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Abstract: Stochastic sampling machines (SSM) utilize neural
sampling from probabilistic spiking neurons to escape local
minima and prevent overfitting of training datasets [1]. This
enables improved error rates compared to deterministic
implementations, and, in turn, enables lower bit precision,
decreased chip area, and reduced energy consumption. In this
work, we experimentally demonstrate: (i) Insulator-to-Metal
Phase Transition (IMT) neurons with record low peak
operating power of 11.9uW at Vpp=0.7V; (ii) the IMT in
vanadium dioxide (VO,) provides a natural probabilistic
hardware substrate for realizing a compact stochastic IMT
neuron for SSMs; (iii) implementation of SSM for pattern
recognition on MNIST database [2] using experimentally
calibrated device modeling. These results are compared to a
22nm CMOS ASIC which shows stochastic IMT neuron based
SSMs result in a 4.5x reduction in system power consumption.
Introduction: Neural networks are primarily implemented on
high power clusters or GPUs. However, the ubiquitous use of
neural networks in data processing for character recognition,
speech-to-text translation, and classification motivates the
development of energy-efficient hardware tailored to their
algorithmic requirements. Advances in stochastic algorithms
show the energy-performance benefit of probabilistic network
elements (which act to regularize the network and propel the
system out of local minima (Fig. 1) [1]) in SSMs.
Implementing such networks with CMOS require dedicated
hardware for random number generation (RNG) and numerous
multiply-accumulate (MAC) functions (Fig. 2). This in turn
limits the energy and area efficiency of a traditional CMOS
based SSM. In this work, we experimentally demonstrate a
probabilistic hardware kernel for implementing SSMs based on
stochastic IMT neurons. We harness the fundamental threshold
switching variations of VO, to demonstrate the properties of
IMT neurons map directly to the algorithmic requirements of
SSMs (Fig. 2), sigmoidal spiking probability and firing rates.

Low Power IMT Neuron: Fig. 3 shows the IMT neuron
structure where VO, is serially connected to the drain of a
MOSFET in a 1TIR structure [3]. Fig. 4 shows the trends of
IMT neuron peak input power and average switching voltage
(Viur) with the device size. Record low peak power (11.9uW)
and Vpp (0.7V) are achieved at Lyp,=100nm for an IMT
neuron. Fig. 3 benchmarks this work against other published
results [4]-[6] hightlighting the reduced power, operating
voltage, and first demonstration of a truly stochastic neuron.

Stochastic IMT Neuron: VO, devices exhibit time-variant
cycle-to-cycle fluctuations in the thresholding switching
voltage (Vivr) (Fig. 6). We verify the mechanism behind
stochastic switching in VO, using an experimentally calibrated
2D-heterogenous network (Fig. 5). The VO, device is
simulated as a rectangular grid of domains (45x84), where
domains are independently capable of undergoing an IMT or
MIT based on both the local potential (electrical) and
temperature (thermal) [7]. Simulation results in Fig. 5(b) show
the wvariations in Vpyr result from spatial and potential
variations in the nucleation point of the metallic filament. Vyr
as a function of cycle number is shown in Fig. 6 emphasizing
that the variations are not a result of Vyyr drift. Fig. 7 shows
the model accurately captures the experimentally measured DC
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characteristics and Vyyr distribution. The IMT neuron
operating principal is shown in Fig. 8(a), where the state of the
IMT neuron is determined by the electrical load line. When the
transistor load line crosses the stable low resistance state (solid
line) the IMT neuron remains in the resting state. However, as
Vgs increases the transistor load-line periodically (due to
cycle-to-cycle Vyyr variations) crosses both unstable arms
(dashed line) of the VO, characteristics which results in
probabilistic spiking due to occasional oscillations in the VO,
conductance. The DC load line analysis is confirmed by time
domain measurements in Fig. 8(b) where the neuron output is
measured over a time envelope for a constant Vgg. From this
the required neuron response for SSMs is extracted in Fig. 9(a-
c), where the IMT neuron exhibits the required sigmoidal
instantaneous spike probability and firing rate as a function of
Vs and an exponential firing rate when normalizing for the
refractory period. An experimentally calibrated noise model
(Fig. 9(d)) reproduces the measured results, accounting for,
Vvt fluctuations (dominates), thermal, flicker, and shot noise.
SSM Neural Network Model: Using the noise model
developed in Fig. 9 we exploit the IMT neuron level
stochasticity to enable probabilistic firing of neurons in a
784x500x10 network and map unsupervised learning and
inference from the MNIST handwriting dataset as in [1] (Fig.
11). IMT neurons reduce the error rate by 7.5% for 100k
training sets. For large data-sets (>200K) stochasticity prevents
over-fitting and improves classification accuracy by 4-5% even
when the baseline accuracy is close to 90% (Fig. 12).
Benchmarking with CMOS: We perform a quantitative
analysis of the power dissipated in SSM implementations using
stochastic IMT neurons and 22nm CMOS ASIC with 16-bit
data paths (Fig. 13). For inference tasks at matched network
accuracy and memory (SRAM) power consumption (72mW)
the 22nm CMOS ASIC requires 376mW while the stochastic
IMT neuron accelerator sees a 4.5x reduction in operating
power requiring only 82mW (Fig. 14). When excluding
memory, stochastic IMT neurons reduce power dissipation by
30x (304mW to 10mW) over the 22nm CMOS ASIC.
Conclusion: Stochastic IMT neurons are demonstrated for the
first time and directly mapped to the agorithmic requirements
of stochastic sampling machines. The stochastic IMT neuron
displays record low power and operating votlage. Using an
experimentally calibrated circuit model we implement an IMT
neuron based SSM, which results in a reduction of 7.5% in the
error rate for unsupervised learning on the MNIST handwriting
database. Further, the IMT neuron based SSM results in a 4.5x
power reduction compared to a 22nm CMOS ASIC.
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Motivation: Stochastic Sampling Machines (SSM)

Stochastic Neuron Requirements

a) — T o oo o] [ iial
Input Intensity Map % (b) De:‘ermlnlstlc | Probabilistic Output Sigmoid Fit :
1 3 . eurons : g % :
‘ F O 1235 14
A s \. o H E + 2 i coexistence &
> 4 i <« = 11| double well S
@ % Local :_ Inputto Neuron Inputto Neuronl| | ®"9Y landscape i
v B3 inmom z==o—oom—moooooooo—osf | ntegrator
Inout Voltage M out sz (Device/Circuit Implementations ] VY | ol
nput Voltage Map B Global Minimum Vi 'Y | (b) “100 200 300 400
0.408V IMT Neuron CMOS IN — Channel Length (nm)
58 (@ Stochastic Random Number Generator =
T g ,Neurons _/\_’ n 2 5‘2] 20
E S = T
________ B¥ ) i dock— 4| 5 |16 [yo 2
28 3 - ° Vaterial | VO, [Hima0, [NbO| VO,| £ &0
Input 3 = ) S B 2 || [Peak poner aw]2400] 50 [1600[11.9] %
Negronsile g | Local , : : VoaV) |08] 1 [16]07]| & 49
4 mg Minimum h Sthocll';a.s:c MAc Thresholdin, o) . . : s
Giobal inimui [ *Sond ™GO, Tl | || Refabity | - [oiov] - Ao £ s
Stochastic Sample Machine (SSM P SSM: Benefit of Stochasticit operation. —input Stochastic | - - - Iyes| 2 Channel Length (nm)
Fig. 1: (a) Image sensor input to stochastic sampling | |Fig. 2: We implement ultra-low| Fjg, 3: (top) IMT neuron Fig. 4: (a) IMT trigger
machine (SSM) network. For deterministic neurons (b) the | [power stochastic IMT neurons| fstrycture with SEM inset. voltage (Vi) and (b) IMT
system remains in a local minimum while stochastic | [capable of implementing SSMs. | f(bottom) Benchmarking IMT neuron power scale with VO,
neurons (c) enable the network to escape local minima and | |The results are benchmarked||neurons demonstrated in this channel — length  (Ly,),
reach the global minimum of the error surface. againsta 22nm CMOS ASIC. | |work and published results.  allowing record low power.

Stochastic Phase Transitions Stochastic IMT Neurons
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