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Abstract— The widespread proliferation of smart sensors has
led to hardware that enable edge intelligence (EI) with extreme
energy efficiencies. This decreases the volume of data that is
transmitted to the cloud, thus reducing: 1) processing latency;
2) communication energy; and 3) network congestion. However,
this comes with an added cost of computation at the edge
node. The cost (energy/latency) of edge computation and the
cost of communication to the cloud vary widely depending
on operating conditions, which include: 1) information con-
tent in the data; 2) algorithm selection; 3) channel conditions
(noise, path-loss, etc.); 4) network size, available bandwidth; and
5) resources at the cloud. This article presents a 65 nm wireless
image processing SoC for real-time computation-communication
trade-off on resource-constrained edge devices. The test-chip
includes: 1) an all-digital, near-memory, reconfigurable, and
programmable neural-network (NN)-based systolic image proces-
sor; 2) a digitally adaptive radio-frequency digital-to-analog
converter (RF-DAC)-based transceiver; and 3) a mixed-signal,
time-based, actor-critic (AC) neuro-controller with compute-in-
memory (CIM) and in-place weight updates that provide online
learning and adaptation for efficiently controlling the compu-
tation, communication blocks separately as well as jointly. The
major contributions of the proposed SoC are threefold: 1) a wire-
less Internet of Things (IoT) SoC architecture enabling a generic
computation-communication trade-off scheme; 2) a novel CIM
circuit design enabling effective AC control and online learning
(0.59 pJ/MAC, 0.4 pJ/update); 3) integration of programmable
deep NN (DNN) accelerator (1.05 TOPS/W) and reconfigurable
transceiver (184 pJ/b @ −15 dBm) supporting versatile

Manuscript received October 7, 2021; revised February 6, 2022; accepted
March 1, 2022. This article was approved by Associate Editor Kenichi Okada.
This work was supported in part by the Semiconductor Research Corporation
under Grant 2720.001 and in part by JUMP CBRIC under Grant 2777.006.
(Corresponding author: Ningyuan Cao.)

Ningyuan Cao, Jianbo Liu, and Boyang Cheng are with the Department
of Electrical Engineering, University of Notre Dame, South Bend, IN 46556
USA (e-mail: ncao@nd.edu; jliu32@nd.edu; bcheng4@nd.edu).

Baibhab Chatterjee and Shreyas Sen are with the Department of Electrical
and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
30332 USA (e-mail: bchatte@purdue.edu; shreyas@purdue.edu).

Minxiang Gong, Muya Chang, and Arijit Raychowdhury are with the
Department of Electrical and Computer Engineering, Purdue University,
West Lafayette, IN 46202 USA (e-mail: mxgong@gatech.edu;
mchang87@gatech.edu; arijit.raychowdhury@ece.gatech.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSSC.2022.3159473.

Digital Object Identifier 10.1109/JSSC.2022.3159473

cloud-edge collaborations; and 4) significant system-level energy
efficiency improvement (5.7×) with real-time on-chip smart
control enabled by seamless chip integration and AI-enabled
decision-making. Furthermore, this SoC serves as a system-level
IoT prototype for next-generation context-aware EI.

Index Terms— Edge intelligence (EI), edge-cloud trade-off,
Internet of Things (IoT), wireless system-on-chip.

I. INTRODUCTION

THE interplay between the Internet of Things (IoT)
and artificial intelligence (AI) has made great advance-

ment of the smart society. However, due to the constrained
energy budget on the edge devices, it remains challeng-
ing to support extensive wireless data transmission, espe-
cially high-dimensional image, and video data. As a result,
computation on the edge has been introduced in recent years
to address this challenge [1]–[5]. The in situ data process-
ing will greatly reduce the data volume of transmission,
thus reducing communication energy. Such efficiency comes
from the fact that computation energy is typically orders
of magnitude smaller than raw data transmission [6] for
conventional data processing algorithms. However, the state-
of-art AI algorithms demand deep data processing: even with
edge-friendly AI algorithms dedicated designed for embedded
applications, such as SqueezeNet [7] and MobileNet [8],
the tens of millions of computations per inference are mak-
ing computation cost non-trivial. Furthermore, in the con-
text of intelligent adaptive wireless transmission [9], [10],
data transmission energy and latency are highly dynamic
depending on channel noise, path-loss, sensor network size,
available bandwidth, server resources, information content
in the data, algorithm selection, and so on. Fig. 1 shows
the simulated system-level (computation + communication)
energy consumption across edge processing depth (PD) and
communication cost for both SqueezeNet and MobileNet. The
optimal control (denoted in the image) spreads out between
full edge computation (PD = 1) and full cloud transmission
(PD = 0), and it is a complex function of dynamic com-
munication cost and algorithm selection. As such, it will
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Fig. 1. Normalized systematic energy consumption (edge computation
and wireless communication) across edge PD and communication cost for
(a) SqueezeNet and (b) MobileNet. Simulation settings: communication cost
0.1–1 nJ/b, TX power −10 to 0 dBm, on-chip computation energy consump-
tion 1 pJ/MAC (8 b), external memory access energy consumption 5 pJ/b.

largely reduce systematic energy/delay by tracking the optimal
computation-communication trade-off of a wireless edge
intelligence (EI) system.

Among all the wireless IoT applications, image process-
ing is among the most demanding use-cases for optimal
computation-communication trade-off. On the one hand, image
processing is at the core of many important applications,
such as surveillance, recognition, behavior analysis, and so
on [10]–[12]. On the other hand, the high-dimensional data
volume together with extensive computation (deep neural net-
works (NNs), etc.) have brought about significant challenges to
resource-constrained wireless IoT platforms. Both facts have
motivated us to investigate chip-level solutions to address
various wireless image processing challenges with systematic
optimization and state-of-the-art circuit techniques.

This article presents a 65 nm wireless image processing
SoC for real-time computation-communication trade-off on
resource-constrained edge devices. The test chip includes:
1) an all-digital, near-memory, reconfigurable, and program-
mable NN-based systolic image processor at 1.05 TOPS/W
(peak); 2) a digitally adaptive radio-frequency digital-to-
analog converter (RF-DAC)-based transceiver with TX energy
efficiency of 768 pJ/b; and 3) a mixed-signal, time-based,
actor-critic (AC) neuro-controller with compute-in-memory
(CIM) and in-place weight updates that provide online learning
and adaptation at 0.59 pJ/MAC for efficiently controlling
the computation, communication blocks separately as well as
jointly.

II. DESIGN SPACE EXPLORATION

Conventionally, IoT image processing schemes either
directly transmit captured image to the back-end server or
process end-to-end algorithms locally without data exchange.
As mentioned in Section I, both schemes lack environmental
awareness and systematic optimization. The smart wireless
image processing scheme proposed is shown in Fig. 2(a).
There are three major building modules: pipelined compu-
tation, programmable communication, and self-optimization
control. Such a system optimizes programmable system targets
(yT ) according to dynamic sensed variables (uD) through
various control knobs (CTRL). The detailed variables are

Fig. 2. (a) System diagram of self-optimizing wireless image processor.
(b) Parameter table with selected design targets, sensed variables, and control
knobs for the proposed platform.

Fig. 3. Normalized computation workload and output data volume across
PD for (a) SqueezeNet and (b) MobileNet.

denoted in Fig. 2(b). A systematic overview and analysis of
the three modules are discussed in this section.

A. DNN Processing Pipeline

Deep NN (DNN) is the state-of-the-art image processing
framework and has achieved beyond-human performance in
many applications [13]. Compared with shallow multi-layer
perception, DNN usually has extensive cascaded/parallel con-
volution layers to extract features and several fully connected
layers at the end to separate feature space [14]. Furthermore,
people have looked into pruning techniques to sparsify NNs to
maximally reduce computation/storage bottlenecks for embed-
ded systems [15].

To understand edge DNN processing, two widely applied
embedded AI DNN networks, SqueezeNet and MobileNet,
are analyzed. Fig. 3 shows the output data volume and
accumulated number of operations at certain layers in these
DNNs. We have observed a monotonically decreased out-
put data volume and monotonically increased computation
workload with respect to deeper DNN PDs. It means that
the DNN framework is inherently compatible to act as a
computation-communication trade-off scheme: shallow PD for
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edge computation savings and deep PD for data communica-
tion savings depending on the dynamic communication cost.

At the same time, each DNN topology has its own computa-
tion characteristics with respect to computation workload, data
transfer patterns, layer specifications, and so on. The proposed
DNN computation pipeline as a processor should feature not
only any particular DNN, but also DNNs in general to adapt
to wide future use-cases. The optimization should be at least
two levels: 1) pipeline should be reconfigurable to account for
workload distribution between PDs and maximize local inter-
mediate data utilization across DNNs and 2) the processing
element (PE) in the pipeline should as well be able to recon-
figure for layerwise optimizations, such as convolution layers,
fully connected layers, sparsely connected layers, and so on.
The detailed implementation will be discussed in Section III.

B. Programmable Communication

Wireless channels present a highly dynamic environment
with respect to path-loss, signal-to-noise ratio (SNR), network
size, and so on. To guarantee the accuracy of data communi-
cation, transceivers (TRXs) are conventionally designed for
the worst case, thereby consuming higher power than that
required for specific applications in edge systems. To mitigate
the communication energy bottleneck, our previous works
extensively explore adaptive transmitters (Txs) and receivers
(Rxs) [16]–[22]. By monitoring dynamic wireless channel
conditions, the TX and RX control knobs can be tuned
accordingly to provide on-the-fly zero-margin performance,
thereby preserving energy.

An example of adaptive communication is illustrated in
Fig. 4. In scenario 1, the channel suffers from severe path-
loss (100 dB) and data accuracy is critical (BER < 10−4).
Hence, the output power of the final stage of the TX, which
is usually a power amplifier (PA), needs to be high, resulting
in significant TX power. However, more computation (higher
PD) at the node will help in reducing the total amount of
bits to be communicated, which can be helpful in reducing
the total system power. On the contrary, when channel loss is
moderate (60 dB) and transmission data error tolerance is high
(BER < 10−3) as in scenario 2, the transceiver can save up
to 100× TX power by properly lowering PA output power in
this example. In this analysis, the modulation is assumed to be
quadrature phase shift keying (QPSK), resulting in a received
Eb/N0 requirement of about 7.6 dB for BER = 10−3, and
about 9 dB for BER = 10−4 [23]. The transmitter efficiency is
assumed to be 15%, while the data rate is 1 Mb/s. In Fig. 4(a),
the dynamic system-level variables (such as path loss, SNR,
and network congestion) are shown, and the orthogonal tuning
knobs for each variable are also indicated. PA output power
should be increased for high path loss and/or low SNR,
data rate should be reduced in the case of low SNR and/or
network congestion, while error correction coding (ECC) can
be implemented for low SNR scenarios. A detailed explanation
on the adaptive transceiver system implemented in this article
can be found in [24].

In hardware adaptive transceiver design, it is preferred to
incorporate more programmable knobs to provide high degree

Fig. 4. Adaptive communication example showing that PA output power
adapts to path-loss and BER requirements to preserver energy. (a) High path
loss and low path loss scenarios, dynamic system-level variables and tuning
knobs. (b) Output power requirement and power consumption in the two
scenarios.

of freedom. Meanwhile, efficient on-chip TRX implementation
is highly desired for responsive TX control. The on-chip
programmable adaptive transceiver is discussed in Section III.

C. Optimal Control

Besides computation pipeline and programmable commu-
nication, it is crucial to optimally control the two modules
independently as well as an integrated system. The controller
will take design targets and sensed variables as inputs and
dynamically choose control knobs as outputs. In a complex
environment, both input/output dynamic range and variable
size will be large, and it will consequently lead to significant
policy search space and expensive real-time optimization. Fur-
thermore, accurate modeling and control will be challenging
in a sophisticated environment without online learning. The
devices have to be able to calibrate offline trained models and
learn in the real environment. It requires thorough investiga-
tions into the choice of the control scheme.

One straightforward solution is to offload control to the
cloud. With immense computation resources at the back-
end, the controller can handle accurate environmental models.
However, the latency between local dynamic and remote
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Fig. 5. (a) Among different strategies for the proposed control problem.
(b) NN AC controller diagram.

control could cause severe control errors in adaptive wireless
systems. This delay may result in consecutive transmission
failures with over-optimistic control choice. Alternatively,
we could use an embedded lookup table (LUT) to implement
the controller [10] for fast optimal policy indexing. However,
besides extensive memory usage, LUT lacks learnability in
a realistic environment. We could also choose NNs as an
emulator for the platform. However, an exhaustive search is
required for emulation-based optimal control. Both energy and
delay overheads make it less preferable.

To address all the problems mentioned above, we have
chosen NN-based AC control scheme. It has an actor NN
and critic NN, one for making decisions and one for system
emulation. In run-time, the actor picks optimal control knobs
in a single inference time with sensed variables and design
targets; and the critic emulates chip performance with sensed
variables and selected controls. During training, emulation
errors are collected to calibrate the critic NN, while the target
errors at the output of the critic controller are back-propagated
through the critic controller as control errors to train the actor
NN. The AC-controller is able to provide both real-time and
learnable optimal control. The control scheme comparison is
shown in Fig. 5(a) and data flows are shown in Fig. 5(b).

Before the actual hardware NN-controller implementation,
optimal controller network topology and its learning capa-
bility (offline training and online calibration) need thorough
investigation. We take the following steps to evaluate the
NN-controller scheme and observe its online environment
learning capability.

1) Dataset preparation: Generating random environment
dynamics based on prior knowledge of realistic dynamic
range (path-loss, channel noise, network size, and so on);
emulating chip performance (energy, delay, and bit error
rate) across control knobs from measured data.

2) Offline training: Exploring optimal configurations of
the actor and critic NN via offline training of varying
network configurations (number of layers and number
of nodes per layer of multi-layer perception).

3) Online calibration: Randomly perturbing trained net-
work and model coefficients to emulate offline training
error, and observing online calibration capability of the
NN-controller.

In Fig. 6(a), it shows the actor network and critic network
prediction accuracy across NN configurations. It has been
found that the optimal network consists of two-layer and ten

Fig. 6. (a) Performance of actor optimal control and critic chip emulation
measured with mean square error (MSE) across NN hidden layer nodes.
(b) NN-AC convergence for offline training and online calibration of 10%
random model parameter offset error.

hidden nodes per layer. Furthermore, Fig. 6(b) shows that
both the actor and the critic controller are able to calibrate
10% offset model errors. The implementation details will be
discussed in Section III.

III. HARDWARE ARCHITECTURE

The SoC architecture is shown in Fig. 7. There are three
major blocks designed for DNN computation pipeline, pro-
grammable communication, and optimal control discussed in
Section II.

1) PE spatial array: A 3-by-3 PE array with reconfigurable
interconnections between PEs to account for various
DNN architectures. Each PE has eight threads (each
thread with an ALU, a 1 kb static random access
memory (SRAM), and a shift register). PE is also
reconfigurable for optimized layer operations.

2) Adaptive transceiver: On-chip digitally reconfigurable
channel-aware transceiver with programmable PA gain,
data rate, and error correction code mode.

3) AC controller: A neuro-based AC controller. Both con-
trollers are 2-layer NN with each layer implemented
with a 10-by-10 CIM module.

Besides the major building blocks, the SoC has also
included an 8 kb frame buffer to store the input image, a pre-
processor to infer frame difference, data/instruction caches to
store temporal data/instructions, a scan chain, and a decoder.

The SoC interfaces with a camera, a power supply and
management unit, and a programmable interface. The SoC
will be remotely connected with the cloud server for data
exchange through the on-chip transceiver. Meanwhile, the
on-chip memory capacity of wireless SoC is highly con-
strained by both excessive area usage of RF baseband/antenna
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Fig. 7. Proposed wireless image processing SoC architecture.

Fig. 8. Circuit diagram of the on-chip reconfigurable PE spatial array and
examples of potential DNN computation pipeline configurations.

as well as a conservative selection of tech-node for analog
circuit performance. As such, external DRAM will be applied
to the SoC whenever the model size exceeds on-chip memory
capacity.

A. Reconfigurable PE Spatial Array

The PE spatial array has nine PEs and the PEs are placed in
a 3-by-3 configuration as is shown in Fig. 8. Each PE is able
to reconfigure its input to any of the outputs of four adjacent
PEs. At the same time, each PE can bypass the data so that
one PE’s output data can directly reach any PEs in the array.
By controlling each PE’s interconnection and bypass status,
the PE array can be easily reconfigured for various pipeline
topologies depending on the workload distribution and data-
flow pattern. For example, in a deep sequential computation
pipeline, the PE array can be reconfigured to support up to
nine-stage serial pipelines. On the contrary, if a workload is

Fig. 9. Circuit diagram of the reconfigurable PE.

highly parallel and there is minimal data exchange, the array
can also be reconfigured as a fully parallel stage. And it can
also form any pipeline between one stage and nine stages
as is shown in Fig. 8. It should be noted that the optimal
performance gain achieved from the proposed array structure
are the ones whose data formats are consistent (e.g., multilayer
perception). In modern DNN structure, the data generated in
one layer are often unlikely to be directly applied to the next
layer without proper data preparation (pooling, convolution
with stride, tensor computation order). In such a case, a portion
of computation resources and instruction bandwidth is required
for pre/post-processing.

PE in the array (shown in Fig. 9) includes eight threads,
and each thread consists of the following sub-blocks.

1) Arithmetic logic unit: ALU’s inputs are connected with
two 2-to-1 multiplexers. Input A is able to select
between: 1) the data on the global bus at the output
of input buffer shared by all threads and 2) the data
stored in local shift register. Input B is able to select
data between: 1) data on global bus at the output of any
particular SRAM in the memory bank and 2) data read
from the local SRAM.

2) Retention-enabled SRAM: The SRAM output is con-
nected to both the ALU within the same thread and
a global bus shared with all SRAM blocks in the PE.
Furthermore, to reduce static power consumption of
un-accessed SRAM, the PE has full control to put any
SRAM blocks into the retention mode.

3) Shift register: The shift registers are connected to other
shift registers in their neighboring threads. The first shift
register is connected to the input buffer. The shift buffer
chain will work as an first-in/first-out (FIFO) register
array when needed and push input data forward in each
cock cycle.

With proper configurations, the PE is able to optimize for
various DNN layer types that differ in computation pattern
and memory usage. In particular, the PE can be configured
to optimize fully connected layers, convolution layers, and
sparsely connected layers, which are major build modules in
a typical DNN.

Fully connected layer configuration is depicted in Fig. 10(a).
All threads work in parallel. The ALU selects one input from
the global input bus (input data) and another input from local
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Fig. 10. PE configurations for a (a) fully connected layer, (b) convolution
layer, and (c) sparsely connected layer.

memory (weights). Each thread acts as an output neuron as
shown in Fig. 10(a). By feeding sequential input data to PE,
a maximum of eight output neurons will be computed simulta-
neously through multiplication and accumulation (MAC) oper-
ations on parallel ALUs. The input sharing minimized input
data access and computation parallelism improved throughput.
It should be noted that fully connected layer’s computation
is 1-D vector product between the input and weight. As a
result, such configuration also applies to 1-by-1 filter kernel
in SqueezeNet and MobileNet.

Convolution layer configuration is described in Fig. 10(b).
All ALUs compute MAC in parallel where one input from
the local shift register (input data) and the other from the
global memory bus (weight). During computation, only the
SRAM stores the weight will be active, while all others in
retention. All threads share kernel filters and apply the kernels
to adjacent locations on the input data [shown in Fig. 10(b)].
By feeding sequential input data to PE and shift the data,
a maximum of eight convolutions can be processed simul-
taneously. Furthermore, as filter weights are shared with all
threads, un-accessed memory sub-banks are put into retention
to save static energy expenditure. In modern deep learning

Fig. 11. (a) Reconfigurable transmitter with control on data rate (8 b), output
power (3 b), and error-control coding (ECC—1 b), (b) details of the current-
mode RF-DAC-based PA, and (c) details of the LO phase generation.

algorithms, a convolution stride greater than 1 is usually
applied to reduce data dimensions. In this case, we will not
be using full threads, but portions of threads. For example,
by applying continuous data into every other threads, we can
achieve convolution with a stride of 2. For even larger threads,
it will be more convenient and efficient to re-configure the
PEs to data-stationary architecture: multiple filters operate in
parallel with shared input data that is re-organized for stride
greater than 1. In either case, computation efficiency will be
degraded by skipped threads or data preparation.

Sparsely connected layer’s PE configuration is shown in
Fig. 10(c). The threads will be assigned to either MAC or
accumulation tasks, respectively. The ones assigned to MAC
tasks will collect input data from the global data bus in a
pipelined manner. The thread to perform accumulation will be
acting as an index accumulator to compute which input should
be fetched for computation. The accumulator will read from
its local memory of index difference and accumulate them for
an actual index. Unused SRAMs are put into the retention
mode. Index differences, instead of actual indexes, are stored
to save memory footprint.

B. Reconfigurable RF-DAC TX and ULP OOK Rx

To have energy-efficient communication with an exter-
nal hub, a digitally reconfigurable, data-rate, and channel-
aware 2.4 GHz transceiver (see Fig. 11) is designed on the
same SoC that demonstrates the effectiveness of computation-
communication trade-offs through adapting to various data
rates and channel conditions. The transmitter consists of a
digital baseband, and an RF-DAC-based power delivery to the
antenna. The input data for the testing purpose may come
from an on-chip PRBS generator (3–31 bits). Alternatively,
real data from the on-chip compute units (reconfigurable PEs)
are utilized as input, which can be selected by the baseband
select mux. The data rate control is achieved by changing
the clock rate from 40 kHz to 10 MHz in 256 steps using
an 8-bit control. ECC can be enabled by one control bit
that turns on [8, 4] Hamming codes in the digital baseband.
From the baseband, 3 bits of I -path (in-phase) amplitude
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Fig. 12. Current mode and voltage mode choices for the RF-DAC. (a) and
(b) Circuit architectures. (c) Output power for RON = 1 k�. (d) Output power
for RON = 10 �.

control and 3 bits of Q-path (quadrature) amplitude control
determines how many legs of the RF-DAC would be turned
on (which determines the amplitudes for different modulation
schemes), while 2 bits of LO control generates appropriate
local oscillator phases. The possible delay mismatches in the
LO generation circuit were kept within acceptable limits using
a symmetric common-centroid based layout, the analysis of
which will be presented in a future work. In Section IV,
we shall show that the error vector magnitudes (EVMs) are
<3%, which proves that these delay mismatches are not
significant.

The power delivery subsystem, consisting of the reconfig-
urable RF-DAC-based PA and a fully on-chip tapped capacitor-
based matching network with reconfigurable capacitor banks
is shown in Fig. 11(b). The RF-DAC-based PA combines the
DAC, mixer, and PA operations in a single module through a
digital-friendly architecture that switches on or off an appro-
priate number of current-carrying legs of the module and can
support modulation schemes including on off keying (OOK),
QPSK, 16-QAM, or 64-QAM. The output power control is
achieved using 3 bits that alter the capacitor banks present in
the matching network. As mentioned earlier, 3 bits of I -path
amplitude control and Q-path amplitude control determine
how many legs in the I -path and Q-path would be turned
on. The choice of a current-mode (CM) RF-DAC is explained
in Fig. 12. The output power (Pout and drain efficiency (η)
expressions for power delivery with CM RF-DAC and voltage
mode (VM) RF-DAC + PA structures are derived as presented
in [25] and [26]. For CM implementation, the AC current
through the switching transistor id is a square wave, while
the voltage across the switching transistor vd is a sine wave
(since only the fundamental of the square-wave current passes
through the tuned load and creates a sinusoidal voltage). Using
the Fourier series expansion of a square wave, id can be written
as

id = VDD

2RON

×
[

1 + 4

π

∑
k=odd

sin kθ

k

]
(1)

where RON average on resistance of the switching transistors
in the RF-DAC. The load voltage, vL = VDD − vd (across the
load impedance, Z L ) then becomes

vL = −id,fundamental × Z L

= − 2

π
× VDD Z L sin θ

RON

. (2)

The negative sign signifies the 180◦ phase difference
between id and vL . The output power Pout,CM can thus be
written as

Pout,CM = v2
L ,rms

Z L
= 2

π2
× V 2

DD Z L

R2
ON

. (3)

The dc current in CM can be written as

Idc = VDD − vL ,avg

RON

= VDD

RON

×
(

1 + 2

π2

Z L

RON

)
. (4)

Thus, the dc power consumption becomes

Pdc,CM = VDD Idc = V 2
DD

RON

×
(

1 + 2

π2

Z L

RON

)
(5)

which results in

ηCM = Pout,CM

Pdc,CM
= 1

1 + π2

2
RON

ZL

≈ 1

1 + 5RON/Z L
. (6)

From (3) and (5), it is evident that both Pout,CM and Pdc,CM

keep on increasing as Z L/RON increases (or simply, RON

reduces with a fixed Z L , making the switching transistor
consume higher power). This makes CM power delivery a
suitable option for a wide range of output power. For VM
implementation, Pout,VM, Pdc,VM, and ηVM can be found as

Pout,VM = 2

π2
× V 2

DD Z L

(RON + Z L)2 (7)

Pdc,VM = 2

π2
× V 2

DD

(RON + Z L)
(8)

and

ηVM = 1

1 + RON/Z L
(9)

where Z L is the load impedance as seen by the VM power
delivery network (which is a class D PA) and RON is the
on resistance of the PMOS (or NMOS) in the PA. From (7)
and (8), it can be shown that both Pout,VM and Pdc,VM saturate
to (2/π2) × (V 2

DD/Z L) as Z L/RON becomes a large number.
Pout for both CM and VM is plotted with respect to the
ratio Z L/RON for two different values of RON (1 k� and
10 �) in Fig. 12(c) and (d). CM offers a higher Pout than
VM for both scenarios. However, CM with RON = 1 k�
offers output power in the range −20 to 0 dBm, which is
suited for most short-range communication and IoT-based
applications. A higher RON also helps in reducing the dc power
consumption according to (5). It is interesting to note that VM
with RON = 10 � can also support output power in the range
−20 to 0 dBm [see Fig. 12(d)]. However, to achieve a low RON,
large transistors need to be used, leading to higher parasitics
and driving power. As a result, we have adopted the CM
topology with a higher RON. As will be shown in Fig. 13, the
achievable range of Z L is 117–1600 � (through selection of
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Fig. 13. Tapped capacitor matching network for the RF-DAC. (a) Circuit
and equations. (b) Reconfigurable capacitor choices and corresponding load
impedances. (c) Effect of pad-bondwire-PCB model, and the inclusion of the
fixed pad capacitance into C1.

different capacitors in the tapped capacitor matching network),
leading to a Z L/RON ratio of 0.1–1.6 in Fig. 12(c). The tapped
capacitor-based matching network is preferred over having
a programmable load current going into a fixed matching
network because it is much easier to keep the devices in the
correct region with a fixed current, while >50 � effective
input impedance of the matching network ensures low power
consumption.

The 2.4 GHz LO generation [see Fig. 11(c)] for both I and
Q paths is performed by an on-chip LO generator. Four LO
phases are selected based on the 2 bit LO control as obtained
from the I–Q signal mapper.

A reconfigurable tapped capacitor-based matching net-
work [27] with a 50 � antenna has been used to tune the
Z L as seen by the RF-DAC. By choosing different capacitor
ratios, Z L/RON can be reconfigured for a fixed RON, leading to
different output power levels. As shown in Fig. 13, the effect of
finite Q of the on-chip inductor is considered during the design
of the matching network, which modifies the well-known
formula obtained in the ideal scenario that considers an infinite
Q. Five different values of C1 and C2 are considered and are
placed on a chip as a part of two different capacitor banks that
cover a matching network impedance from about 117 � to
about 1600 �, when limiting the bigger capacitor to 2 pF due
to area constraints. While designing the matching network, the
effects of pad capacitance, bond-wire inductance, and printed
circuit board (PCB) capacitance are also considered, and the
effect of the additional capacitances are included in the value
of the on-chip capacitor, C1. The design of the tapped capacitor
matching network is described in Fig. 13(a)–(c).

An ultralow-power (ULP) OOK receiver [see Fig. 14(a)] is
designed on the same chip that captures control signals from
a nearby base station to achieve closed-loop control on the
8 clock control bits, 1 ECC control bit, and 3 Pout control bits.
The receiver consists of two stages of RF LNA, a differential
to single-ended converter (D2S), an envelope detector (ED),

Fig. 14. Design of the ULP OOK receiver. (a) Block diagram. (b) Circuit
diagram of the ED. (c) Advantage of using a 4-stage ED.

Fig. 15. Circuit diagram of the NN-based AC controller.

two stages of baseband variable gain amplifier (VGA), and a
baseband comparator. For the ED [see Fig. 14(b)], a 4-stage
gate-biased structure is used which increases the output voltage
by 4× as compared to the 1-stage ED, thereby compensating
for the loss incurred during envelope detection [28]. The
SNR, however, remains constant as we increase the number
of stages. More stages can improve the output voltage further,
thereby making the decision-making process easier at the
comparator, at the cost of additional chip area.

C. NN-Based AC Controller

The large control space across computation and communi-
cation is learned using a low overhead (5% power, 2.5% area)
AC-NN controller (see Fig. 15). The AC-NN takes both design
targets and sensed variables as inputs and learns to optimally
control the control knobs. These are listed in Fig. 2.

The controller features four (two for the actor, two for
the critic) 10 × 10 memory sub-banks with time-based CIM
modules. A central control unit is used for communication
between CIM modules. The system architecture of the CIM
module is shown in Fig. 16. At the core, 100 thermometer-
encoded storage elements (SEs) form a 10 by 10 storage
array. Each SE has vertical and horizontal connections for
both wordlines (WLs) and bitlines (BLs). The array can
be read both row-wise as well as column-wise providing a
seamless design for transposing the weight matrix during back-
propagation. This also enables in-place online learning without
requiring reads and write-backs (baseline designs). At the edge
of the storage array, digital to time converters (DTCs), ADCs,
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Fig. 16. Circuit of 10-by-10 compute-update-in-memory (CUIM) module.

Fig. 17. (a) 1 bit SC circuit. (b) 8 b SE. (c) Thermometer encoding of SE.

and comparators form the peripheral. One control logic is used
to control all peripherals and the storage array.

To achieve in-memory computing and weight update,
a new 1-bit storage cell (SC) based on SRAM is proposed
[see Fig. 17(a)]. In addition to standard 6T SRAM, two
WL transistors (MH 1, MH 2) are added for matrix transpose.
Moreover, three transmission gates (S1, S2, S3) are used
to enable data movement between SCs. The SC has three
operation modes: 1) retention; 2) move left; and 3) move right.
In the retention mode, S1 and S2 are closed, while S3 is open.
The data in SC is stored the same as SRAM. When moving
right or left, S3 is closed to transmit data to adjacent SCs.
Depending on the direction, either S1 or S2 is closed.

The circuit diagram of the 3-bit thermometer-encoded SE
is shown in Fig. 17(b). Eight SCs are sequentially connected
with a pull-up transistor on the left and pull-down transistors
on the right. A control logic controls each SC according to the
input DTC pulse from peripherals. SC0–SC3 are connected to

Fig. 18. Example of in situ weight update in SE.

bl_V (SE) and blH (SE), and SC4–SC7 are connected to blV (SE)

and bl_H (SE). WLH (SC) or WLV (SC) of all SCs are connected
together, respectively. In each SC, either blH (SC) or bl_H (SC)

and either blV (SC) or bl_V (SC) are used to represent the weight
bits. The thermometer encoding of SE is shown in Fig. 17(c).
The number of “0”s for b0–b3 represents a negative value and
the number of “0”s for b4–b7 represents a positive value. 0 is
encoded by all “1”s.

During inference, DTCs allow pulsewidth-modulated WLs
(input signals) to be turned on sequentially such that the falling
edge of one row triggers the rising edge of the next. The partial
products are accumulated on the BL as long as the voltage on
the BL is greater than a threshold. The differential SC design
allows both positive and negative weights by discharging either
bl (positive) or blbar (negative). The array can be read both
row-wise as well as column-wise providing a seamless design
for transposing the weight matrix during back-propagation.
This also enables in-place online learning without requiring
reads and write-backs (baseline designs).

Besides in-memory computing, the above structure enables
in situ weight update with low hardware and control overhead.
The update is fulfilled by one single time pulse generated by
DTCs and the magnitude of the update is controlled by the
duration of the time pulse. Fig. 18 shows the weight update
process (increase weight by 4). At first, the weight is −2 and
the SE is in the retention mode. b1 and b2 have different
values. When the update process starts, the pull-up transistor
is enabled and all SCs are controlled to propagate data to the
right. Starting from b2, the data in SCs will flip from left
to right sequentially. According to the DTC pulsewidth, the
propagation stops at the desired place and all SCs return to
the retention mode. The data in the remaining SCs will not
change, and the weight in SE becomes 2. Similarly, to decrease
weight magnitude, the pull-down transistor is enabled, and SCs
propagate data to the left. This scheme can change the weight
during the learning process without leaving the storage unit.

In CIM designs, high-resolution ADC consumes most
area and energy. However, according to the data distribution
simulation, more than 90% results fall in the 6-bit range, while
the worst case requires 8 b resolution ADC. As we expect
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Fig. 19. Data-aware adaptive differential SAR ADC with read disturb
protection comparators.

Fig. 20. Timing diagram showing adaptive A/D conversion scheme.

data conversion to be a major energy consumer, we decided
to implement an adaptive A/D conversion scheme that uses 6 b
resolution ADC for optimized energy efficiency but still sup-
ports 8 b output. The circuit diagram and data simulation dis-
tribution are shown in Fig. 19. We choose 6 b capacitor-based
SAR ADC and share the capacitors with bitlines. The parasitic
capacitance of each bitline is around 40 fF. During computing,
32 ADC capacitors (6.4 fF each) are connected to the bitline.
Therefore, the total capacitance on the bitline is 244.8 fF.
Assuming a 25% variation on bitline parasitics, it is only
4% of the total capacitance and only leads to 4% computing
error. Therefore, by sharing ADC capacitors with the bitline,
it improves the dynamic range and embeds the sampling
process of ADC into the computing cycle. The ADC connects
with weight SEs via a 10-1 multiplexer, and two additional
comparators detect potential read disturbance. In addition, the
monolithic switching procedure of ADC further reduces the
energy [29].

The timing diagram in Fig. 20 illustrates the adaptive A/D
conversion scheme. At first, BLs are pre-charged. In most
cases, the 10-by-10 vector multiplication is completed before
conversion. However, when the intermediate sum of the prod-
uct gets close to the maximum range of ADC or may cause
a read disturbance on the SC (red area in Fig. 20), the
computing cycle is stopped, and the ADC starts to convert
the BL voltages to digital output. After conversion, BLs are

Fig. 21. Chip die micrograph and characteristics.

Fig. 22. Measured (a) computation pipeline frequency/power characteristics
and (b) energy consumption per operations for various layers. All the
measured numbers are solely for the core operations, where pooling, batch
normalization, and so on are not included. CONV stands for the convolution
layer with a stride of 1.

pre-charged again and continue computing the remaining cells.
When all cells are computed, the outputs are accumulated
in the digital domain to get the final result. The different
computation engine selections for DNN processor (digital
Von Neumann) and AC controller (mixed-signal compute-
in-memory architecture with thermometer-coded in situ data
update) are twofold: first, this SoC features a programmable
DNN accelerator, Von-Neumann architecture is versatile for
optimized operations/data-flow; on the contrary, AC-controller
is mainly implemented by matrix-multiplication which is a
perfect fit for CIM architecture. Second, the control algorithms
require lower bit-precision (3 b) than image inference (8 b),
and at the same time, it requires frequent updates to adapt
to the environment. As such, the proposed CIM circuit gains
energy/throughput advantages for both inference and learning.

IV. MEASUREMENTS

The test chip is fabricated in 65 nm technology with a total
area of 5 mm2. The chip die photograph and characteristics
are shown in Fig. 21.

The measured power performance of the processing
engine [see Fig. 22(a)] shows VMIN of 0.5 V and

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 19:52:16 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CAO et al.: 65 nm WIRELESS IMAGE SoC SUPPORTING ON-CHIP DNN OPTIMIZATION 11

Fig. 23. Measured transceiver energy and BER performance. (a) Measured
TX efficiency versus output power for different output power levels as
determined by the tapped capacitor matching network. (b) Measured TX
energy efficiency versus output power. (c) Measured RX energy efficiency
versus data rate. (d) Measured RX BER versus input power levels.

FMAX of 760 MHz. Peak arithmetic energy efficiency of
1.05 TOPS/W (0.43 TOPS/W, 0.18 TOPS/W) is measured
for CONV (FC, sparse) networks at 210 MHz (0.575 V)
[see Fig. 22(b)]. With the proposed weight-sharing scheme
in PE’s convolution configuration and fine control of the
un-accessed SRAM retention mode, computation-centric con-
volution operation has achieved sub-pJ efficiency per operation
by minimizing unnecessary memory usage.

The RF subsystem (see Fig. 23) shows a maximum TX
efficiency of 29.5% at −0.3 dBm, with back-off efficiencies
of 19.2% (7.9%) at −6.5 (−13.5 dBm) with QPSK. At 1 Mb/s,
the TX energy efficiency is 768 pJ/bit with 1 V supply
(−0.3 dBm output power). The measured energy efficiency
for the OOK RX is 62 (14) pJ/bit at 1 (0.8) V supply
at 10 Mb/s. Fig. 23(d) shows the effect of ECC on the RX

Fig. 24. Measured TX spectrum for QPSK with 2 MSps symbol rate,
500 MHz frequency span.

Fig. 25. Measured EVM at a distance of 2 m from the transmitter, with a
TX power at −0.3 dBm (QPSK, 2 MSps).

bit error rate (BER). Without ECC, a sensitivity of −72 dBm
is achieved for a BER of 10−3 at 1 Mb/s. An [8, 4] Hamming
code-based ECC on the TX improves the RX sensitivity to
−78 dBm (but halves the number of information bits). It is also
interesting to note that ECC helps in achieving a significant
(10×) improvement in BER when the RX input power level
is in the range of −50 to −65 dBm. For lower power levels
(e.g., −85 dBm or lower), burst errors are observed at the
Rx, for which ECC does not have a significant advantage
over the case without ECC. Fig. 24 shows the measured TX
spectrum for QPSK with 2 MSps symbol rate. This result is
taken near the highest output power for the PA. Fig. 25 shows
the EVM at a distance of 2 m from the TX, with TX power
set at −0.3 dBm for QPSK at 2 MSps. The rms EVM is only
≈2.6% (≈31.7 dB), showing that any delay mismatch in the
LO generation and the RF-DAC are not significant.

The oscilloscope capture of NN 10-by-10 CIM block bitline
discharge is shown in Fig. 26. By providing 1–3 unit time
wordline voltage pulse, bitline discharges proportionally with
constant weights.

To investigate the computation accuracy of the CIM block,
we have applied random inputs to the controller at measured
output result for each bitline (see Fig. 27). First, we can
observe that more than 95% of final results are within −40 to
40 range. Furthermore, before digital compensation, we find an
average error increase with the final computation result. That
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Fig. 26. Oscilloscope capture of bitline discharge of the CUIM module.

Fig. 27. Measured CUIM module nonlinearities.

Fig. 28. Measured CUIM module energy efficiency. (a) Measured energy
per operation and energy breakdown comparison between CIM and digital
modules. (b) Measured training and inference energy across supply voltage.

means nonlinearity errors accumulate on bitline. An average
of 1.6 errors is measured. After compensation, the error is
largely reduced, especially in computations where final results
are significant. Average error after compensation is around 0.6.

The measured performance of the neuro-controller is shown
in Fig. 28. The CIM consumes a measured 305.2 pJ (training)
and 156.8 pJ (inference) at 0.7 V with less than 0.6 LSB

Fig. 29. (a) Real-world wireless channel measurements over 15 h across
channels; (b) and (c) System-level energy/latency measurements of proposed
neuro-controller with baseline control methods.

of nonlinearity error. The peak measured energy efficiency is
0.59 pJ/MAC and 0.4 pJ for each weight update which are
2.2× and 4.75× lower than a digital counterpart (simulated).

The full system is deployed and a neuro-controller is
allowed to learn online from emulated signals from the cloud
and energy meters. Then it is tested for varying noise power
and network sizes and the system autonomously determines
the optimal PD to minimize energy, latency, or EDP. The
online adaptation allows the system to learn and choose the
CTRL parameters optimally. To demonstrate the effectiveness
of the proposed wireless SoC in real environment, we have
conducted substantial experiments on the campus of Purdue
University. To account for channel variance, the experiments
last for 15 h across four different channels. We test across
various conditions of path-loss and the number of edge nodes
(i.e., available bandwidth) and obtain a 2.58–5.7× (1.7–1.83×)
improvement in average energy (latency) for a BER of 10−5

compared to the baseline cases while running SqueezeNet that
maps to the SoC (see Fig. 29).

The proposed system is one of the first prototypes to address
computation and communication trade-offs with full SoC
solution. We have benchmarked our system with state-of-the-
art designs and show competitive figures-of-merit (see Fig. 30)
across ML accelerators [30]–[32], adaptive transceivers [27],
[33], [34], and SoCs [35]. We can observe that the proposed
platform achieved minimal energy per frame (4.6 mJ) in wire-
less environment, despite the fact that computation efficiency
is suboptimal. The design presents a vertically integrated
SoC featuring the first real-time NN-based adaptation for
computation, communication, and their trade-offs in energy-
constrained systems.
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Fig. 30. Comparison with the state-of-the-art.

V. CONCLUSION

This article presents a 65 nm wireless image processing
SoC for real-time computation-communication trade-off on
resource-constrained edge devices. The test chip includes:
1) an all-digital, near-memory, reconfigurable, and program-
mable NN-based systolic image processor at 1.05 TOPS/W
(peak); 2) a digitally adaptive RF-DAC-based transceiver
with TX energy efficiency of 182 pJ/b; and 3) a mixed-
signal, time-based, AC neuro-controller with CIM and in-place
weight updates that provides online learning and adaptation
at 0.59 pJ/MAC for efficiently controlling the computation,
communication blocks separately as well as jointly.

VI. FUTURE WORK

As an SoC design prototype, there exist substantial chal-
lenges and opportunities to further advance performance in
individual modules, such as computation, communication,
control, and their integration.

1) The online learning feature of DNN has not been
enabled for the current design. It will be of practical
interest to investigate the performance/cost trade-off
policy for wireless IoT online learning.

2) Current DNN computation efficiency is below state-of-
the-art DNN accelerators. This results from both conser-
vative choice of technology node and under-optimized
computations, such as pooling, batch normalization, and
so on. These operations are currently implemented with

general-purpose hardware. Future generations of the
proposed SoC will target state-of-the-art DNN acceler-
ator performance with advanced technology node and
full-stack optimization of the system.

3) Current SoC design is greatly constrained by the on-chip
area. In the future design, we would like to explore the
3-D integration option of major components, such as
memory, digital circuit, and even antenna. Given enough
computation resource, we would like to further explore
optimal PE array size, number of threads per PE, and
optimal SRAM capacity.
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