
T186 978-4-86348-605-8 ©2017 JSAP 2017 Symposium on VLSI Technology Digest of Technical Papers

JFS4-3
Ultra-Low Power Probabilistic IMT Neurons for Stochastic Sampling Machines 

M. Jerry1, A. Parihar2, B. Grisafe1, A. Raychowdhury2, and S. Datta1 
1University of Notre Dame, Notre Dame, IN; 2Georgia Institute of Technology, Atlanta, GA; Email: mjerry@nd.edu

Abstract: Stochastic sampling machines (SSM) utilize neural 
sampling from probabilistic spiking neurons to escape local 
minima and prevent overfitting of training datasets [1]. This 
enables improved error rates compared to deterministic 
implementations, and, in turn, enables lower bit precision, 
decreased chip area, and reduced energy consumption. In this 
work, we experimentally demonstrate: (i) Insulator-to-Metal 
Phase Transition (IMT) neurons with record low peak 
operating power of 11.9µW at VDD=0.7V; (ii) the IMT in 
vanadium dioxide (VO2) provides a natural probabilistic 
hardware substrate for realizing a compact stochastic IMT 
neuron for SSMs; (iii) implementation of SSM for pattern 
recognition on MNIST database [2] using experimentally 
calibrated device modeling. These results are compared to a 
22nm CMOS ASIC which shows stochastic IMT neuron based 
SSMs result in a 4.5x reduction in system power consumption. 
Introduction: Neural networks are primarily implemented on 
high power clusters or GPUs. However, the ubiquitous use of 
neural networks in data processing for character recognition, 
speech-to-text translation, and classification motivates the 
development of energy-efficient hardware tailored to their 
algorithmic requirements. Advances in stochastic algorithms 
show the energy-performance benefit of probabilistic network 
elements (which act to regularize the network and propel the 
system out of local minima (Fig. 1) [1]) in SSMs. 
Implementing such networks with CMOS require dedicated 
hardware for random number generation (RNG) and numerous 
multiply-accumulate (MAC) functions (Fig. 2). This in turn 
limits the energy and area efficiency of a traditional CMOS 
based SSM. In this work, we experimentally demonstrate a 
probabilistic hardware kernel for implementing SSMs based on 
stochastic IMT neurons. We harness the fundamental threshold 
switching variations of VO2 to demonstrate the properties of 
IMT neurons map directly to the algorithmic requirements of 
SSMs (Fig. 2), sigmoidal spiking probability and firing rates. 
Low Power IMT Neuron: Fig. 3 shows the IMT neuron 
structure where VO2 is serially connected to the drain of a 
MOSFET in a 1T1R structure [3]. Fig. 4 shows the trends of 
IMT neuron peak input power and average switching voltage 
(VIMT) with the device size. Record low peak power (11.9µW) 
and VDD (0.7V) are achieved at LVO2=100nm for an IMT 
neuron. Fig. 3 benchmarks this work against other published 
results [4]–[6] hightlighting the reduced power, operating 
voltage, and first demonstration of a truly stochastic neuron. 
Stochastic IMT Neuron: VO2 devices exhibit time-variant 
cycle-to-cycle fluctuations in the thresholding switching 
voltage (VIMT) (Fig. 6). We verify the mechanism behind 
stochastic switching in VO2 using an experimentally calibrated 
2D-heterogenous network (Fig. 5). The VO2 device is 
simulated as a rectangular grid of domains (45x84), where 
domains are independently capable of undergoing an IMT or 
MIT based on both the local potential (electrical) and 
temperature (thermal) [7]. Simulation results in Fig. 5(b) show 
the variations in VIMT result from spatial and potential 
variations in the nucleation point of the metallic filament. VIMT 
as a function of cycle number is shown in Fig. 6 emphasizing 
that the variations are not a result of VIMT drift. Fig. 7 shows 
the model accurately captures the experimentally measured DC 

characteristics and VIMT distribution. The IMT neuron 
operating principal is shown in Fig. 8(a), where the state of the 
IMT neuron is determined by the electrical load line. When the 
transistor load line crosses the stable low resistance state (solid 
line) the IMT neuron remains in the resting state. However, as 
VGS increases the transistor load-line periodically (due to 
cycle-to-cycle VIMT variations) crosses both unstable arms 
(dashed line) of the VO2 characteristics which results in 
probabilistic spiking due to occasional oscillations in the VO2 
conductance. The DC load line analysis is confirmed by time 
domain measurements in Fig. 8(b) where the neuron output is 
measured over a time envelope for a constant VGS. From this 
the required neuron response for SSMs is extracted in Fig. 9(a-
c), where the IMT neuron exhibits the required sigmoidal 
instantaneous spike probability and firing rate as a function of 
VGS and an exponential firing rate when normalizing for the 
refractory period. An experimentally calibrated noise model 
(Fig. 9(d)) reproduces the measured results, accounting for, 
VIMT fluctuations (dominates), thermal, flicker, and shot noise. 
SSM Neural Network Model: Using the noise model 
developed in Fig. 9 we exploit the IMT neuron level 
stochasticity to enable probabilistic firing of neurons in a 
784×500×10 network and map unsupervised learning and 
inference from the MNIST handwriting dataset as in [1] (Fig. 
11). IMT neurons reduce the error rate by 7.5% for 100k 
training sets. For large data-sets (>200K) stochasticity prevents 
over-fitting and improves classification accuracy by 4-5% even 
when the baseline accuracy is close to 90% (Fig. 12). 
Benchmarking with CMOS: We perform a quantitative 
analysis of the power dissipated in SSM implementations using 
stochastic IMT neurons and 22nm CMOS ASIC with 16-bit 
data paths (Fig. 13). For inference tasks at matched network 
accuracy and memory (SRAM) power consumption (72mW) 
the 22nm CMOS ASIC requires 376mW while the stochastic 
IMT neuron accelerator sees a 4.5x reduction in operating 
power requiring only 82mW (Fig. 14). When excluding 
memory, stochastic IMT neurons reduce power dissipation by 
30x (304mW to 10mW) over the 22nm CMOS ASIC. 
Conclusion: Stochastic IMT neurons are demonstrated for the 
first time and directly mapped to the agorithmic requirements 
of stochastic sampling machines. The stochastic IMT neuron 
displays record low power and operating votlage. Using an 
experimentally calibrated circuit model we implement an IMT 
neuron based SSM, which results in a  reduction of 7.5% in the 
error rate for unsupervised learning on the MNIST handwriting 
database. Further, the IMT neuron based SSM results in a 4.5x 
power reduction compared to a 22nm CMOS ASIC. 
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Fig. 4: (a) IMT trigger
voltage (VIMT) and (b) IMT
neuron power scale with VO2
channel length (LVO2),
allowing record low power.

Fig. 1: (a) Image sensor input to stochastic sampling
machine (SSM) network. For deterministic neurons (b) the
system remains in a local minimum while stochastic
neurons (c) enable the network to escape local minima and
reach the global minimum of the error surface.

Fig. 13: Schematics of SSM based processing
scheme for 22nm CMOS ASIC and IMT
neuron. MNIST handwritten digit database
used as input (28x28 pixels).

Fig. 14: IMT neurons result in 4.5x
power reduction over 22nm CMOS
ASIC with matched memory power
and network accuracy.

Fig. 12: SSM network accuracy as
a function of neuron stochasticity
(p=1=deterministic) show that
stochastic neurons can increase the
network accuracy by up 25% (for
small training datasets - 5K).

Fig. 5: (a) 2D heterogeneous
resistive network model reveals
(b) cycle-to-cycle variations in
VIMT occur from variations in the
nucleation phase transition.

Fig. 3: (top) IMT neuron
structure with SEM inset.
(bottom) Benchmarking IMT
neurons demonstrated in this
work and published results.

Fig. 2: We implement ultra-low
power stochastic IMT neurons
capable of implementing SSMs.
The results are benchmarked
against a 22nm CMOS ASIC.
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Fig. 8: IMT neuron state is determined by the electrical load line of the transistor. As VGS
increases such that the transistor load-line periodically crosses both unstable arms (dashed line)
of the VO2 characteristics, probabilistic spiking occurs due to occasional oscillations in the VO2.
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Fig. 11: (a) SSM network implemented
using IMT neuron model from Fig. (9)
on MNIST. (b) IMT neurons reduce the
error rate by 7.5% for 100k training sets.

Fig. 10: Measured integrate
and fire (I&F) response of
IMT neuron at VDD=0.7V.

Fig. 7: (a) Experimental variations in the VO2 DC
characteristics and their probability distributions
accurately reproduced by the network model in (b).

Fig. 6: Cycling shows
variations are not a result
of VIMT drift. Supported
by >109 endurance [8].
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Fig. 9: Extracted spike probability and firing rates (from Fig. 8) display
the required (a-b) sigmoidal and (c) exponential response for neural
sampling in SSMs. (d) Comprehensive noise model fits the measured data.
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