp(S, P D) + Pstatic,p · T

= θALG,PDS + Estatic,p (8)

where θALG,PD is model coefficients of algorithm ALG at
processing depth PD which is fitted via regression during pre-
deployment testing and calibration

Communication energy is modeled as a function of PL,
power amplifier (PA) gain and the static power. The total
energy to transmit each video frame is modeled as

ETX = f2(S, P D, P L)

= Pdynamic,TX · τp(S, P D) + Pstatic,TX · T

= Pdynamic,TX(P L) · �ALG(S, P D)

DR
+ Estatic,TX (9)

where �ALG(S,PD) is transmission load when processed by
algorithm-ALG, processing depth of PD and information con-
tent of S, and DR is the data rate.

B. Self-Optimization Procedure

The over-all system first characterizes itself before deploy-
ment. On the test-bench, for different algorithms, PD and path
loss conditions, the system performs energy calibration and
determines the total energy for each IPP task and transmission.
Then the system populates a look-up table (LUT) which
contains information about possible operating conditions. This
is currently implemented on a PC, but can be embedded if
required. This calibration step can use external or embedded
sensors (power/current sensors); and, in the present system we
perform the calibration using external on-board sensors.

Calibration of the system is performed during test phase.
This procedure is illustrated in the flow-chart shown in Fig. 14.
The key algorithmic steps before the IoT node is deployed are:

1) The algorithms (combination of different compression
ratios, feature extraction methods and classifiers) are
characterized on a known (INRIA) data-base during
design. The accuracy of the algorithms for the task at
hand are determined.

2) During calibration phase, models for energy dissipa-
tion are constructed. A random value of path-loss
is generated. A corresponding minimum power amplifier
gain that satisfy the target BER is measured and the
gain together with its Pdynamic,TX are stored in the
corresponding LUT entries.

3) LUT entries for the coefficient θ are populated for
each algorithm and processing depth. Assuming a linear
relationship and to avoid over-fitting, ten processing
energy measurements (Ep) against ten random informa-
tion sizes (S) from a test video per PD and algorithm
are used in the current setup. We use regression to
calculate θ . Videos in this calibration stage are obtained
from ViSOR data-set, ”Outdoor, Unimore D.I.I setup”
category. It encompasses a large range of information
content, from pixel sizes of 2400 (60×40) to 21600
(180×120). This allows us to obtain a comprehensive
and accurate energy model which is critical for the
success of the design. During run-time we test the setup
with a real-time system with hours of videos obtained
from the OV7670 image sensor. This allows us to obtain
accurate measurements of energy consumption during
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Fig. 15. Data packet configuration and modes of transmission-reception for the wireless link.

Fig. 16. Measured embedded computation power consumption where
transient congrol signal of each processing stage is indicated by GPIO output
voltage level: (A), object segmentation and localization through temporal
difference (TD) together with compression (CR); (B), feature extraction(FE);
(C), classification (CL) and finally (D), idle power down state. Note that alter-
native opertions have alternative active-high and active-low control signals.
For example, (A) is active-high, (B) active-low and so on.

operation and perform online optimization between com-
putation and communication energy. It should be noted
that to train the system for human detection we used
the INRIA image data-set, as has been mentioned, and
performance/accuracy testing was done on hours of real-
time videos acquired with the final system setup.

After deployment, information about path-loss is sent
from back-end cloud to the front-end platform periodically
(every 1s) and the minimum power amplifier gain needed
to overcome path-loss is updated. Then the energy model
estimates the energy for all the IPP blocks with respect to
the information content. Then the system chooses the PD for
minimum energy of operation. The PD information, algorithm,
transmission gain and energy for IPP blocks are packed into
the frame header and transmitted. This is used by cloud server
for back-end processing. The calibration and run-time self-
optimization scheme are shown in Fig. 14 and data/operations
in time domain is shown in Fig. 15.

Upon obtaining accurate coefficients, the overhead of the
self-optimized system is limited to storing the model para-
meters and modeling the computation/communication energy.
The model, including PL-PA gain table, will consume no more
than 40 bytes of memory in double-precision. For the system
running at 10 frames per second, the maximum computation
needed for the energy estimation is 70 MAC/second. For the
overall system, both the model storage and energy estimation
overheads are negligibly small.

Fig. 17. Measured total energy (computation+communication) per frame for
different PD with increasing path-loss. Experimental results are demonstrated
for the three algorithms described here and two BER targets.When path-loss
is high, the general trend is that optimal mode moves to more front-end
embedded processing.

VI. END-TO-END SYSTEM DEMONSTRATION

AND MEASUREMENTS

The algorithms are implemented on ADI-BF707 image
processing board and computation power consumption is mea-
sured. An example of measured power and the processing
steps is shown in Fig. 16. We can observe the different
processing steps through GPIO output (the IPP steps are
alternatively active high and active low), and the correspond-
ing power consumption. During pre-deployment calibration,
the LUT is populated and the energy models are constructed
for varying path-loss and information content of the captured
video frames. Based on the LUT data, the system chooses
the operating mode for minimum energy per frame. This is
shown in Fig. 17 where different PL scenarios are exam-
ined. As the PL increases, the self-optimizing sensor node
always chooses the most power optimal PD. We note that the
increasing path-loss will result in more embedded computation
and total energy is saved on the self-optimizing platform.
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Fig. 18. Measured total energy (computation+communication) per frame for
the proposed system comapred against two static designs.Experimental results
are demonstrated for three algorithms and two BER targets.

Fig. 19. Case Study: Random and dynamic path-loss condition created
by a mobile IoT node and the corresponding PD, PA gain, computation,
transmission and total energy per frame under BER constraints of (a) 10-8

and (b) 10-4.

Also, improved energy-efficiency will be achieved with low-
power algorithm, Algorithm-3 for example, or lower target
BER, i.e. 10-4. Comparisons on total energy per frame is also
demonstrated among different design strategies in Fig. 18.
We compare the results of the proposed system vis-a-vis two
static designs. These are:

1) Full-Transmission: In this design the sensor node only
performs image acquisition, localization and compres-
sion, and then transmits the entire video data.

2) Full-Computation: In this design the sensor node per-
forms all the tasks in the IPP without considering the
energy cost of computation, independent of the channel
conditions.

Fig. 20. Path-loss measurements under different indoor and outdoor
environments.

Fig. 21. Measured total energy (average) per frame in different environments
vis-a-vis static designs under BER targets of (a) 10-8 and (b) 10-4.

We note that by properly balancing the energy for com-
putation and communication, the proposed system always
operates at minimum energy point. We measure peak saving
of 4.3× at 70dB path-loss, operating with Algorithm-1 and
target BER of 10-8, when compared with baseline design
(Full-Transmission Design). For a target BER of 10-4, the pro-
posed system shows 2.2× to 3.1× peak savings. A random
path-loss scenario is generated and its impacts on PD, PA gain,
computation energy per frame, communication energy per
frame and total energy is demonstrated in Fig. 19.(a). We note
how in transient mode the system operated at the correct PD
to track minimum overall energy by trading computation for
communication energy when channel is noisy (high path-loss).
Also, with lower BER requirement as is shown in Fig. 19.(b),
the system performs less computation (no PD= 3 mode is
observed) and operates at smaller PA gains. Energy per frame
under different environment are also shown. Finally, the end-
to-end system is deployed on a mobile IoT platform and
various indoor and outdoor conditions are used to evaluate
the potential of the design. Path-loss as a function of distance
between the IoT node and the base-station for various wireless
conditions are shown in Fig. 20. For these operating conditons,
we compare the total energy/frame dissipated in the proposed
system vis-a-vis “Full-Transmission” and “Full-Computation”
designs. The comparative results for two BER targets are
shown in Fig. 21. We note that the proposed system saves
significant energy during run time and the optimal balance
between computational energy and communication energy is
obtained.

Fig. 22 shows the comparison with state-of-art designs
on low-power wireless video applications. Previous research
efforts have been focused on either (1) embedded low-power
video processing [35]–[37], such as SRAM-FPGA based
on-board object detection, or (2) adaptive wireless communi-
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Fig. 22. Comparison table: The proposed system has been compared with state-of-the-art video based sensor nodes which either (1) perform “in-sensor”
video processing, or (2) improve energy-efficiency of the wireless transmitter through real-time adaptation. The proposed system performs self-optimization
between the computation and communication to enable the lowest power consumption in a dynamic environment.

cation which adjusts the PA power and transmitter linearity
with the dynamic wireless channel conditions [10], [38].
To the best, of our knowledge this is the first reported work
where the computational and communication energies are
being co-optimized for achieve the highest energy efficiency.
To compare the proposed system with published results,
the power numbers reported are normalized to the image
size (320 × 240), maximum TX output power (20dBm) to
estimate the final metric of energy per frame. The comparison
shows that the proposed system outperforms state-of-art design
by more than 2×.

VII. CONCLUSION

This paper presents a video IoT sensor node which per-
forms self-optimization between the amount of computation
(for human detection) and the total data volume to be trans-
mitted. As the information content and the channel condi-
tions change, the system tracks the minimum energy point.
Hardware measurements show 4.3× reduction of the total
energy/frame compared to a baseline design. Comparisons
with state-of-the-art video based sensor nodes, we note more
than 2× reduction in energy/frame.
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