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Abstract—As we march towards the age of ubiquitous intelli-
gence, we note that AI and intelligence are progressively moving
from the cloud to the edge. The success of Edge-AI is pivoted
on innovative circuits and hardware that can enable inference
and limited learning in resource-constrained edge autonomous
systems. This paper introduces a series of ultra-low-power
accelerator and system designs on enabling the intelligence in
edge robotic platforms, including reinforcement learning neuro-
morphic control, swarm intelligence, and simultaneous mapping
and localization. We put an emphasis on the impact of the mixed-
signal circuit, neuro-inspired computing system, benchmarking
and software infrastructure, as well as algorithm-hardware co-
design to realize the most energy-efficient Edge-AI ASICs for the
next-generation intelligent and autonomous systems.

I. INTRODUCTION

With intelligence marching from the cloud to the edge,

autonomous robots are rising in real-world deployment. They

require data to be processed from sensing to actuation in a

closed-loop manner. The onboard circuits typically take power

from the battery, limiting supported operational time. Recently,

with neural networks being deployed at the edge, the demand-

ing real-time performance and energy constraints are becoming

increasingly difficult to achieve. Aerial platforms have an

additional constraint of payload which limits the weight of the

onboard sensors and compute. For tiny terrestrial robots, the

form factor becomes a crucial requirement. Therefore, there is

a strong need to develop energy-efficient compute platforms

and processing frameworks to enable robotic edge intelligence.

Several hardware platforms have been used for robotic

applications. CPUs and GPUs are designed to handle a wide

range of robotic tasks and algorithms development. However,

they usually consume 10-100 W of power, which are orders

of magnitude higher than available resources on edge robotic

systems. Edge processors like Jetson Nano and Google TPU

have been used for programmability at a smaller form factor

for faster system-level prototyping [1]. FPGAs are attracting

attention due to its reconfigurability and hardware-efficiency,

and have been presented for robotic perception [2], [3],

localization [4], and planning [5]. The partial reconfiguration

technique takes this flexibility one step further, where part

of FPGA resources can be reconfigured at runtime without

compromising the other parts of applications [6], [7].

Edge-robotic specialized ASICs boost the energy-efficiency

and customization even further. The constrained power budget

on edge robots requires these chips to have a few mW of power

consumption. For robotic perception, Jeon et al. [8] present

a feature extraction accelerator at 2.7 mW power for micro

aerial vehicles. For robotic autonomous navigation, Navion [9]

accelerates the visual-inertial odometry of nano drones, Li et

al. [10] speed up mutual information computation, and Li et

al. [11] combine neural network with physical localization

model with proposed specialized accelerators. For end-to-end

learning-based robotic control, Kim et al. [12] develop a rein-

forcement learning accelerator for micro drones with 1.1 mW

power consumption. For multi-robots scenarios, Honkote et

al. [13] design a low-power SoC for distributed and collabora-

tive swarm robot systems. Different techniques ranging from

voltage-mode circuits [14], quantized neural networks [15]–

[17] and sparse coding [18] have been utilized in restricting

the power consumption. Several neural network accelerators

have been proposed for general vision applications [19] which

can be readily applied to robotic tasks.

Apart from energy consumption, memory bandwidth avail-

ability also becomes critical for high-speed edge robotic

applications. A newer type of visual sensor called event

cameras is being explored for such scenarios. Event cameras

provide a stream of asynchronous events, and only part of

frames are processed at every time instance, allowing high

bandwidth, high speed, and high dynamic range [20]. System-

level applications of this include a 3 ms latency robotic goalie

[21] and looming obstacle avoiding drone [22]. The event-

based processing modality of event cameras also lends itself

naturally to processing bio-inspired spiking neural networks

that benefit from data sparsity and low power. Tasks like lane

detection and prey capturing [23] have been demonstrated

using spiking neural networks and event camera pairs.

In this paper, we will show a series of our proposed ultra-

low-power accelerators and system demonstrations for edge

robotics, with an emphasis on circuit and system technologies.

These demonstrations augment the large landscape of edge

robotic systems in reinforcement and swarm learning and

neuro-inspired computing technologies. Section II presents a

time-domain mixed-signal accelerator that supports embedded

reinforcement learning control. Section IV introduces a hybrid-

digital mixed-signal hardware design to enable edge swarm

intelligence. Section IV presents an oscillator-based hardware

platform for neuro-inspired mapping, localization, and con-

trol. Section V further provides benchmarking and simulation

frameworks for cross-layer robotic workload evaluation. The

paper concludes with challenges and opportunities for next-

generation hardware-efficient robotic computing (Section VI).
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II. REINFORCEMENT LEARNING ON THE EDGE

This section presents our reinforcement learning neuromor-

phic accelerator for robotic autonomous navigation and explo-

ration [24], [25]. We propose an energy-efficient time-domain

mixed-signal computational framework to enable ultra-low-

power operations.

A. Reinforcement Learning Algorithm

Achieving true autonomy requires robots to perform con-

tinuous learning through frequently interacting with environ-

ments. Reinforcement learning (RL) is such a paradigm where

robots take actions in environments to maximize the notion

of cumulative reward. Among all RL algorithms, Q-learning

is one of the well-studied techniques, which is implemented

in this design. Q-learning seeks to find the optimal action

policy (At) given the current state (St) to maximizes the

reward (Rt). It works on the principle of the action-value

function [Q(St, At)], where Q is iteratively updated from

Bellman equation. For a detailed overview of RL algorithms

and applications, interested readers are referred to [26].

B. Circuit and System of RL Neuromorphic Accelerator

1) Overview:
Fig. 1 shows the system diagram of our RL neuromorphic

accelerator. It consists of ultrasonic sensors, an RL test chip,

a Raspberry Pi-based micro-controller, and motor drivers.

The ultrasonic sensors feed depth information to the input

layer of the neural network through an array of stochastic

synapses. A three-layer neural network is implemented to pro-

cess sensor data and generate actions that robots will follow.

The micro-controller stores (St, At, Rt, St+1) in a scratchpad

memory during training and sends action commands from the

chip to the motor controllers.

Fig. 1: The system architecture of our RL neuromorphic accelerator,
including different circuit blocks and the interface to the external
micro-controllers and motor drivers.

2) Time-Domain Mixed-Signal Circuits:
To enable low-power edge intelligence on the robotic

platform with low bit precision, we propose a time-domain

mixed-signal (TD-MS) computational framework for energy-

efficient and accurate operations. Fig. 2a illustrates the TD-

MS multiply-and-accumulate (MAC) unit. A pulse input from

sensor or hidden layers is used to enable the up-down counter

that is triggered by a digitally controlled oscillator (DCO)

(Fig. 2b). The output of the counter is the product of weight

Wi (digital) and pulse width Tpi of the gating signal (analog).

The proposed TD-MS design demonstrates unique advan-

tages: 1) improved energy-efficiency at lower bit width com-

pared to digital MAC operation (Fig. 2c); (2) the energy to

compute is proportional to the significance of the computation

- a feature in human brain but missing in digital logic (Fig. 2d-

2e); (3) 45% lower system area, 47% lower interconnect power

and 16% lower leakage power compared to digital design.
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Fig. 2: (a) Proposed Time-Domain Mixed-Signal (TD-MS) MAC
unit. (b) Digitally controlled oscillator (DCO) in TD-MS unit. (c)
Computational energy per MAC for digital and TD-MS design with
different bit precision at 0.6 V. (d)(e) 2-D energy per MAC surface
for digital and TD-MS design with 6-bit inputs at 0.6 V.

3) Enabling Regularization via Stochasticity:
To help generalize the learned neural network model to

unknown environments, we introduce stochasticity to synapses

with drop-connect. As shown in Fig. 3a, the stochasticity is

implemented with a buffer chain whose delays are randomly

altered by a local high-speed linear-feedback-shift register

(LFSR). Compared to the deterministic model, the stochastic

network can achieve 1.7× speedup in convergence (Fig. 3b).

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10
No. of Training Samples (x103)

Lo
ss

 F
un

ct
io

n

Stochastic 
Network with 
Drop-Connect

Deterministic 
Network

Fig. 3: (a) Stochasticity is implemented by introducing varying
delays between bit transitions using the linear-feedback-shift register
(LFSR). (b) Stochasticity accelerates policy convergence.

C. Evaluation

The RL neuromorphic test chip is implemented and taped-

out in 55 nm CMOS process (Fig. 4a). By exploring design

space of proposed TD-MS circuits, we show that the chip

can ensure correct functionality and voltage scalability from

1.0 V down to 0.4 V (Fig. 4b). The chip is mounted on a

tiny mobile robot for autonomous exploration and learning.

Fig. 4c illustrates the increasing moved distance when robot

continuously explores the space in the presence of obstacles.
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Fig. 4: (a) RL neuromorphic chip die-photo. (b) Design space
showing scalability till 0.4 V. (c) Mobile robot system and its covered
distance as a function of the number of clock cycles or iterations.

III. SWARM INTELLIGENCE ON THE EDGE

Going beyond single tasks, when facing a variety of tasks,

swarms of robots usually collaborate with each other to solve

problems. This section presents our energy-efficient hardware

accelerator that enables swarm robotic applications [27], [28].

A. Swarm Intelligence Algorithms

Swarm algorithms can be broadly classified into two cat-

egories, ones based on physical and mathematical mod-

els (model-based) and ones based on learning (model-free).

Among model-based algorithms, artificial potential field (APF)

is a commonly-used approach for collaborative path planning,

where the motion force is obtained by aggregating the at-

tractive and repulsive potential field. Model-free algorithms

usually allow each robot to learn continuously to establish a

model with real-world knowledge without human intervention.

RL-based cooperative algorithms have shown great promise.

Interested readers are directed to [29] for more details.

Interestingly, we observe that both model-based and model-

free autonomy paradigms have similar mathematical structures

(Fig. 5). Therefore, we identify the commonalities and develop

a unified architecture to support real-time swarm intelligence.

Fig. 5: Common unified compute paradigm that supports both model-
based and model-free swarm algorithms.

B. Circuit and System of Swarm Intelligence Accelerator

1) Overview:
The system architecture of our swarm intelligence accel-

erator is shown in Fig. 6. Noticing that both model-based

and model-free are combinations of nonlinear and linear

operations, we design a nonlinear function evaluator (NFE)

and linear processing unit (LPU). NFE supports nonlinear

operations by using a piecewise linear approximation of non-

linear functions. LPU supports all addition and multiplication

linear operations. Most operations are implemented in the

digital domain except for MAC that leverages mixed-signal

computing. The datapath of NFE and LPU is bi-directional,

so data can move between each other seamlessly and preserve

locality. We also observe that several required functions show

symmetry and periodicity, which provides a further chance to

reduce the number of computations and comparisons.

Fig. 6: The system architecture of our swarm intelligence accelerator,
supporting both swarm-based and swarm-free autonomy paradigms
with a nonlinear function evaluator and linear processing unit.

2) Hybrid-Digital Mixed-Signal Circuits Architecture:
Swarm algorithms need to support various swarm sizes in

dynamic environments. The required bit precision will increase

from 3-bit to 8-bit, with swarm size increasing from 2 agents to

20 agents. TD-MS MACs show energy advantages over digital

counterparts for low bit width, but exhibit higher energy with

increasing operand size (Fig. 2c). To address this issue, we

propose a hybrid-digital mixed-signal (HD-MS) MAC kernel,

where computation is purely TD-MS for bit-width≤5, and

hybrid of TD-MS and digital for 6≤bit-width≤8.
Fig. 7a shows the circuit schematic of the HD-MS design.

The HD-MS MAC kernel consists of a conventional TD-

MS multiplier, a 5-8-bit TD-MS controller, and a 5-8-bit

digital adder-shifter. The TD-MS multiplier computes ≤5-

bit operation. The TD-MS controller and digital adder-shifter

reconfigure the multiplier to a higher bit width with seamless

shift-and-add operations. Fig. 7b demonstrates that HD-MS

have energy-benefits at higher precision compared with TD-

MS. Compared with digital implementation, HD-MS exhibits

81% (for 3-bit) to 31% (for 8-bit) energy per MAC reduction.

C. Evaluation
Our swarm intelligence accelerator is fabricated in 65 nm

CMOS process (Fig. 8a). Fig. 8b demonstrates its scalability

with bit precision, indicating a peak energy efficiency of

0.22 pJ/MAC (for 3-bit) and 1.76 pJ/MAC (for 8-bit). The

average energy efficiency varies from 9.1 TOPS/W (for 3-bit)

to 1.1 TOPS/W (for 8-bit). This bit precision scalability allows

efficient computation for various swarm sizes.
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Fig. 7: (a) Circuit schematic of the HD-MS design, including the 5-bit
TD-MS kernel and the digital peripherals to enable efficient scaling
to 8-bit. (b) Energy/MAC (normalized to a digital implementation)
for TD-MS and HD-MS implementations. We observe that HD-MS
outperforms TD-MS and digital for large swarm sizes.

Fig. 8: (a) Swarm intelligence chip die-photo. (b) Measured energy
per MAC across different bit widths at VCC = 0.4, 0.6, and 0.8 V.

We mounted the chip on a robotic car (Fig. 9a and Fig. 9b).

The platform interfaces with a Raspberry Pi, sensors, motor

controllers, and radios. We implement four exampled swarm

intelligence algorithms, namely path planning, pattern forma-

tion, predator-prey, and joint-exploration, where the first two

are model-based and the last two are model-free. Fig. 9c shows

large variations in energy consumption and the number of

actions for each task, illustrating that future robotic platforms

need to support a wide variety of algorithms, as the complex-

ities of environments and task can dramatically change.

Fig. 9: (a) Our swarm intelligence accelerator is mounted on a robotic
car with peripheral circuits. (b) Experimental setup. (c) Energy and
performance for different template swarm algorithms.

IV. NEURO-INSPIRED COMPUTING ON THE EDGE

Recently, spiking neural networks (SNNs), with bio-inspired

sparse spike-based temporally coded computing, offer an

energy-efficient alternative for edge robotic tasks. This section

presents our proposed incorporation of SNNs for SLAM and

prey tasks for ultra-low-power robotic applications [30], [31].

A. Simultaneous Localization and Mapping Algorithms

Simultaneous localization and mapping (SLAM) forms an

essential component of many autonomous navigation appli-

cations. SLAM algorithms can be broadly classified into two

categories: visual-based and neuro-based. Visual-based SLAM

requires the robot to identify its position from the beginning

of motion and generate a map of the movement using only

the images captured during motion. Previous approaches like

probabilistic SLAM and keyframe-based SLAM remain inad-

equate due to the constrained power budget of edge systems.

Neuro-based SLAM performs the computation in a more

energy-efficient way and is applicable to ultra-low-power edge

robotics. Neuroscientific exploration in rodent brains showed

their phenomenal capacity to efficiently localize themselves

(Fig. 10). Place cells and head direction cells are identified as

neuronal circuits tuned to respond at a particular position and

direction of motion, respectively. Our NeuroSLAM accelerator

takes inspiration from RatSLAM [32] algorithm that mimics

the neuromorphic connectivity and incorporates bio-inspired

hardware to achieve ultra-low-power SLAM tasks.

Fig. 10: Mapping between the position of rodent and the excited
place cells in rodent’s brain

B. Circuit and System of NeuroSLAM Accelerator

1) Architecture and Circuit Block:
The flow of data in the NeuroSLAM accelerator is shown

in Fig. 11a, where the captured image is first compared

with the previous image for visual odometry to estimate the

displacement from previous image capture. This is followed

by template matching with previous images to detect any

possibility of loop closure. The translation is added with the

previous position to find the current direction of motion with

digital head direction cells, and the path integration is injected

in the pose cell array. Pose cell array is made of oscillator-

based continuous attractor network in spiking neural network

fashion, as shown in Fig. 11b. The output is extracted to

calculate the experience map.
2) Test Chip Measurement:
The NeuroSLAM test chip is fabricated in 65 nm tech-

nology (Fig. 12a). The template matching, odometry, and

path integration are carried out in low-bit resolution with an

efficient attractor network. The chip achieves SLAM with only

23.82 mW. The dependence of power consumption on input

voltage is shown in Fig. 12b. The attractor network shows a

high compute efficiency of 8.79 TOPS/W. Our NeuroSLAM

accelerator demonstrates the incorporation of neuro-inspired

analog hardware in the digital pipeline to enable edge intelli-

gence in severe energy-constrained systems.
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Fig. 11: (a) Overview of our NeuroSLAM accelerator. (b) Spiking
continuous attractor network mimicking rodent’s pose cell behavior.

Fig. 12: (a) NeuroSLAM chip die-photo. (b) Measured operational
frequency and power consumption of NeuroSLAM accelerator.

C. Neuro-Inspired End-to-End Spike-Only Processing

Another neuro-inspired system exploration is the first au-

tonomous sensing-to-actuation end-to-end spike-only process-

ing pipeline for hexapod robots [33]. The goal is to demon-

strate the functionality of spike-only processing and evaluate

the potential of event-driven processing modalities. As shown

in Fig. 13, event camera/dynamic vision sensor (DVS) is used

as the sensory input to generate asynchronous event stream.

The information is processed through SNN to activate one of

the three gait selection neurons. The central pattern generator

(CPG) is trained such that every gait selection neuron activates

gait in a different direction to allow controlled movement.

A task of identifying and approaching the nearest target

is demonstrated using this platform. The ultra-low-power

(2.55 mJ/step) consumption of this system with dedicated

spiking hardware (e.g., Loihi) highlights the potential of neuro-

inspired event-driven systems for edge applications.

V. BENCHMARKING AND SOFTWARE INFRASTRUCTURE

Edge robotics is a cross-layer research field, spanning from

environment modeling, autonomy algorithms, runtime systems

to onboard compute architecture and circuits. The interaction
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Fig. 13: Bio-inspired closed-loop end-to-end spike-only robot. (a)
Event camera mounted on hexapod provides (b) input stream to (c)
SNN for processing and (d) selecting gait to approach the nearest
object. (e) Gait is executed by a spiking CPG causing leg movements.

between the layers impacts the efficacy and performance of

the system [34], requiring software infrastructure for inter-

disciplinary research. Specially, we need a platform that can

systematically benchmark each of these individual layers and

also capture end-to-end cross-layer execution characteristics.

Recently, some platforms for aerial robots have been proposed.

MAVBench [35] is a platform for physical-model-based aerial

robots evaluation. MAVBench involves a closed-loop simula-

tor and a benchmark suite for several computational kernels

involving perception, planning, and control. Airlearning [36]

and PEDRA [37] are simulation suits and benchmarks for

learning-based aerial edge robots. They provide a rich set of

virtual worlds, including indoor and outdoor environments, to

enable autonomy generalization. In addition, PEDRA supports

swarm intelligence with different collaboration paradigms.

These benchmarking and software infrastructures inspire

a proliferation of studies on edge robotic systems, such as

reliability, system design methodology, and memory hierarchy

optimization. Based on MAVBench, RoboRun [38] presents a

robot runtime that leverages spatial-aware computing to dy-

namically improve performance and energy for heterogeneous

operating environments. MAVFI [39] proposes a fault injection

framework for end-to-end reliability characterization of robotic

workload, which is portable to robot operating system (ROS)-

based applications. Based on AirLearning, Autopilot [40] and

AutoSoC [41] propose an automated design space exploration

framework to design optimal onboard compute for aerial

robots. Based on PEDRA, Anwar et al. [42] present a transfer

learning-based approach to reduce the onboard computation

required to train a neural network for autonomous naviga-

tion. Wan et al. [43] propose application-aware lightweight

fault mitigation techniques to enable reliable autonomy under

hardware faults. Anwar et al. [44] evaluate the robustness of

swarm robotic systems under adversaries. Yoon et al. [45]

present a novel hierarchically memory system with STT-

MRAM and SRAM to support real-time learning-based robotic

exploration. We believe a holistic benchmarking and simulator

infrastructure will uncover more cross-layer research findings

of various fields of edge robotics.
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VI. CHALLENGES AND OPPORTUNITIES

Robotic computing is a rising area and opens many research

challenges and opportunities. At the device and circuit level,

embedded non-volatile memory (e.g., RRAM, Ferroelectric

memories) and 3D integration will provide opportunities for

hardware-efficient robotic computing. At the architecture level,

the robotic computing platform needs to be adaptive and

reconfigurable to various scenarios and applications, including

DNNs and SNNs. At the system level, a holistic benchmark

and a generic framework for mapping autonomy algorithms

to heterogeneous hardware platforms will benefit the robotic

computing development process. At the algorithm level, robots

need to have the ability of lifelong learning and learning with

limited data. The booming of swarm intelligence requires more

effective and robust distributed learning across multiple agents.

VII. CONCLUSION

This paper investigates circuit and system technologies for

energy-efficient edge robotics. We present three robotic accel-

erators for edge reinforcement learning, swarm intelligence,

and neuron-inspired mapping and localization, with an empha-

sis on novel mixed-signal circuit technologies. We summarize

robotic benchmarking and simulation frameworks along with

how they foster research efforts in cross-layer robotic systems.

Finally, we discuss the challenges and opportunities for the

next-generation energy-efficient robotic computing platforms.
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