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Abstract— The rising popularity of intelligent mobile devices
and the computational cost of deep learning-based models call for
efficient and accurate on-device inference schemes. We propose
a novel model compression scheme that allows inference to be
carried out using bit-level sparsity, which can be efficiently
implemented using in-memory computing macros. In this paper,
we introduce a method called BitS-Net to leverage the benefits
of bit-sparsity (where the number of zeros are more than
number of ones in binary representation of weight/activation
values) when applied to compute-in-memory (CIM) with resistive
RAM (RRAM) to develop energy efficient DNN accelerators
operating in the inference mode. We demonstrate that BitS-Net
improves the energy efficiency by up to 5x for ResNet models on
the ImageNet dataset.

Index Terms— Deep neural network, quantization, in memory
computing, DNN accelerator.

I. INTRODUCTION

R ISING popularity of intelligent edge devices requires
accurate data analysis to be performed at the edge.

Recently, deep neural network (DNN) methods have been
shown to out-perform classical machine learning methods and
has become the state-of-the-art in many applications such
as natural language processing [1], computer vision [2], [3],
healthcare data analysis [4] and autonomous vehicles [5].
However, these powerful methods are usually large, over-
parameterized and computationally heavy [6] which prohibit
DNNs to run on resource constrained (battery, memory)
embedded mobile applications and edge devices.

DNN compression methods such as quantization [7], prun-
ing [8], [9] and low-rank decomposition [10] have been
proposed in the literature to compress DNNs and enable
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them to run on embedded mobile applications [11]. Low-
precision DNNs decrease the required storage memory as well
as computational complexity [12]. After quantization, most
of the multiplication-and-accumulate (MAC) operations can
be replaced by simple bit-wise operations which cause large
reductions in memory requirement and hardware complexity,
enables us to fit the models in on-chip memory, increase
energy efficiency and enhance speed during inference. How-
ever, a large reduction in precision causes information loss
which can incur significant accuracy drop [12] unless the
models are trained under proper constraints. This issue is
more significant in complex data sets such as ImageNet [13].
Ideally, we want to use lower precision while achieving
equivalent accuracy as the original network with floating point.
Quantization can be done during or after training which are
called quantization-aware training and post-training quantiza-
tion, respectively. Post-training quantization is faster while
quantization during training achieves higher accuracy since
the network learns the low-precision weights better during
training [7].

Previously published results have reported specialized hard-
ware for DNN accelerators [6], [14] to enable DNN models
that run on embedded mobile applications during inference.
However, they were more focused on accelerating uncom-
pressed DNN models, restricting their usage to small models.
Without model compression, only small DNN models such as
LeNet-5 can be run in an on-chip SRAM. In addition, DNNs
are trained using float32 format numbers on GPU, however,
it is very hard to use this format in on-chip DNN accelerator.
This requires quantization before utilizing the model during
the inference. Prior work in the literature [11], [15] have
proposed methods to sparsify the model at the network-level
where weights are replaced with zero based on a criteria
to shrink the model size. However, this adds irregularity in
the distribution of weights, which makes it harder for DNN
accelerators to process sparse matrices [6].

In this paper, we proposed a novel quantization method
leveraging the bit sparsity to quantize DNNs when used in
RRAM based CIM. This implements a novel DNN accelerator
that can be used in many applications related to edge comput-
ing. In resistive 1T-1R bitcells, the weights are encoded as
the resistive of the cell [20]. Most RRAM cells encode binary
information where the high resistance represents a “0” and
a low resistance represents a “1”. When a word-line voltage
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of “0” is applied, the bit-cell is not turned on and there is
no energy dissipated in the process (except for peripheral
circuits). On the other hand, when a word-line voltage of
“1” is applied, a current is allowed to flow through the bit-
cell. In CIM operation, multiple word-lines are simultaneously
turned-on based on the input data pattern, and the corre-
sponding cells are activated. The current through the cells
is subsequently accumulated on the bit-line and eventually
sensed by an analog to digital converter (ADC). When the cell
stores a “0” there is very little current (IO F F ) flowing through
the cell and when the cell stores a “1” there is significantly
larger current (IO N ) flowing through the cell. Hence, having
more “0”s in the network, as opposed to “1”s reduces the total
energy dissipated during inference. Further, recent advances in
RRAM technology has enabled multiple-states per cell. In one
particular implementation that has been described in details
in [19], 3-levels per cell have been demonstrated. Experimental
work on a 40nm embedded RRAM array [19], [20], show
that 4 levels (2-bits) per cell are possible with tight resis-
tance distributions. This allows higher memory density with
2-bits/cell, where each cell represents one of the four states 00,
01, 10 or 11 corresponding to four resistance levels 00 is the
highest resistance and 11 is the lowest resistance state. In such
a 2-bit/cell encoding it is desirable to have more 00s and 01s
than 10s and 11s. This paper shows such a scheme (BitS-Net)
where we train the network to increase the energy efficiency by
increasing the number of 00s and 01s and reducing the number
of 10s and 11s in the INT8 representation of the weights. This
is a novel bit-level sparsification technique that leverages the
key characteristics of the RRAM based CIM architectures.
In traditional bit-level sparsity, the goal is to increase the
number of zeros in the bit representation of weights/activation
of neural networks. To do this, the network is typically
quantized to the desired fixed-point numbers using a distance
based measurement during training. The advantage of quan-
tization during training in comparison to the Post-training
quantization methods is that quantization-aware training helps
DNNs to be trained for lower precision such as, INT8, without
compromising on accuracy [20]. This is achieved by modeling
quantization errors during training which helps in maintaining
accuracy comparable to a Float32 format. In the next, we will
leverage the efficiency of RRAM based CIM (Compute in
memory) and bit-level sparsity. A compute-in-memory archi-
tecture has gained importance in achieving high-throughput
low-latency AI systems [21]. A traditional Von Neumann
architecture suffers from the latency and power dissipation
caused by intra-chip data communication. Therefore, CIM
architecture has emerged to overcome the aforementioned
problems by conducting the computations in the memory.
By employing CIM architectures along with the proposed bit-
level sparsity, low-latency energy efficient computing systems
can be achieved.

This paper makes the following contributions:

• The proposed method reduces the computational com-
plexity and energy required during inference for a
multi-bit encoded RRAM array.

• On state-of-the-art networks such as ResNet, our method
achieves comparable accuracy than the original network.

• To the best of our knowledge, this is the first time a
bit-level sparsity method has been proposed to leverage
the benefits of CIM architecture.

II. RELATED WORKS AND MOTIVATION

Memory access is the bottleneck in large DNNs which
dominates the total energy consumption. For instance, the size
of AlexNet and VGG-16 Caffe model are over 200MB and
500MB, respectively. This makes it hard to deploy DNNs on
edge devices since they do not fit in on-chip memory and
therefore require the more costly DRAM accesses [6]. The cost
of accessing DRAM is 640pJ for 32-bit coefficients which is 3
order of magnitude larger than accessing on-chip SRAM [15].
A new class of embedded non-volatile memory (eNVM) which
perform matrix multiplication ( y = W x) in a dense memory
structure offers a solution to minimize data transport by
performing compute in-memory [22].

In addition, DNNs are trained using floating point (i.g.
float-32) format on GPUs. However, efficient hardware DNN
accelerators operate on the fixed-point format. Therefore,
by compressing the neural network through quantization and
sparsification, we can reduce the total number of operations in
the fixed-point format and shrink the size of DNN. However,
the irregular pattern caused by compression prevent the effi-
cient acceleration and requires the new indexing scheme which
increase the memory usage [6]. Moreover, network compres-
sion causes information loss. Several papers have explored
methods to quantize parameters (e.g., weights) and optimize
the weights parameters simultaneously during training to gain
better accuracy and compensate the information loss due to
low-precision quantization [7], [12], [27]. However, many of
them do not quantize the activation and the first and last layer
of weights. INQ (Incremental Network Quantization) [25]
efficiently convert any pre-trained full-precision convolutional
neural network (CNN) model into a low-precision version
using a masking method during training. The weights are
quantized to either powers of two or zero but activation
is still in full-precision which make it harder to run the
model during inference. DOREFA-NET [26] quantize the
network using low bit-width parameter gradients. SYQ [12]
is another quantization scheme where reduces the information
loss by learning a symmetric codebook for particular weight
subgroups. In [7], a quantization method that allows inference
to be carried out using integer-only arithmetic is proposed
by introducing fake nodes to the model where weights and
activation are quantized in this step during training. [27]
introduces an Additive Powers-of-Two (APOT) quantization
scheme to nonuniformly quantize the bell-shaped distribution
of weights and activation by constraining all quantization
levels as the sum of Powers-of-Two terms.

On the other hand, there are several methods that have been
developed to sparsify the DNNs at the network level to shrink
the network and eliminate unimportant weights [24], [28].
However, the sparsification causes irregularity in the weight
matrices which makes it even harder than using the original
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network on GPU or CPU [6]. It requires to store additional
indexing matrix to keep track of the zero weights. Recently,
several DNN architecture have been designed to accelerate
the sparse network and cope with the irregularity caused
by sparsity and unstructured pruning [6], [14], [28], [29].
Despite of the efforts done in the area of DNN accelerators,
new architectures based on traditional CMOS still face the
fundamental technological limitations of CMOS.

In this paper we propose a novel and CIM-aware DNN com-
pression techniques which take advantage of CIM architecture
and sparse the network at bit-level instead of network-level.

The Cambricon-X architecture [14] proposed an indexing
method to enable using sparse DNNs by skipping the weights
that randomly changed to zero. SCNN [28] is designed to
accelerate DNN by proposing a new dataflow by encoding and
maintaining non-zero weights and activations and efficiently
delivering them to a multiplier array. EIE architecture [6]
proposed a DNN accelerator and an indexing framework to
accelerate the mathematical calculation of a sparse network for
the compression method called deep compression [15] where
pruning, quantization and Huffman encoding are employed
to compress the network. The Eyeriss architecture [29] is
designed to run compact DNNs by introducing a hierarchical
mesh which is a flexible on-chip network that can be adapted
to different data types and improves the utilization of the
memory resources.

III. PROPOSED CIM-AWARE QUANTIZATION

In this paper we propose a novel and CIM-aware DNN
compression techniques which take advantage of CIM archi-
tecture and sparsify the network at the bit-level instead of
the network-level. This technique can, of course, be combined
with network-level sparsification techniques. In this section we
go over the fundamentals of the BitS-Net.

A. Necessity of Compute-In-Memory Architecture

The Von-Neumann architecture has prevailed while support-
ing various tasks with centralized processing elements (PEs),
control units, and memory. Since the advent of AI systems, the
importance of DNNs has been on the rise featuring massive
matrix-vector multiplication (MVM). Von Neumann architec-
ture has strived to accommodate DNNs by relying upon its
versatility. However, this architecture suffers from prohibitive
power dissipation incurred by massive data transfer between
the PEs and memory, retaining the weight of DNNs. In addi-
tion, von Neumann architecture features instruction-driven
operation. Thus, data processing is not initiated promptly
even if the input vector is ready for the MVM. Fig. 1
shows the structure of a systolic array. Considering the ability
to conduct massive parallel computation, a weight-stationary
systolic array appears to be one of the candidates to support
energy-efficient MVM owing to the distributed data processing
unit (DPU) that includes a PE and memory. A systolic array
conducts data processing immediately once the input vector
is applied owing to the data-driven operation of the DPUs.
However, a clock-cycle-based propagation of intermediate data
across the DPUs eventually incurs excessive latency that is

Fig. 1. Structure of a systolic array as an intermediate solution to supporting
AI systems.

Fig. 2. Compute-in-memory architectures exploiting resistance of memory
cells.

proportional to the size of the input vector. Thus, to achieve
energy-efficient MVM with low latency independent of the
size of the input vector, CIM architectures have come into
the limelight. Fig. 2 shows the CIM architecture exploiting
resistance of memory cells. Instead of the DPUs, a memory
cell itself serves as a PE and memory simultaneously in
CIM architectures. The memory cell retaining the weights
generates the current that is the result of bit-wise multiplica-
tion. Owing to a current-summing BL structure in a memory
array, the intermediate data are accumulated immediately,
thereby achieving low latency in addition to energy-efficiency
superior to the aforementioned architectures. In particular,
the CIM architectures employing emerging memory such as
PCRAM, MRAM, and RRAM have gained importance in
achieving energy-efficient computing systems for AI owing to
the inherent multiply-and-accumulate (MAC) functionality in
BL structures, non-volatility, high bit density, and compatibil-
ity to CMOS process. Compared to other emerging memory,
RRAM features energy-efficient read (RD) and the feasibility
of multi-bit encoding owing to low latency and an appropriate
ON/OFF ratio, respectively [30]–[33].

B. Preliminaries

Matrix-vector multiplication is a basic building block in
many DNN models where dot products between weight (W )
and its input values (X) is calculated in each layer. We denote
the output of each hidden layer (a) as

Z = W T X (1)

a = σ(Z) (2)

where T is a transpose function, σ is an element-wise non-
linear activation function which is usually a Rectified Linear
Unit (ReLU) [17].

In order to quantize the model, suppose W ∈ RCout ×Cin×k×k

is a 4D tensor representing kernels in a convolutional layer,
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where Cout and Cin and k are the number of output channel,
input channels and the kernel size, respectively. Therefore, the
quantization scheme of the weights [27] is defined as

Wq = α�Q(1,b)� W

α
, 1� (3)

where b is the bit-width, α is the scaling factor and the scaling
function �., 1� scales the weights into [−1, 1]. Then the scaled
W is projected by �(.) in an element-wise manner to the
defined quantization levels. Q(1, b) defines a set of quantiza-
tion levels for example uniform quantization. For uniform and
power of two (POT) quantizations, Q(1, b) defines as Eqs. 4
and 5, respectively.

QU (1, b) = {0,
±1

2b−1 − 1
,

±2

2b−1 − 1
, . . . ,±1} (4)

Q P OT (1, b) = {0,±2−b+1,±2−b+2, . . . ,±1} (5)

Quantization maps each element in the weight matrix which
is in floating-point format to a b-bit fixed-point representation.
The result of convolution against quantization level is then
re-scaled by multiplying to α. Generally, α is a floating-point
number [27]. However, in order to have fully fixed-point
computation, we round it to the closest integer in our proposed
method. Therefore, arithmetical calculation in DNN models,
for example in fully connected and convolutional layers, can be
performed on an on-chip hardware using low-precision fixed-
point operations, which are substantially cheaper in terms of
memory and power than their floating-point equivalent [18].

During backpropagation, the Straight-Through Estimator
(STE) [42] is adopted as proposed in [27] for the projection
operation. The gradients of α are computes as follow

∂Wq

∂α
=

⎧⎨
⎩

sign(W ) i f |W | > α

�Q(1,b)
W

α
− W

α
i f |W | ≤ α

(6)

Nevertheless, the baseline accuracy cannot be achieved with
uniform quantization since the results does not match the
distribution of weights (typically normal distribution) [15].
Moreover, POT quantization is also not the efficient way of
quantization for hardware since the negative values containing
a lot of ones which requires a lot of energy for multiplication.
In this paper, we proposed a highly efficient hardware-aware
method for quantization and low-bit fixed-point computation
that can be easily map to CIM hardware.

C. BitS-Net Training

In this paper we proposed a bit-level sparsity method
that leverage the fact that there are a lot of zeros in the
bit representation of weight values. The overall method is
shown in figure 3. First, a coefficient set for quantization is
defined. The criteria for calculating the coefficient set will
be explained later. In the next step, the network is quantized
during training for several epochs and finally the quantized
network is achieved.

We will take advantage of bit-level sparsity to decrease the
number of multiplication while exploiting CIM architecture.
In resistive CIM architectures, the 0 and 1 states are rep-
resented by OFF and ON resistances on the RRAM cells

Fig. 3. BitS-Net algorithm. First, the coefficient set is defined. Next, the
network is quantized during training step and finally, the quantized network
is achieved.

respectively. To increase the energy efficiency of the CIM
designs, it is beneficial to increase the number of 0s in the
model representation that enables not only higher throughput
(by under provisioning for the ADCs) but also increase the
energy efficiency. Therefore, in the bit-level sparsity, we aim
to increase the number of zeros in the bit representation
of weights/activation of neural networks by quantizing the
weights/activation to the desired fixed-point numbers using
Eq. 3 during training. During our fixed-point training, for
each layer, first the weights are scaled to be in the range of
W ∈ [−1, 1] using a scaling factor α. The CIM architecture
consists of cells of two bits that can be 00, 01, 10 and 11.
Multiplying to each of these two bits is done in different
energy level (E00 < E01 < E10 < E11). Therefore, the
desired weight’s values are the ones that have less bits with
higher energy like 11 and more 00. During BitS-Net training,
we quantize every floating point weight to its closest favorable
coefficient C which is the set of possible coefficient and
favorable fixed-point numbers that W can be quantized. C
for INT8 numbers are shown in Table I. Since the coefficient
sets are between [−1, 1] and negative numbers have 11 in
their two’s complement representations which leads to a large
energy requirement, during inference, we save Wq + 1 in
memory in order to remove 11 in the coefficients. This is the
reason we choose numbers represented at Table I where they
do not have 11 in their binary representations during inference.
As an example, the binary representations for w1 = 0.375 and
w2 = −0.375 are 00.011000 and 11.101000. By adding one
to the quantized weights (Wq + 1), the binary representation
of w1 + 1 and w2 + 1 will be 01.01 10 00 and 10. 10
10 00. Therefore, there is no 11 in the binary format of
coefficients at Table I. The numbers at set 1 and set 2 have
no ’11’ and the maximum of four and three ’10’, respectively.
By employing CIM architectures along with the proposed bit-
level sparsity, low-latency energy efficient computing systems
can be achieved.

The BitS-Net is explained in detail in algorithm 1. First the
coefficient set is defined as explained above which will be
an input for the quantization algorithm. In the forward path,
first, the weights are quantized based on Eq. 3 by dividing
the weights by a scaling factor (αW ) to make the weights in
the range of [-1, 1]. Then, the scaled weights are quantized
(�Q(1,b)) by calculating the minimum distance between the
weights and the coefficient set as shown in Eq. 7.

�Q(1,b) = argminci∈C |ci − |Wl || (7)

where ci ∈ C represents the possible numbers in the coefficient
set. In the next step, the activation is quantized as well to
have a fully quantized network. The activation values are
first scaled to the range of [0, 1], since they are all positive
numbers. Then they are quantized to the fixed-point numbers.
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TABLE I

THE COEFFICIENT SET FOR QUANTIZATION

Algorithm 1 Bit-Level Sparsity and Network Quantization
for Lossless CNNs With Low-Precision Weights
Input : x: the training data, Set of desired numbers to

be quantized to: C = {c1, c2, . . . , ck}; k ≤ N ,
with{Wl : 1 ≤ l ≤ L}: the pre-trained
full-precision CNN model, loss function
L(Y, Ŷ ), learning rate, λt

Output: {Ŵl : 1 ≤ l ≤ L}: the final low-precision model
with the weights constrained to be in the
desired set with higher bit-level sparsity.
{x̂l : 1 ≤ l ≤ L}: quantized activation.

1 Forward propagation:
2 for l = 1 to L do
3 Qlw = quanti ze(Wl) using

Wq = Round(αw)�Q(1,b)� W

αw
, 1�

4 Qlx = quanti ze(xl) using

xq = Round(αx)�Q(1,b)� x

αx
, 1�

5 Compute the output activations:
xout = Conv(Wlq ; xlq)

6 Compute the loss between the actual and predicted
values: L(Y, Ŷ )

7 end for
8 Backward propagation:

∂ L̂
∂Ql

= Weight Backward(Ql,
∂ L̂
∂Ŷ

)

Wt+1 = U pdateWeights(Wt ,
∂ L̂
∂Ql

, λt )

λt+1 = U pdateLearning Rate(λt, t)

In this paper, we quantize the activations uniformly to the
8-bit fixed-point numbers (Eq. 4). Finally, the convolution
value is computed between the quantized weight (Wlq ) and
the quantized activation (xlq ). The backpropagation is applied
using the STE method as explained in Eq. 6 to update the
weights.

IV. ALGORITHM-HARDWARE JOINT OPTIMIZATION IN

CIM DURING INFERENCE

As an algorithm-hardware joint approach, the BitS-Net is
proposed to attain superior system-level energy efficiency by
addressing the bit-level sparsity of weights while considering
energy per bit in CIM. In this paper, we demonstrate the supe-
rior energy efficiency of the proposed BitS-Net considering the
measured energy per bit during CIM, thereby exhibiting the
feasibility of the algorithm deployment to multi-bit resistive
CIM (RCIM) architectures.

During inference, we use the following formula to classify
the input images. As mentioned before, the goal is to eliminate

Fig. 4. Binary and multi-bit current-sensing RCIM at the bitline.

the number of 11 occurrence in the weight matrix during
inference. Since we add one to Wq , (Wq + 1), we need to
modify Eq. 1 as shown in Eq. 8 in order to calculate the
correct multiplication of weights and activation.

Z = ((Wq + 1)T X) − (∑
i

xi
)
.1T (8)

where xi are elements of the input vector X and 1 is all-ones
vector with dimension equal to the number of rows in the
weight matrix (W ).

A. Introduction to RCIM Architectures
RCIM architectures exploit a MAC-friendly BL struc-

ture [19], [20], [34]–[40]. To read the CIM result out, current-
or voltage-sensing RD is employed at the BL. Fig. 4 shows
the binary and multi-bit current-sensing RCIM at the BL.
The current-sensing CIM is widespread in RCIM architec-
tures. Each RRAM cell is programmed in a low resistance
state (LRS) or a high resistance state (HRS) in binary encoding
to represent the weights of AI systems. In multi-bit encoding,
the RRAM cell is set to a certain resistance between the
LRS and HRS resistance to program multi-level weights in
a single RRAM cell. The output of the current-sensing RCIM
is read out by the ratio of the total current at the BL to the
LSB current which is the LRS current in binary encoding.
Since the crucial premise of the current-sensing RCIM is that
the HRS current is negligible, a sufficient margin between
the LSB current and the HRS current is desirable. However, the
resistance range of an RRAM cell is fixed such that multi-bit
encoding exacerbates the narrow current margin. It eventually
incurs logic ambiguity in the CIM output when the aggregate
current from accessed HRS cells exceeds the LSB current.
To surmount the aforementioned problems in current-sensing
RCIM, voltage-sensing RD has been proposed in the prior
arts [19], [20].

Fig. 5 depicts the current- and voltage-sensing RD in
RCIM architectures. Compared to the current-sensing RCIM
architectures where a fixed voltage at the BL is used to
exploit the cell current relying on RRAM resistances, the
voltage-sensing RCIM architectures use fixed or variable cur-
rent to employ a wide range of readout BL voltages (V.RBLs)
as the CIM output. The V.RBL reflects the parallel resistance
of accessed RRAM cells. The voltage-sensing RD does not
suffer from the aforementioned logic ambiguity since the
parallel resistance has a unique value in a certain number
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Fig. 5. Simplified structure of current- and voltage-sensing read in RCIM
architectures.

Fig. 6. Architecture of voltage-sensing multi-bit RCIM architecture.

of accessed RRAM cells (N.RRAM). However, the parallel
resistance drastically decreases over N.RRAM such that a
sufficient sampling margin in readout cannot be secured even
employing diode-connected current sources [41]. Furthermore,
it even worsens in multi-bit encoding. In this work, we employ
the voltage-sensing multi-bit RCIM architectures overcoming
the aforementioned problems to evaluate the system-level
energy efficiency of the proposed BitS-Net.

B. Voltage-Sensing Multi-Bit RCIM Architecture in the
Evaluation of the BitS-Net

Fig. 6 shows the simplified architecture of the voltage-
sensing multi-bit RCIM architecture used in the evaluation of
the BitS-Net [19]. As a solution to the drastic decrease of the
V.RBL over the parallel resistances, the BL current control
is employed to provide a unit current per accessed RRAM
cell, thereby achieving a sufficient sampling margin in readout.
The multi-bit encoding is conducted by iterative write (WR)
with verification that reconfigures a WR pulse after monitoring
the resistance of the programmed RRAM cell and initiates
another WR process to achieve the target resistance [19], [20].
In readout, ADC-based readout circuit determines the MAC
output considering the N.RRAM. The detailed description
of the architecture is delineated in [19]. In this work, a 2-
bit encoding is employed while securing sufficient resistance
distance to avoid the invasion to an adjacent resistance state.
Fig. 7 shows the measured resistance of the 2-bit weights in
the BitS-Net from the test chip of the RCIM architecture [19].
Considering the 3σ -window of resistances, the resistance for
the 2-bit weight (11, 10, 01, and 00) is determined. The
nominal resistances of 2-bit encoding in an RRAM array are
2.08k�, 4.85k�, 8.77k�, and 76.31k�, respectively. With
the 2-bit-encoded RRAM cells (11, 10, 01, and 00) and
the ADC-based readout circuits, the measured energy per bit
during CIM is 0.83, 0.47, 0.28, and 0.15 pJ/bit, respectively.

Fig. 7. Measured resistance (R) distribution of the 2-bit weights in the
BitS-Net.

TABLE II

THE ACCURACY AND TOTAL ENERGY OF CIFAR-10 ON BITS-NET USING

COEFFICIENT SET 1, SET 2 AND TERNARY, IN COMPARISON TO THE

BASELINE METHODS ON RESNET-20

V. RESULTS

In this section, we present the experimental results of the
algorithm and CIM hardware implementation of BitS-Net.
To evaluate our method, BitS-Net is compared with several
state-of-the-art baselines on ResNet architectures [23]. Base-
line methods consist of APOT [27], POT [27], INQ [25],
ADD-Net [43], 8-bit quantization and the original floating
point networks. In our method both weights and activations
of the networks are quantized in order to have fully quantized
network that can be implemented in an on-chip hardware.
It should be noted that that APOT and POT utilize 8-bit
quantization for the first and last layers in the original papers,
which incur more memory cost. INQ also used full precision
(32 bits floating point) for activation which makes it impos-
sible to run it in an on-chip system. In our implementation,
we employ 8-bit quantization just for the last layer to balance
the accuracy drop and the hardware overhead. In our proposed
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TABLE III

THE FINAL CLASSIFICATION ACCURACY AND TOTAL ENERGY ACHIEVED BY BITS-NET METHOD AND THE BASELINES INCLUDING POT, APOT, INQ,
UNIFORM QUANTIZATION AND THE FULL PRECISION NETWORK IN RESNET-18 AND RESNET-34 ARCHITECTURES

BitS-Net quantization algorithm, weights are quantized to
coefficients in Table I to have an efficient CIM hardware for
DNN accelerations. Moreover, we have used power of two
values in order to quantize the activation as shown in Eq. 5.

A. Evaluation on CIFAR-10

The first dataset that we used is CIFAR-10 [44] with 50K
training and 10K test images of size 32 × 32. The ResNet-20
network is utilized where its architectures for CIFAR-10
includes a convolutional layer followed by 3 residual blocks
and a final FC layer. For CIFAR-10, we train the networks up
to 200 epochs with a mini-batch size of 128 and learning rate
of 0.04 at the beginning and scaling factor of 0.1 at epoch
80, 120. stochastic gradient descent (SGD) with momentum
of 0.9 was implemented for optimization step. The results
are demonstrated in Table II. The results show that BitS-Net
(Set 1) can achieve 91.63% accuracy which is about 1%
lower that the 8-bit precision model. BitS-Net (Set 2) achieved
90.04% accuracy while the original network before quantiza-
tion achieved 92.74 % accuracy. Also, BitS-Net achieved lower
required energy than the mentioned baseline methods.

B. Evaluation on ImageNet
To evaluate our method, we also used ImageNet

datasets [13] with 1000 classes. The ImageNet dataset con-
sists of 1.2M training and 50K validation images. For
the pre-processing step [23], training images are randomly
cropped and resized to 224 × 224 and the validation images
are center-cropped to the same size. The ResNet models are
implemented using PyTorch official implementation and ini-
tialized from the released pre-trained model. During training,
batch size is set to 128 (based on the GPU memory size).
We choose a learning rate of 0.1 with a decay factor of 0.1 at
epoch 30, 60, 80, 100 during the 120 epochs for training the
network. Moreover, SGD with the momentum of 0.9 is uti-
lized to optimize the parameters. We quantize ResNet-18 and

ResNet-34 on ImageNet dataset and the results are compared
with the baseline methods in Table III. The results demonstrate
that BitS-Net can achieve higher accuracy than the baseline
quantization methods. The accuracy of BitS-Net set 1 and 2
are 67.73% and 67.05%, respectively while POT and APOT
methods gained 65.01% and 66.13% on ResNet-18. BitS-Net
keeps and quantizes the bigger weight values which have
higher importance [24] and quantize the smaller values (less
important) to zero which causes higher accuracy. PoT method
suffers from the rigid resolution [27], and achieved the lowest
accuracy compared to the other methods. The total energy
(multiplications and ADC) of each methods are also estimated
based on the actual measurement from the hardware. The result
show that BitS-Net consume less energy that other baseline
methods. As an example the energy required to run BitS-Net
(Set 2) on ResNet-18 is 96.31J which is 4x less than 8-bit
quantization (368.93J ). Also, ADD-Net for 8 bit quantiza-
tion requires 337.23 and 633.32J energy for ResNet-18 and
ResNet-34 on ImageNet dataset, respectively, which are 2.5x
and 3.5x higher energies than BitS-Net (Set 1) and BitS-Net
(Set 2) on ResNet-18. BitS-Net set 1 consists of 15 numbers
which are chosen from 8-bit numbers to eliminate all the ’11’
in the binary representations of both positive and negative
numbers. On the other hand, the effective number of bits to
handle the 15 values can be just 4 bits. Therefore, we also
investigated and compared the BitS-Net results to the baseline
methods with 4-bit weights. The results show the effectiveness
of BitS-Net. All the baseline methods achieved higher energy
than BitS-Net. For example, APOT quantization with 4-bit
weights and 8-bit activation consumes 143.07 (J) which is
higher than BitS-Net set 1 with 139.54 (J) required energy.
In addition, the percentage of 00, 01, 10, 11 in the total weight
matrices of ResNet-18 for BitS-Net3 (ternary), BitS-Net2 (set
2 coefficients), BitS-Net1 (set 1 coefficients), POT, APOT and
8-bit quantization methods is illustrated in Fig. 8. 2% ’11’ in
BitS-Nets correspond to the last FC layer which is quantized
to an 8-bit precision. 8-bit quantization has the most number
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Fig. 8. Percentage of 00, 01, 10, 11 in the total weight values of ResNet-18
for BitS-Net3 (ternary), BitS-Net2 (set 2 coefficients), BitS-Net1 (set 1
coefficients), POT, APOT and 8-bit quantization methods.

of “11” values (42%) which consume the most energy during
multiplication.

C. Hardware Evaluations

In this section, the results of hardware implementation
for the BitS-Net and baseline methods are demonstrated to
estimate key hardware metrics. The estimated energy includes
the RRAM array, the ADC, the controller, and other peripheral
circuits except for the voltage reference (VREF) generator.
The VREF generator was excluded since a single set of the
VREF generator is sufficient for the entire RRAM macro and
the power consumption of the generator will be negligible
while increasing the size of RRAM macro. We have estimated
the energy through measurements from the RRAM hardware.
However, the RRAM macro is not large enough to fit the entire
model. Instead, we scan in the different model weights serial,
write into the RRAM array and measure the array energy.
In other words, since the RRAM macro is of limited size,
we scan in the weights of the layers serially and conduct the
energy estimation one layer at a time. As a prototype of the
RRAM-based CIM architecture, the RRAM macro focuses on
the CIM operation. Regarding array utilization, the system
architecture that will use this macro will dictate what the
system-level metrics would be. Similarly, hardware utilization
is highly dependent on the system architecture, the compiler,
and any extrapolation on hardware utilization, system-level
costs, etc. will be too speculative for this work. We will need
to define specific design architectures and compiler techniques
that would be outside the scope.

With the 2-bit-encoded RRAM cells (00, 01, 10, and
11) [20], the measured energy per 2-bits during CIM is
1.46 pJ/2bits, 0.73 pJ/2bits, 0.36 pJ/2bits, 79 fJ/2bits, respec-
tively. In addition the energy of ADC is 0.208 pJ/2bits.
It should be noted that the cycle time is 20ns. The energy

Fig. 9. Energy of multiplication and ADC for BitS-Net3 (ternary), BitS-
Net2 (set 2 coefficients), BitS-Net1 (set 1 coefficients), POT, APOT and 8-
bit quantization methods on (a) ResNet-20 on CIFAR-10; (b) ResNet-18 on
ImageNet and (c) ResNet-34 on ImageNet.

breakdown for multiplication and ADC are demonstrated
in Fig. 9 which shows that BitS-Net requires less energy
than the baseline method. BitS-Net (set2) is more than 5x
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energy efficient compared to 8-bit quantization. For example,
in ResNet-34, the total energy required during inference is
162.64 (J) while APOT and 8-bit quantization require 531.33
and 674.45 (J), respectively. In addition, ternary quantization
consume least energy at the expense of lower accuracy.
Therefore, BitS-Net is more energy efficient than the baseline
methods.

VI. CONCLUSION

In this paper, we proposed BitS-Net, an algorithm-hardware
joint approach to attain superior system-level energy efficiency
by addressing the bit-level sparsity of weights while consid-
ering energy per bit in CIM. Since E00 < E01 < E10 < E11,
we sparse the weights and quantized the networks to the values
that have bits with lower energies required for multiplication
in CIM architecture. As a result, we are able to develop a
highly energy efficient system to run DNNs during inference.
We demonstrate that BitS-Net improves the energy efficiency
by up to 5x compared to the 8-bit network for ResNet model
on ImageNet dataset. It should be noted that in order to
efficiently utilize the proposed RRAM macro for executing
actual neural networks in a system, the system architecture and
the compiler, and related system-level costs such as hardware
utilization and off-chip memory access should be taken in
account. Considering the fact that the energy efficiency of all
the methods is estimated under the same condition, we believe
that the comparison in Table III is apples-to-apples to address
the efficiency improvement of the proposed BitS-Net.
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