
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019 485

Hierarchical Memory System With STT-MRAM
and SRAM to Support Transfer and Real-Time
Reinforcement Learning in Autonomous Drones

Insik Yoon , Malik Aqeel Anwar, Rajiv V. Joshi, Fellow, IEEE, Titash Rakshit,

and Arijit Raychowdhury , Senior Member, IEEE

Abstract— This article presents a transfer learning (TL)
followed by reinforcement learning (RL) algorithm mapped onto
a hierarchical embedded memory system to meet the stringent
power budgets of autonomous drones. The power reduction is
achieved by 1. TL on meta-environments followed by online
RL only on the last few layers of a deep convolutional neural
network (CNN) instead of end-to-end (E2E) RL and 2. Mapping
of the algorithm onto a memory hierarchy where the pre-
trained weights of all the conv layers and the first few fully
connected (FC) layers are stored in dense, low standby leakage
Spin Transfer Torque (STT) RAM eNVM arrays and the weights
of the last few FC layers are stored in the on-die SRAM. This
memory hierarchy enables real-time RL as the drone explores
unknown territories and the system only reads the weights from
eNVM (that are slow and power hungry to write otherwise) for
inference and uses the on-die SRAM for low latency training
through both write and read of the weights of the last few
layers. The proposed system is extensively simulated on a virtual
environment and dissipates 83.5% lower energy per image frame
as well as 79.4% lower latency as compared to E2E RL without
any loss of accuracy. The speed of the drone is improved by a
factor of 3× due to higher frame rates as well.

Index Terms— Transfer learning, reinforcement learning,
autonomous drone, object avoidance, deep learning, convolutional
neural network, STT-MRAM.

I. INTRODUCTION

OVER the past decade, applications such as reconnais-
sance, surveying, rescuing and mapping with Unmanned

Aerial Vehicles (UAVs) or drones have achieved substan-
tial success. For all these applications of UAVs, navigating
autonomously in varied environments with camera based
inputs is considered a key enabling feature. Recently, rein-
forcement learning (RL) on robotic tasks such as real-time

Manuscript received April 15, 2019; revised June 26, 2019; accepted
July 27, 2019. Date of publication July 31, 2019; date of current version
September 17, 2019. This work was supported by the Semiconductor Research
Corporation under Grant JUMP CBRIC task ID 2777.006 and Grant JUMP
ASCENT task ID 2776.004. This article was recommended by Guest Editor
K. Kailas. (Corresponding author: Insik Yoon.)

I. Yoon, M. A. Anwar, and A. Raychowdhury are with the Georgia
Institute of Technology, Atlanta, GA 30332 USA (e-mail: iyoon@gatech.edu;
aqeel.anwar@gatech.edu; arijit.raychowdhury@ece.gatech.edu).

R. V. Joshi is with the IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 USA (e-mail: rvjoshi@us.ibm.com).

T. Rakshit is with the Advanced Logic Lab, Samsung Semiconductor,
Austin, TX 78754 USA (e-mail: titash.r@samsung.com).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JETCAS.2019.2932285

Fig. 1. (a) Definition of minimum distance required for obstacle avoidance
(dmin). dframe = distance that drone moves between frames. (b) Frame per
second vs. speed of a drone for sample indoor and outdoor environments (c)
dmin setting for different environment and minimum FPS needed for obstacle
avoidance for different environments [4].

drone navigation and collision avoidance has been extensively
explored [1], [2]. However, online, real-time RL continues
to be computationally challenging despite its recent success
and its bio-mimetic approach. In typical RL systems, a deep
convolutional neural network (CNN) is used to achieve a
functional mapping images (system states) to the best possible
action. In the case of RL for real-time collision avoidance, a
major latency bottleneck arises from the need to train a CNN
with the current image frame, which must be completed before
the next image frame is captured [2], [3].

This is illustrated in Fig. 1 where we show the relationship
between the speed of a drone and the required frame per
second (fps) of the image acquisition system. As shown
in Fig. 1(a), For a given velocity of the drone, we can
calculate the minimum fps requirement of the camera for
collision avoidance based on the corresponding distance trav-
eled between two frames (dframe), and the minimum distance
between the drone and its obstacles (a measure of clutter in
the environment). From Fig. 1(b), we observe that the fps
requirement increases as the speed of a drone increases. Since
the minimum distance between a drone and its obstacles is
lower in typical indoor environments compared to outdoor

2156-3357 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:24:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4545-4404
https://orcid.org/0000-0001-8391-0576

486 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

environments (i.e., the indoor environment is more cluttered
than outdoor environments), drones in the indoor environment
require higher fps compared to outdoor environments. As the
fps increases, the time available to perform real-time RL
decreases necessitating high-performance of the computing
system. For small power-constrained drones, it requires signif-
icant hardware resources to execute the training process in RL
within the latency and power targets. Further, embedded non-
volatile memory (eNVM) [5]–[7] has emerged as a potential
candidate for DRAM replacement for its high density and
low standby power. This is particularly useful to store model
weights of CNNs that can achieve RL in embedded sys-
tems, such as small drones. However, all eNVM technologies,
including Spin Transfer Torque Magnetic RAM (STT-MRAM)
exhibit high write latency and energy and does not meet the
write energy and latency targets for real-time RL.

To address this fundamental challenge, we propose an
algorithm-hardware co-design where we show:

1. Context-aware transfer-learning (TL) augmented with
RL. Before deployment, an agent (drone) is trained in complex
meta-training-environments (indoor and outdoor) in a virtual
simulation platform. During training, the agent captures an
image of an environment (called state) and a CNN provides
the optimal action based on the current state to maximize
some notion of long-term reward. Training the policy network
is accomplished via RL. Once the system reaches the target
performance, the trained weights of CNN in complex meta-
environments are ready to be transferred to a drone (Transfer
Learning) at the time of deployment.

2. At the time of deployment, the correct meta-model
(indoor or outdoor model) obtained from TL is downloaded to
the drone. In our studies, we consider a prototypical embedded
platform consisting of a large, stacked-eNVM array and a
smaller (30 MB) on-die SRAM. As a part of this study,
we consider spin-transfer-torque (STT-RAM) as the NVM of
choice. A part of the model (last few layers of the neural
network) are stored in the on-die SRAM and rest of the model
is stored in STT-MRAM stack.

3. After deployment, the drone performs real-time RL;
the drone first reads the weights stored in NVM to perform
inference to determine the best action (forward propagation
of the CNN) based on the current state (acquired image).
Once the drone receives the next state after the execution of
inferred action, RL evaluates the error and train the weights
in CNN. But instead of learning all the weights in every layer
of the CNN, the system only trains the last few layers of
CNN whose weights are stored in the on-die SRAM. This
results in only read accesses from the e-NVM array during
flight (inference/ forward propagation of data) and all the
necessary write operations are executed on the on-die SRAM.
In the process of inference (forward propagation of data), the
system only reads the weights of the model from the eNVM
to the SRAM. The weights of the last few layers stay in
the SRAM and the updated weights of the last few layers
are written to SRAM at the end of training. We also show
a typical case where a small portion of the weights stored
in the STT-MRAM array is updated in real-time. Since the
convolution layers of the network stores the coarser features of

the environment (obtained from TL), the proposed algorithm
works successfully as the drone needs to learn only the
environment specific finer features (online RL) in real-time.
We show that the using TL followed by environment-specific
RL over the last few layers achieves comparable accuracy as
E2E RL. While E2E RL on an environment is not feasible
with NVM based embedded platforms (in terms of latency and
energy requirements), our proposed solution archives real-time
operation with 79.4% (83.45%) decrease in latency (energy) in
PE array compared to a baseline E2E RL system. Due to the
stringent power constraints of a drone, the system employs
STT-MRAM instead of DRAM because using STT-MRAM
can save the amount of energy used for refresh operation from
DRAM since refresh operation is not required in STT-MRAM.
With 83MB of weights stored in STT-MRAM, dissipated
energy over 1000 iterations of STT-MRAM presents 58%
decrease compared to the energy dissipated from DRAM in
the case of on-line training of last 4 layers.

II. REINFORCEMENT LEARNING FOR DRONE NAVIGATION

A. Basics of Reinforcement Learning

Before going into the details of the platform architec-
ture, let us briefly review RL in the context of autonomous
flight in small form-factor drones. Reinforcement learning
(RL), inspired by behavioral psychology, learns by interacting
with the environment in discrete time steps [1], [8]–[10].
As opposed to supervised learning, RL doesn’t have direct
access to the data labels. The labels for RL can be thought
of as dynamic and are generated and updated online until
convergence is achieved. The agent is placed in the training
environment and is allowed to take actions to explore the
environment. With every action taken, the agent is presented
with a reward based on a user defined goal. The reward
quantifies the underlying goal; if the agent took an action that
was in accordance with the goal, the reward would be higher
and vice versa. The objective of RL is to learn a control policy
that predicts actions maximizing these long-term rewards.
For the case of autonomous flight, the RL problem will be
formulated as follows. The goal is to avoid crashing into the
obstacles, hence the notion of distance between the drone and
the nearest obstacle can be used as a reward. A set of feasible
actions is defined for the action space (in our case moving
forward, moving left and moving right). The agent is only
allowed to select among these set of actions. Resized RGB
images from the drone’s camera are used as states. Once the
goal, state and action space are defined, the agent is placed in
the training environment. At time step t, the drone observes the
current state st, takes an action at from the action space and
moves to a new position and observes a new state st+1. These
current and new state pair along with the actions taken are
used to generate a reward rt (st,at, st+1). For each step, these
four quantities together define an RL data-tuple (st,at,st+1,rt).
The objective of RL is to predict set of subsequent actions,
leading to the maximization of the long-term discounted return

Rt =
T∑

i=t

γ i-tri

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:24:52 UTC from IEEE Xplore. Restrictions apply.

YOON et al.: HIERARCHICAL MEMORY SYSTEM WITH STT-MRAM AND SRAM 487

Fig. 2. Reinforcement Learning(RL) network architecture for camera based
navigation in drones [4].

where, γ is the discount factor). This is done by converting
the data-tuples into sets of training pairs. The effectiveness
of taking an action at from a given state st is quantified by
its corresponding Q-value Q(st,at). The greater the Q-value,
the more favorable the action is. These Q values are updated
online using the Bellman Equation

Q(st, at) = r + γ maxaQ(st+1, a) (1)

The training pairs (st,Q(st,at)) are then used as the input-
output pairs for training the network. At any given state,
the network predicts the action with the maximum Q value
a′ = maxaQ(st, a). RL for obstacle avoidance and path-
planning has been successfully applied in prototypical robotic
vehicles [11], [12] and in Parrot AR drones [13] and interested
readers are pointed to [12] for a detailed overview.

B. RL in Camera Based Navigation in Drones

We focus on the implementation of a camera based drone
system that performs end-to-end navigation via collision
avoidance (long term goal) as shown in Fig.2. The navigation
problem is mapped to the RL problem as follows. The state
at time instant t, st ∈ S is the image frame of the environment
from the camera. At any given state, the drone takes any action
at ∈ A where A is the action space. In this proposed system,
the action space is limited to have five values A = 0, 1, 2, 3, 4.
0 in action space A indicates that the drone moves forward,
1 and 3 mean that the drone turns left with turn angles
25 degree and 55 degree respectively. Similarly, 2 and 4
means turning right with turn angles 25 degree and 55 degree.
These five actions are sufficient for the drone to navigate
in its surrounding. When the image frame is captured from
the stereo camera, a disparity map is used to generate an
approximate depth map of the image frame [2]. From the
generated depth map, a reward is generated in a manner
described in [3]. In the process of reward generation, the
depth map is segmented into smaller window at the center
and the average depth of this center window correlates to the
value of reward. Therefore, the reward becomes smaller when
the drone is closer to obstacles because the average depth in
the center window is less. The Q values for the states are
estimated using a deep convolutional network (CNN). The
image frame obtained from the camera is the state at time t,
st ∈ Rnxnwheren = 224 and becomes an input to the CNN.

In order to have the network architecture optimized for
autonomous navigation, we modified the AlexNet model [14]

Fig. 3. Reinforcement Learning(RL) network architecture for camera based
navigation in drones. (a) Modified AlexNET [14] for the proposed system
(b) 3 configurations where 4,11 and 26% weights are learnt in real-time. This
is in contrast to E2E RL, where the entire network is learnt in real-time. [4].

and used it as the CNN. It consists of 5 convolutional layers
and 5 fully connected layers. The detailed network architecture
and parameters are shown in Fig.3. During the online RL when
the drone is flying, the CNN learns the weights of the model
and keeps on improving the functional mapping from the state
to the action.

C. Challenges of End-to-End(E2E) RL in Embedded Systems

In a true biologically-inspired system, an autonomous drone
should learn to navigate via E2E RL, where the reinforcement
learning algorithm trains the weights in every layers of the
CNN [3]. From starting with randomly initialized weights of
the model, the drone should learn the model that efficiently
maps state to action from iterative interactions with the envi-
ronment. Although feasible [3], this faces two fundamental
challenges:

1. During exploration, the drone will take random actions
and they are often incorrect actions, especially at the beginning
of the flight. This can lead to collisions with obstacles. The
sequence of incorrect action that lead to collisions can cause
damage to the drone or the environment.

2. Further, E2E RL is computationally extremely
challenging. Since E2E RL requires training of all weight
parameters in every layers of CNN, it is almost impossible to
achieve autonomy via RL in small form factor drones, without
additional off-board infrastructure [3]. Improvements in both
design [14], [15] as well as technology [16]–[21] continue to
make CNNs a reality on resource constrained edge-devices.
In particular, eNVM is a promising replacement for DRAM
to achieve high energy-efficiency. Among competing eNVM

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:24:52 UTC from IEEE Xplore. Restrictions apply.

488 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

technologies, such as RRAM [17], [21], PCRAM [19],
FerroFETs [20], STT-MRAM [18], [22] is considered more
mature and exhibits high density, endurance and nano-second
read speeds. However, the write latency and energy of STT-
MRAM is expensive and is a major bottleneck in real-time
RL and continuous weight updates.

III. PROPOSED APPROACH USING TRANSFER

LEARNING(TL) WITH REAL-TIME RL

In transfer learning, pre-existent knowledge of the source
tasks from one or more domain is used to learn target task in
another domain. Transfer learning approach to solve various
problems in deep learning has been there for over a decade.
It has been used in the past for the purpose of mitigating
convergence issue, faster convergence, improving target per-
formance, reducing the time of convergence and addressing
the issue insufficient data [23]–[25], where the weights of the
deep network learnt for one problem is used as initial weights
for some another similar problem. The network is then fine-
tuned, end-to-end on the new data set converging faster. It is a
well understood fact that [26], for a complex enough task, deep
network’s performance increases by increasing the number of
hidden layers (given the amount of training data scales too).
So, for an acceptable performance, the network should be deep
enough, which comes with additional computational cost. This
increased computational cost requires heavy computational
resources (like GPUs) and cannot be executed on a resource
constrained system/edge node (say a drone). To the best of
our knowledge all the TL papers in the past discuss TL as
tool/approach to address the above-mentioned issues without
worrying much about the computational cost required to train
a deep neural network. In this paper we show we can use
Transfer learning, to segment a deep network into trainable
and non-trainable part reducing the training computations,
for underlying task without compromising too much on its
performance. We use transfer learning with real-time RL as
an algorithmic solution that maps to a hierarchical memory
system consisting of stacked STT-MRAM and on-die SRAM.
This alleviates the challenges of E2E RL and enables a
practical hardware solution to realize autonomous flight with
environment specific RL. In our proposed system the agent
learns on an embedded platform in the following steps:

1. The CNN is first trained in complex meta-environments in
simulation. Once the training is finished, the pre-trained CNN
model is downloaded to the system memory as a meta model.
We explore two types of meta-environments: outdoor and
indoor. Other types of environments can be added depending
on the types of real environments that drone is expected to be
deployed in.

2. The downloaded meta model is located in STT-RAM and
the weights of the last few layers of the CNN are transferred
to an on-die SRAM. During real-time learning, the system
reads the weights of each layer of STT-MRAM to SRAM for
inference and once inference is finished, we train the weights
of the last few fully connected (FC) layers of the model and
write the updated weights back to the SRAM. By performing
inference with the weights from TL and training the last few

Fig. 4. (a) 3D view of the hardware platform (b) System architecture and
parameters as extracted post-synthesis in 15nm Nangate PDK. [4].

fully connected layers of the network via RL, we can reduce
the latency and energy of the system significantly. This extends
the drone’s battery life and enables the system to support a
higher speed as illustrated in Fig. 1. Fig. 3(a) presents three
different architectures for training. Based on the on-die SRAM
capacity, we can store 26% (FC2+FC3+FC4+FC5), 11%
(FC3+FC4+FC5) and 4% (FC4+FC5) of the total weights of
the network in the SRAM. The procedure of on-line training
is described in Fig. 3(b). In order to complete one training
iteration with batch size of N images, the system performs N
number of computation, which is defined as taking one image
at a time and complete forward and backward propagation. In
the following sections, we compare the system performance
of TL followed by RL, which train the last 2/3/4 layers of the
network, and E2E learning (baseline), the algorithm that trains
all parameters in the network.

IV. PROPOSED SYSTEM ARCHITECTURE

The system architecture includes a logic die that contains
of a systolic array of processing elements [14] and a global
buffer (on-die SRAM) and a STT-MRAM stack on top of
the logic die (Fig. 4). We assume that the architecture of
the sub-array organization and local/global IO of STT-MRAM
stack is same as the DRAM-based High Bandwidth Memory
(HBM) architecture from JEDEC [27]. The DRAM subarrays
of DRAM-based HBM are replaced with STT-MRAM. By
using STT-MRAM in the DRAM-based HBM architecture, we
provide a realistic and emerging platform for an embedded
system with high-bandwidth IO, based on HBM JEDEC
specification [27]. Recent progress in manufacturing, design
and packaging [28]–[31] promises decreasing the feature size
of the STT-MRAM bitcell through improvements in nano-
patterning of MTJ, design of the selector transistor and
optimized peripheral circuits. In a recent demonstration [15],
a monolithic design of a 4Gb array featuring a 9F2 cell was

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:24:52 UTC from IEEE Xplore. Restrictions apply.

YOON et al.: HIERARCHICAL MEMORY SYSTEM WITH STT-MRAM AND SRAM 489

shown. This shows that even a single layer of 3D-stacked STT-
MRAM can feature more than 100MB of capacity in a single
stacked layer.

One of the concerns in high-density compute in 3D stacks is
the elevated temperature of the stacks. Since the STT-MRAM
layer is located directly above the logic die, the temperature
from the logic die can affect the retention of 3D-stacked
STT-MRAM and may cause bit flips in the array. In order to
prevent erronous bit flips caused by elevated temperature, the
free layer (bit storage layer) of the STT-MRAM must be thick
enough to guarantee non-volatility even at elevated tempera-
tures as discussed in [32] . Correspondingly, there will be an
increase in write critical current and power of STT-MRAM,
which is an issue of allocating enough design margin. [33]
and [34] present 10 year retention at 90 and 85 degree Celsius.
A complete thermal design and modeling for 3D chip-stack is
outside the scope of this paper. There has been significant work
on modeling 3D chip-stacks and research results [35]–[38] in
this area will guide both placement as well as routing of PEs
and other functional units.

A system with camera, image processing DSP module and
DRAM buffer memory is integrated on a substrate (which can
be a silicon interposer or a package substrate) as shown in
Fig. 4(a). The connections between each module and the logic
die are assumed to be DDR6 links.

A. Off-Chip to On-Chip Data Movement

The camera with a DSP module and buffer-DRAM are
located off-chip on a shared substrate. Once an image is
captured by the camera, the DSP module resizes the image
to 224 by 224 as described above and stores the output to
a DRAM memory buffer. The image is serially read from
DRAM buffer to the logic die as input to the CNN and stored
in the on-chip global buffer. During the inference process, the
image from global buffer is distributed to the register files in
the PE array.

B. On-Chip System Architecture With Stacked STT-MRAM

The logic die that contains of the spatial PE array and
a global buffer located on a common substrate [27] and
3D-STT-MRAM [6], [7] is stacked on top of the logic die
in the same way as DRAM-based HBM is currently stacked.
STT-MRAM stack is used as a weight storage and it contains
all weights from each layers of the network. The systolic
array of PE has 1024 PEs in total (32 rows, 32 columns)
and the bit width of the connections between PEs is 128
bit. One a PE is connected with 5 nearby PEs (top, bottom,
left, right and upper right) [14], [15]. The bit width of the
connections between the global buffer and the 32 PEs at
the first row of the PE array is 4096 and the global buffer
can broadcast the same data to each PEs in the first row.
STT-MRAM stack has 1024 I/O connections (each I/O has
2Gbit/s of bandwidth) with the global buffer [27]. Each PE
has a register file, 8 MACs for convolution and vector-
matrix multiplication and 8 comparators for rectified linear and
maxpool operations. Fig. 4(b) shows a complete list of system
parameters. The whole system is designed, synthesized and in

TABLE I

COMPARISON BETWEEN STT-MRAM [16], [18], [41], [42] AND
COMPETING TECHNOLOGIES (EFLASH [43]–[45],

RRAM [17], [21], PCRAM [19], [46]

the 15nm nangate technology [39]. All results discussed here
are post-synthesis.

C. Motivation for STT-MRAM and STT-MRAM Basics

It is well understood that next-generation memory-intensive
ultra low power learning-based systems require a memory
technology which shows 1. high-density, 2. low-standby power
(hence eNVM) 3. acceptable R/W speeds and importantly 4.
compatibility with a logic process both in terms of process
thermal budget and voltage domains. This is required to ensure
that the design, along with an eNVM, can take advantage of
the numerous scaled high performance, low power digital logic
blocks that are essential for any area and power constrained
design like the one we have described in this paper. Compared
to other NVMs such as Phase-change memory or resistive
RAM, STT-MRAM exhibits better read/write latency [15],
[16] and is more mature than Ferroelectric FET based RAMs.
Recent publications from leading foundries [7], [18], [22]
have demonstrated MBs of STT-MRAM arrays with necessary
peripheral circuits. Compared to STT-MRAMs, RRAMs show
larger device-to-device and cycle-to-cycle variations making it
hard to commercialize [40].

Although our study investigates STT-MRAM based stacks,
all eNVM suffer from high write latency and energy; and
hence the algorithm-hardware co-design that we propose is
applicable to similar other platforms. The STT-MRAM model
parameters are summarized in Table I.

The STT-MRAM bitcell consists of one access transistor
and one Magnetic Tunnel Junction (MTJ) where a single
bit of information is stored. An MTJ is formed with two
ferromagnetic CoFeB based layers and one insulating layer
(MgO) in between [18]. One ferromagnetic layer is called
a fixed layer because its magnetic moment is fixed to one
direction. The other ferromagnetic layer is called a free layer
since the direction of magnetic moment can be changed based
on the direction of current flowing across the MTJ.

Fig. 5 describes how the direction of magnetic moment in
the free layer changes based on the current across the MTJ.
Fig. 5 shows how the direction of magnetic moment in the free
layer changes from (a) anti-parallel to parallel and (b) parallel
to anti-parallel direction compared to the direction of magnetic
moment in fixed layer. Since the fixed layer acts as a spin
polarizer, the spin polarized electrons that pass the fixed layer
exerts the torque on the magnetic moment in the free layer
and causes a flip in the direction of the magnetic moment
in fixed layer as shown in Fig. 5(a). When the current flows

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:24:52 UTC from IEEE Xplore. Restrictions apply.

490 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

Fig. 5. The direction of magnetic moment in free layer changes from (a)anti-
parallel to parallel (b) parallel to anti-parallel to the direction of magnetic
moment of fixed layer. The arrow in the free/fixed layer indicates the direction
of magnetic moment.

Fig. 6. The STT-MRAM cell schematic of (a) write (b) read operation.

TABLE II

STT-MRAM ARRAY PARAMETERS COMPILED FROM [18], [22], [47]

from the fixed layer to the free layer as shown in Fig. 5(b),
the electrons with opposite spin are reflected back from the
fixed layer and exerts a torque that changes the direction of the
magnetic moment of the free layer to an anti-parallel direction
with respect to the magnetic moment in the fixed layer. The
alignment of the magnetic moment in the fixed and free layers
determine the resistance across the MTJ. When the magnetic
moments in the two layers are anti-parallel to each other, the
resistance across MTJ is high.

A low resistance is achieved when both the magnetic
moments are parallel to each other. The high/low resistance is
mapped to 1/0. The bias conditions applied for the write and
read operations are shown in Fig. 6. As shown in Fig. 6(a),
the write operation is bi-directional. In case of writing a 1, the
bit-line and the source line are set to VDD and GND and the
write current flows from the fixed layer to the free layer of the
MTJ. The biasing condition for writing a 0 is the opposite and
is shown in Fig. 6(a). In case of read operations, the word-line
is asserted to VREAD and the bitline and the source line are
set to VDD and GND. This causes a weak current to flow
across the MTJ and the resistance state is sensed using either
a constant current scheme or a BL discharge scheme [48].
Table II shows STT-MRAM array parameters from the silicon
implementation of STT-MRAM.

Fig. 7. Mapping the weights of the proposed CNN (modified AlexNET) to
stacked-STT-MRAM and on-die SRAM in the system [4].

D. Mapping the CNN Model to the Memory System

Fig. 7 presents how the model weight of the CNN is mapped
to the memory system comprising of the stacked-STT-MRAM
and on-die SRAM. The size of on-chip SRAM-based global
buffer must be large enough to store the weights of the last
2/3/4 fully connected layers of the network since the system
performs real-time update of these weight parameters inside
the global buffer. Since each parameter is 16 bit fixed point,
the size of the SRAM should be 29.38MB if we store all
weights from the last 4 fully connected layers. In the proposed
design, we store the weights from the last three layers to the
global buffer and the sum of all weights of the last three layer
is 12.6MB. The rest of the weights from all convolutional
(CONV) layers and the first and the second fully connected
layers (FC1, FC2) add up to 100MB and they reside in the
STT-MRAM array. In addition to this, the weight and bias
gradients of the last 3 layers of the network are stored in the
global buffer for the weight update in RL. Once we have the
sum of gradients of weights and bias after processing a batch
size of N, we need to update the weights as shown in a manner
shown in Fig. 3(b) and this requires an additional 12.6MB of
global buffer. In summary, the global buffer uses 25.2 MB
of space to store weights of the last three layers for forward
propagation and the sum of the weights and bias gradients
from the last three layers used during backpropagation. Lastly,
scratchpad for loading/storing intermediate results, input and
weight parameters to the PE array takes 4.2MB of space in
the global buffer. In summary, we need on-chip SRAM size to
be 29.4MB, which is at-par with the on-die SRAM capacity
of practical embedded systems.

V. FORWARD PROPAGATION THROUGH THE CNN

A. Forward Propagation in Convolution (CONV) Layers

A row stationary dataflow architecture is used in the systolic
array for convolution during forward propagation [49]. The
basic steps are:

1. Input image to the convolution layer is loaded from the
global buffer to the local register file (RF) in each PE. Once
the input image is stored in the RF of each PE, the row of

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:24:52 UTC from IEEE Xplore. Restrictions apply.

YOON et al.: HIERARCHICAL MEMORY SYSTEM WITH STT-MRAM AND SRAM 491

Fig. 8. Strategies for mapping weights and data for processing the
convolutional layers [4].

the image is transferred to the nearby PEs by using diagonal
connection to maximize data reuse within the PE array.

2. Each row of filter weights is broadcasted from the global
buffer to the RF in each PE in the same row of the PE array.

3. MAC units inside each PE computes row-wise convo-
lution of image row and filter row and the result of the
convolution (pSUM) is stored in the RF.

4. pSUM from each PEs in the same column are accumu-
lated vertically to the PE in the first row and the accumulated
values from the first row of the PE array are written back to
the global buffer

In order to effectively utilize the hardware resource for
computing convolution, we have three ways of partitioning
PE arrays into segments based on the height of the filter in
CONV layers.

Based on the partitioning, the data mapping of the filter
weights and the input are determined. The major factors that
determine the partitioning the PE array are the size of RF
inside the PE, the dimension of PE array and the filter size of
the CONV layers. Fig. 8 shows all types of partitioning of PE
arrays and the corresponding data mapping techniques. Fig. 8a
shows how Type I partition is applied to the first convolution
(CONV1) layer, whose filter dimension is (11,11,3,96) and
stride is 4. In CONV1, each row of filter and image data
with all input channels can fit into the RF of each PE in
the same row. The PE array is partitioned into two segments

whose dimensions are 32 × 11. Since the height of the filter
is the same as the height of the segment, each row of the
filter is mapped to each row of the PEs in the segment. The
same image data is loaded to two segments of the PEs and
filters with 24 different output channels are mapped to each
segment. Depending on the RF size, the number of output
channels of the filters can vary. The number of columns inside
the segments is equal to the number of rows of images that
the system can convolve per cycle. For example, TYPE I
configuration produces the convolution results of 135 rows
of input image in a single cycle. (135 = 32*stride + filter
height) because the number of columns in the segment is 32.
Fig. 8b presents the TYPE II mapping scheme of data for the
second convolution layer (CONV2). In this case, the RF in a
PE cannot fit the row of the image and the filter with all input
channels because the data size is too large. Therefore, TYPE II
divides input channels of filter and images into two parts and
loads them into segments of the PE array. Since the filter height
of CONV2 is 5, the dimension of each segment is 27 × 5 and
the PE array is partitioned into 6 segments. Instead of using
all 32 columns of PE, 27 columns are utilized because each
column generates one row of convolution output. The same
image data is mapped to all 6 segments and each segment
is mapped with the corresponding filters and each segment
generates distinct outputs at the end of computation. Fig. 8c
presents the TYPE III mapping scheme of data for CONV3.
The main difference between TYPE II and TYPE III mapping
is the existence of set, which is defined as a cluster of PE
segments. Since the filter width and height decreases from
CONV2 to CONV3, we can map 2 sets of 10 segments (each
segment dimension is 3× 10 PE) to PE array for CONV3. In
the TYPE III mapping scheme, the segment size of the PE is
3×13 because the filter dimension is (3,3) and the stride is 1.
Because the dimension of the segments is lower, we partition
the PE array into 2 sets of 10 segments (total 30 × 26 PE
array). Due to the high number of input channels of input and
filter to CONV3, we split the input channel of filter and inputs
into two parts. Unlike TYPE II, the two parts of inputs and
filters are mapped to each set of the PE array, which enables
us to map the input and the filter with all the input channels.
After completing pSUM in step 4, the convolution results in
the first row of set 2 must be transferred to the first row of
set 1. For example, the output from PE at 14th column (PE
in the 1st column in set 2) must be transferred to the PE in
the 1st column in set 1. Then the two results from set 1 and
set 2 are added together to complete the convolution. Since the
filter height and width (3,3) in CONV4 and 5 are the same as
the filter height and width in CONV3, the TYPE III mapping
scheme is used for CONV4 and 5 as well.

B. Forward Propagation in Fully Connected(FC) Layers

Vector-matrix multiplication is the core computation in
the forward propagation of Fully Connected layers. Fig. 9
describes how the input vector and the weight matrix are
mapped to each PE in the array to perform vector-matrix
multiplication. Once the values of the weight matrix are loaded
to the PE array, the input vector is loaded to the first column of

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:24:52 UTC from IEEE Xplore. Restrictions apply.

492 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

Fig. 9. (a) Row-wise vector propagation in PE array for calculating pSUM
(b) Vertical pSUM accumulation for vector-matrix multiplication in forward
propagation of FC layers [4].

Fig. 10. (a) Column-wise vector propagation in PE array for calculating
pSUM (b) Row-wise pSUM accumulation for vector-transposed matrix mul-
tiplication in backpropagation of FC layers [4].

the PE array. Then the values in the input vector are propagated
row-wise in the PE array and we perform multiplication in
each PE. The outcomes of computation (pSUMs) in each PE
in the same column are propagated and accumulated vertically.
The accumulated results in the first row of PE array are
transferred to the global buffer.

VI. BACKPROPAGATION AND GRADIENT DESCENT

For TL followed by online RL, we train last 2/3/4 FC
layers of the network. Backpropagation consists of two major
computational steps: finding gradients of weights and their
biases. Since we use our system to serially process one image
at a time for training, the system must store the sum of weight
and bias gradient of each image in the global buffer.

A. Backpropagation architecture of Fully-Connected Layer

The gradient of the weight is the result of multiplication of
every vector element in a layer of neurons and every vector
element in the gradient of the loss function computed with
respect to the neurons in previous layer. Since there is no
pSUM accumulation involved in calculating weight gradients,
the results of multiplication of each PE are directly transferred
to global buffer. The gradient of the bias in an FC layer is
calculated by multiplying the vector of the gradient of Loss
with respect to neurons in previous layer and the transposed
weight matrix. The structure of the systolic array enables
vector-transposed matrix multiplication without transposing
the matrix itself, in a manner describe in [49] Fig. 10 describes
the structure of vector-transposed matrix multiplication in the

Fig. 11. Screenshots of the complex meta environments developed using
UE 4.

PE array. The vector elements are propagated downwards in
each column of the array and the pSUM from each PE are
accumulated row-wise. The computation is complete when
PEs in the last column transfer their results to the global buffer.

B. Backpropagation Architecture of CONV

The backpropagation of CONV layers only happen when
evaluating the E2E RL in the system, which is our base-
line design. For comparison to the baseline, we benchmark
the backpropagation architecture for the entire network. For
CONV layers, we use GEMM [50], where the system first
reads the data from the STT-MRAM array to the logic die, and
expands the inputs to each CONV layers in a 2D matrix. Once
the expansion is complete, the backpropagation of CONV
becomes same as the backpropagation of FC layers. After
the weights of the CONV layers are updated, we write the
weights back to the STT-MRAM array. We account for the
additional on-chip SRAM requirement for storing the results
of the intermediate compute steps.

VII. SIMULATION SETUP

A. Hardware Architecture Simulation

We used NanGate 15nm FreePDK cell library to evaluate
the hardware system performance [39]. We perform synthesis
and place-and-route of the entire system and the results cited
here (along with Fig. 4) are obtained post-synthesis.

B. Simulation Setup

The algorithm is tested on a simulated environment with
the dynamics of realistic drones. Simulations were carried out
on two types of simulated environments, Indoor and Outdoor.
For each of the two categories, complex meta-environments
and separate test environments were designed to train and test
the performance of the proposed methodology respectively. We
used the Unreal Engine 4 (UE4), used for video game devel-
opment to design the simulation environments and emulate the
necessary physics. For each of the two environment categories,
a complex meta-environment and two test environments were
designed for training and testing purposes. Hence a total of 6
(3 indoor, 3 outdoor) 3D were used in the simulation.

The layouts and screenshots of these environments can
be seen in Fig.11 and Fig.12 This engine interfaces with
Tensorflow to train a drone via TL and RL. TensorFlow
is used as the deep learning framework. AirSim [51] was
used to interface the custom generated 3D environments with
python. The simulation and training was carried out on a

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:24:52 UTC from IEEE Xplore. Restrictions apply.

YOON et al.: HIERARCHICAL MEMORY SYSTEM WITH STT-MRAM AND SRAM 493

Fig. 12. Screenshots of the test environments (a) Indoor Apartment (b) Indoor
House (c) Outdoor Forest (d) Outdoor Town developed using UE 4.

Fig. 13. Stereo vision based depth map generation.

workstation equipped with core i7 processor and NVIDIA
GTX1080 GPU. The web-link for the suite of the environ-
ments, videos and corresponding data sets can be found here:
https://tinyurl.com/y9wgpq4b and the implementation details
are beyond the scope of this paper.

C. Training on Meta Environments

The drone is trained in the meta-environment for 60K
iterations, initialized with ImageNet [52], [53] weights. For
the training, depth maps generated from stereo cameras are
used, as shown in Fig.13. The drone is equipped with two
cameras (left and right). The scene is captured using these
two cameras and the disparity map is generated based on the
distance between the corresponding pixels are in the left and
right images. The disparity map is passed through a low pass
filter to generate a depth map. A typical example is shown
in Fig. 13. The training is carried out in two phases. In the
first phase the DNN is trained on the complex meta indoor
and outdoor environments separately. This DNN is initialized
with ImageNet weights (and with random truncated normal
weights for the additional layers i.e. FC3, FC4, FC5). In order
to help converge the loss, various techniques discussed in
[3], such as double deep Q-learning network (DDQN) and
clipped temporal difference (TD) error are used. Apart from
training the modified AlexNet network for the set of initial
weights, the meta-environment is also used to train a small

Fig. 14. Feature extraction for SVM classifier On the left, the actual camera
frame is shown. The depth map (in the center) is divided into windows and
the top 6 windows are used towards feature extraction (right image).

Fig. 15. SVM classifier block diagram.

binary SVM classifier in a supervised manner to differentiate
between the indoor and outdoor category of environment.
Since outdoor environments typically have objects placed at
a larger distance as compared to the indoor environments, the
use of the depth map (instead of the raw camera frames) for
training the classifier comes as a natural choice. For each of the
indoor and outdoor meta-environment, 1000 depth maps are
collected. These 2D depth maps are converted into a feature
vector of size 6 × 1 which is used as input to the binary
SVM classifier to categorize what category of the environment
these depth maps belong to. For each of the 2D depth map
the feature vector is generated by slicing the depth map into
9 equal parts. The feature vector is the concatenation of the
average of the largest 30% pixel values in the top 6 windows
as shown in Fig. 14. The complete block diagram is shown
in Fig 14. The classifier is trained on these feature vectors
with training accuracy of 98.5% and it is tested on 200 data
points from unseen indoor and outdoor environments with an
accuracy of 97.02%.

D. Training on Test Environments

Once this training is completed for both the indoor and
outdoor meta-environments separately, the transfer learning
phase begins. In this phase, for each of the outdoor and indoor
category, a DNN is trained for the two test environments
separately. The drone is placed in the test environment and
uses the trained SVM classifier (Fig. 15) to categorize the
environment it is in. The drone collects the depth map by
rotating N times with an angle of 360/N degrees. Above
mentioned features are extracted from these depth maps and
fed to the classifier. Based on the majority label predicted by
the binary classifier, the DNN is initialized with the respective
trained meta-environment (Indoor or outdoor). Table III lists
the hyper parameters used for training. N target is the number
of training iteration after which the weights from the target
network is copied into primary network in DDQN.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:24:52 UTC from IEEE Xplore. Restrictions apply.

494 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

Fig. 16. Cumulative rewards and return results in indoor (a)apartment (b)house and outdoor (c)forest (d)town test environments. The legend Li indicates TL
with last i-layers. All the algorithms show convergence and improving return loss indicating successful learning. [4]

TABLE III

LIST OF HYPER PARAMETERS FOR TRAINING

Algorithm 1 Reward Generation Using the Depth Map. The
Superscript l,r,c With d Denotes Left, Right, Center Value of
Depth Map. the Subscript F,L,R With a Denotes the Forward,
Left and Right Action. r and s Are Reward and State. [3]

f unct ion fr(st,at,s′t)
d(st)←− depth map of st

d(s′t)←− depth map of s′t
dl(st), dc(st), dr(st) = DepthValues(d(st))
dl(s′t), dc(s′t), dr(s′t) = DepthValues(d(s′t))
if at = aF then rt = dc(s′t)
else if at = aL then rt = dc(s′t)+α(dl(st)−dr(st))
else rt = dc(s′t)+α(dr(st)−dl(st))
if dc(s′t)<dcrash then rt = rcrash

return rt

Algorithm 1 describes how the depth map is used to
generate a reward function for RL with the long-term goal of
exploring an area without any collisions. The trained weights
from TL are then used as initial weights for RL in the
respective test environments For RL, we use 4 topologies, E2E
(end-to-end RL) and L2, L3, and L4, where Li represents TL
followed by RL where the last i-layers are trained online.

Fig. 16 reports the results for these test environments in
terms of cumulative rewards and return while the safe flight

is plotted in Fig 17. Cumulative reward is the moving average
of last N rewards received by the agent and is given by
Ri = 1

N

∑i
j=i−N rj where i ≥ N and N is a smoothing

constant and was taken to be 15000. The return is the moving
average of the sum of rewards across episodes. With each
iteration, the agent takes an action and a reward is presented.
These rewards are accumulated until the drone crashes and
is given by 1

Nk

∑i
j=i−Nk

rjwhere Nk is the number of actions
taken between the kth and (k-1)thcrash. The return graph from
Fig. 16 shows how the learned network performs, on average.
Since the goal is not to get to a destination position, but rather
to keep on moving around the arena, the return (cumulative
reward before crashing) can theoretically become as large as
possible. Hence as the system keeps on learning, the return
graph will keep on increasing unless the topology itself isn’t
capable of learning anymore due to limited number of trainable
weights. This increase in the return may vary across topologies
due to the random nature of the epsilon-greedy exploration
[54]. The important takeaway from Fig.16 however, is that the
return graph for the topologies with less number of trainable
weights (L2, L3) doesn’t get saturated at lower value of
returns. This signifies superior learning capability of these
topologies when initialized with meta-network weights, allow-
ing the proposed technique to have comparable performance
as E2E RL. Fig.17 plots the normalized Safe Flight Distance
(SFD) across the topologies. The safe flight [3] is the average
distance (in meters) traveled by the drone before it crashes and
gives a more quantitative measure of how good the drone is in
avoiding obstacles. From Fig. 16 we note that the system con-
verges (saturating reward) for all the three scenarios showing
the efficacy of the proposed algorithm. The normalized SFD
shows acceptable degradation in performance (3% to 8.1%).

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:24:52 UTC from IEEE Xplore. Restrictions apply.

YOON et al.: HIERARCHICAL MEMORY SYSTEM WITH STT-MRAM AND SRAM 495

Fig. 17. Normalized safe flight distance (SFD) with respect to different
environments. [4]

In outdoor town environments the meta-environment and test
environments show large disparities (the type of houses, trees,
cars etc. that the drone encounters) and shows the largest
degradation. This can be further improved by performing TL
on richer meta-environments.

VIII. HARDWARE POWER-PERFORMANCE RESULTS

The hardware system is evaluated and the post-synthesis
results are summarized in Fig. 18 and Fig.19. The latency,
energy and number of active PEs for the forward and backward
propagation of data for each of the layers is shown in Fig. 18.
The major bottleneck of the network layer in terms of process-
ing latency in forward propagation is the first fully connected
layer (FC1). Due to the size of its weights (75MB), most of
the latency is attributed to data movement; fetching the weights
from STT-MRAM to global buffer and distributing it from
global buffer to the RF in the PE array. In backpropagation
of the last three layers, the system does not access the STT-
MRAM because the weights for the last three layers are
stored in the global buffer. For backpropagation of the other
layers, the weights from STT-MRAM are accessed to find the
gradients of input to these layers and to store the gradients
of the weights. In Fig. 19, we plot the maximum fps that
can be supported in the proposed system vis-a-vis a baseline
E2E RL system. We note that for a batch-size of 4, we can
support 15fps for L4, compared to just 3fps for E2E RL. This
directly translates to more than 3× increase in the velocity
of the drone (Fig. 1). We also achieve a 79.4% (83.45%)
decrease in latency (energy) compared to the baseline. While
E2E RL is not feasible in terms of energy and latency for small
drones, the proposed solution opens up exciting opportunities
for successful autonomous flight under strict power budgets.

In order to assess the need for eNVM in energy-efficient
embedded systems, we compare the proposed STT-MRAM
based system over a traditional DRAM-based HBM system.
We use the parameters from [5]–[7], [55]. to estimate the
dissipated energy from each memory stack in three cases:
(1) forward propagation, with no backpropagation, (2) forward
propagation followed by learning the parameters of the last
4 layers (L4), and (3) End-to-End RL that involves forward
propagation and full layer backpropagation across all the
layers. Since the weights of the last three layers of the network

Fig. 18. Latency, power and energy of each layers in forward and backward
propagation [4].

Fig. 19. (a) Maximum fps supported by different algorithms as a function
of batch size. (b) Estimated processing latency and energy dissipation [4].

reside in the global buffer, the energy dissipation from the
memory stack for L2 and L3 are same as that of forward
propagation. The DRAM arrays in the DRAM-based HBM is
refreshed every 64ms we consider the power cost of refreshing
the entire 100MB following the JEDEC specifications.

Fig. 20 shows the energy dissipation of DRAM-based HBM
and STT-MRAM based designs (off-chip) for 1000 iterations
of forward propagation (no backpropagation), and training
(gradient descent and backpropagation) for L4 and E2E. The
energy dissipation for the DRAM-based HBM from the figure
is the sum of refresh, read/write and IO energy dissipation.
Since STT-MRAM does not have refresh operation, the energy
dissipation of STT-MRAM is the sum of read/write operation
and IO energy dissipation. From the figure we observe that the
energy dissipation from DRAM-based HBM is 2× greater
than the energy dissipation from NVM in case of forward
propagation. The difference in energy dissipation between
DRAM-based HBM and STT-MRAM increases from L4 to
E2E since the number of refresh operations in the DRAM-
based HBM is higher. This is attributed to the fact that it
takes significantly longer to complete E2E compared to L4.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:24:52 UTC from IEEE Xplore. Restrictions apply.

496 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

Fig. 20. Energy dissipation from DRAM-based HBM and STT-MRAM mem-
ory stack (off-chip) in case of Forward propagation, last 4 layer training (L4)
and E2E learning.

IX. CONCLUSION

In this paper, we present a hardware-algorithm frame-work
for STT-MRAM based embedded systems for application to
small drones. We show that TL followed by RL on the last
few layers of a deep CNN provides comparable performance
compared to an E2E RL system, while reducing latency and
energy by 79.4% and 83.45% respectively.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[2] F. Sadeghi and S. Levine, “CAD2RL: Real single-image flight without a
single real image,” in Proc. 8th Robot., Sci. Syst. Cambridge, MA, USA:
Massachusetts Institute of Technology, Jul. 2017. [Online]. Available:
http://www.roboticsproceedings.org/rss13/index.html

[3] M. A. Anwar and A. Raychowdhury, “NavREn-RL: Learning to fly
in real environment via end-to-end deep reinforcement learning using
monocular images,” CoRR, vol. abs/1807.08241, pp. 1–6, Jul. 2018.

[4] I. Yoon, A. Anwar, T. Rakshit, and A. Raychowdhury, “Transfer and
online reinforcement learning in STT-MRAM based embedded systems
for autonomous drones,” in Proc. Design, Autom. Test Eur. Conf. Exhibit.
(DATE), Mar. 2019, pp. 1489–1494.

[5] H. Yang et al., “Threshold switching selector and 1S1R integration
development for 3D cross-point STT-MRAM,” in IEDM Tech. Dig.,
Dec. 2017, pp. 38.1.1–38.1.4.

[6] G. Jan et al., “Demonstration of fully functional 8 Mb perpendicular
STT-MRAM chips with sub-5 ns writing for non-volatile embedded
memories,” in Symp. VLSI Technol. (VLSI-Technol.), Dig. Tech. Papers,
Jun. 2014, pp. 1–2.

[7] Q. Dong et al., “A 1 Mb 28 nm STT-MRAM with 2.8 ns read access
time at 1.2 V VDD using single-cap offset-cancelled sense amplifier and
in-situ self-write-termination,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 480–482.

[8] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Mach. Learn., vol. 3, no. 1, pp. 9–44, Aug. 1988.

[9] M. van Otterlo and M. Wiering, “Reinforcement learning and Markov
decision processes,” in Reinforcement Learning. Berlin, Germany:
Springer, 2012, pp. 3–42.

[10] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, no. 1, pp. 237–285,
Jan. 1996.

[11] A. Amravati, S. B. Nasir, S. Thangadurai, I. Yoon, and
A. Raychowdhury, “A 55 nm time-domain mixed-signal neuromorphic
accelerator with stochastic synapses and embedded reinforcement
learning for autonomous micro-robots,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 124–126.

[12] A. Amaravati, S. B. Nasir, J. Ting, I. Yoon, and A. Raychowdhury,
“A 55-nm, 1.0–0.4V, 1.25-pJ/MAC time-domain mixed-signal neuromor-
phic accelerator with stochastic synapses for reinforcement learning in
autonomous mobile robots,” IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 75–87, Jan. 2019.

[13] M. A. Anwar and A. Raychowdhury, “NavREn-Rl: Learning to fly
in real environment via end-to-end deep reinforcement learning using
monocular images,” in Proc. 25th Int. Conf. Mechatronics Mach. Vis.
Pract. (M2VIP), Nov. 2018, pp. 1–6.

[14] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[15] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” in
Proc. ACM/IEEE 43rd Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 367–379.

[16] C. J. Lin et al., “45 nm low power CMOS logic compatible embedded
STT MRAM utilizing a reverse-connection 1T/1MTJ cell,” in IEDM
Tech. Dig., Dec. 2009, pp. 1–4.

[17] S. Yu et al., “Binary neural network with 16 Mb RRAM macro chip
for classification and online training,” in IEDM Tech. Dig., Dec. 2016,
pp. 16.2.1–16.2.4.

[18] O. Golonzka et al., “MRAM as embedded non-volatile memory solution
for 22FFL FinFET technology,” in IEDM Tech. Dig., Dec. 2018,
pp. 18.1.1–18.1.4.

[19] J. Y. Wu et al., “A 40 nm low-power logic compatible phase change
memory technology,” in IEDM Tech. Dig., Dec. 2018, pp. 27.6.1–27.6.4.

[20] M. Jerry et al., “Ferroelectric FET analog synapse for acceleration
of deep neural network training,” in IEDM Tech. Dig., Dec. 2017,
pp. 6.2.1–6.2.4.

[21] Q. Luo et al., “8-Layers 3D vertical RRAM with excellent scalability
towards storage class memory applications,” in IEDM Tech. Dig.,
Dec. 2017, pp. 2.7.1–2.7.4.

[22] K. Rho et al., “A 4 Gb LPDDR2 STT-MRAM with compact 9F2

1T1MTJ cell and hierarchical bitline architecture,” in IEEE Int. Solid-
State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 396–397.

[23] F. L. Da Silva and A. H. R. Costa, “Transfer learning for multia-
gent reinforcement learning systems,” in Proc. 25th Int. Joint Conf.
Artif. Intell. (IJCAI). Menlo Park, CA, USA: AAAI Press, 2016,
pp. 3982–3983.

[24] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey,” J. Mach. Learn. Res., vol. 10, pp. 1633–1685,
Jul. 2009.

[25] M. E. Taylor and P. Stone, “Cross-domain transfer for reinforce-
ment learning,” in Proc. 24th Int. Conf. Mach. Learn. (ICML), 2007,
pp. 879–886.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[27] JEDEC Standard High Bandwidth Memory(HBM) Dram Specification,
Standard JESD235B, 2015.

[28] V. D. Nguyen et al., “Towards high density STT-MRAM at sub-20 nm
nodes,” in Proc. Int. Symp. VLSI Technol., Syst. Appl. (VLSI-TSA),
Apr. 2018, pp. 1–2.

[29] W. Zhao et al., “High density spin-transfer torque (STT)-MRAM based
on cross-point architecture,” in Proc. 4th IEEE Int. Memory Workshop,
May 2012, pp. 1–4.

[30] S. Lee et al., “Highly scalable STT-MRAM with 3-dimensional cell
structure using in-plane magnetic anisotropy materials,” in Proc. Symp.
VLSI Technol. (VLSIT), Jun. 2012, pp. 65–66.

[31] Y. Huai et al., “High density 3D cross-point STT-MRAM,” in Proc.
IEEE Int. Memory Workshop (IMW), May 2018, pp. 1–4.

[32] Y. J. Lee et al., “Demonstration of chip level writability, endurance and
data retention of an entire 8 Mb STT-MRAM array,” in Proc. Int. Symp.
VLSI Technol., Syst. Appl. (VLSI-TSA), Apr. 2013, pp. 1–2.

[33] J. A. O’Donnell et al., “eNVM MRAM retention reliability modeling in
22FFL FinFET technology,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS),
Mar./Apr. 2019, pp. 1–3.

[34] H. Sato et al., “14 ns write speed 128 Mb density embedded STT-
MRAM with endurance >1010 and 10yrs retention@85◦C using novel
low damage MTJ integration process,” in IEDM Tech. Dig., Dec. 2018,
pp. 27.2.1–27.2.4.

[35] H. Wang, D. Huang, R. Liu, C. Zhang, H. Tang, and Y. Yuan,
“STREAM: Stress and Thermal Aware Reliability Management for 3D
ICs,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., to be
published.

[36] F. Beneventi, A. Bartolini, P. Vivet, and L. Benini, “Thermal analysis
and interpolation techniques for a logic + wideio stacked dram test
chip,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35,
no. 4, pp. 623–636, Apr. 2016.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:24:52 UTC from IEEE Xplore. Restrictions apply.

YOON et al.: HIERARCHICAL MEMORY SYSTEM WITH STT-MRAM AND SRAM 497

[37] D. Oh, C. C. P. Chen, and Y. H. Hu, “Efficient thermal simulation for
3-D IC with thermal through-silicon vias,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 31, no. 11, pp. 1767–1771, Nov. 2012.

[38] S. K. Samal, S. Panth, K. Samadi, M. Saeidi, Y. Du, and S. K. Lim,
“Adaptive regression-based thermal modeling and optimization for
monolithic 3-D ICs,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 35, no. 10, pp. 1707–1720, Oct. 2016.

[39] M. Martins et al., “Open cell library in 15 nm FreePDK technology,” in
Proc. ACM Symp. Int. Symp. Phys. Design (ISPD), 2015, pp. 171–178.

[40] A. Chen, “A review of emerging non-volatile memory (NVM) tech-
nologies and applications,” Solid-State Electron., vol. 125, pp. 25–38,
Nov. 2016.

[41] J. J. Kan et al., “Systematic validation of 2x nm diameter perpendicular
MTJ arrays and MgO barrier for sub-10 nm embedded STT-MRAM
with practically unlimited endurance,” in IEDM Tech. Dig., Dec. 2016,
pp. 27.4.1–27.4.4.

[42] J. J. Kan et al., “A study on practically unlimited endurance of STT-
MRAM,” IEEE Trans. Electron Devices, vol. 64, no. 9, pp. 3639–3646,
Sep. 2017.

[43] L. Q. Luo et al., “Functionality demonstration of a high-density 1.1 V
self-aligned split-gate NVM cell embedded into LP 40 nm CMOS for
automotive and smart card applications,” in Proc. IEEE 8th Int. Memory
Workshop (IMW), May 2016, pp. 1–4.

[44] D. Shum et al., “40 nm embedded self-aligned split-gate flash technol-
ogy for high-density automotive microcontrollers,” in Proc. IEEE Int.
Memory Workshop (IMW), May 2017, pp. 1–4.

[45] D. Kang et al., “7.1 256 Gb 3b/cell V-NAND flash memory with 48
stacked WL layers,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, Jan. 2016, pp. 130–131.

[46] W. Kim et al., “ALD-based confined PCM with a metallic liner toward
unlimited endurance,” in IEDM Tech. Dig., Dec. 2016, pp. 4.2.1–4.2.4.

[47] Y. J. Song et al., “Highly functional and reliable 8 Mb STT-
MRAM embedded in 28 nm logic,” in IEDM Tech. Dig., Dec. 2016,
pp. 27.2.1–27.2.4.

[48] A. Chintaluri, H. Naeimi, S. Natarajan, and A. Raychowdhury, “Analysis
of defects and variations in embedded spin transfer torque (STT)
MRAM arrays,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 6, no. 3,
pp. 319–329, Sep. 2016.

[49] D. P. O’Leary, “Systolic arrays for matrix transpose and other reorder-
ings,” IEEE Trans. Comput., vol. C-36, no. 1, pp. 117–122, Jan. 1987.

[50] J. Bottleson, S. Kim, J. Andrews, P. Bindu, D. N. Murthy, and
J. Jin, “clCaffe: OpenCL accelerated Caffe for convolutional neural
networks,” in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops
(IPDPSW), May 2016, pp. 50–57.

[51] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity
visual and physical simulation for autonomous vehicles,” CoRR,
vol. abs/1705.05065, pp. 1–14, Jul. 2017.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[53] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248–255.

[54] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Univ. Cambridge, Cambridge, U.K., 1989.

[55] Highlights of the High Bandwidth Memory (HBM) Standard.
Accessed: Aug. 2018. [Online]. Available: https://www.cs.utah.edu/
thememoryforum/mike.pdf

Insik Yoon received the B.S. and M.S. degrees from Carnegie Mellon
University, Pittsburgh, PA, USA, in 2009 and 2010, respectively. He is
currently pursuing the Ph.D. degree with the Georgia Institute of Technology,
Atlanta, GA, USA.

From 2010 to 2015, he was with Memory and Display Interface Design,
TLi and SK hynix, Icheon, South Korea. His current research interests include
emerging memory technologies and hardware implementation for state-of-the-
art machine learning algorithms.

Malik Aqeel Anwar received the bachelor’s degree in electrical engineering
from the University of Engineering and Technology (UET), Lahore, Pakistan,
in 2012, and the master’s degree in electrical and computer engineering
from the Georgia Institute of Technology, Atlanta, GA, USA, in 2017. He
is currently pursuing the Ph.D. degree in electrical and computer engi-
neering from the Georgia Institute of Technology under the supervision of
Dr. A. Raychowdhury. His research interests lie at the junction of machine
learning and hardware design. He is working towards shifting machine learn-
ing (ML) from cloud to edge nodes by improving energy efficiency of current
state-of-the-art ML algorithms and designing efficient DNN accelerators.

Rajiv V. Joshi (M’87–F’01) received the B.Tech. degree from IIT Bombay,
Mumbai, India, the M.S. degree from MIT, Cambridge, MA, USA, and the
Dr.Eng.Sc. degree from Columbia University, New York, NY, USA. He is
currently a Research Staff Member with the Thomas J. Watson Research
Center, IBM, Yorktown Heights, NY, USA. He has authored or coauthored
more than 185 papers. He holds 58 invention plateaus, 225 U.S. patents,
and more than 350 including international patents. He is a member of IBM
Academy of technology. He received the Best Editor Award from the IEEE
TVLSI journal, and the 2013 IEEE CAS Industrial Pioneer Award and the
2013 Mehboob Khan Award from Semiconductor Research Corporation. He
was a recipient of the 2015 BMM Award. He is inducted into New Jersey
Inventor Hall of Fame in 2014 along with pioneer Nikola Tesla. He served
as a Distinguished Lecturer of the IEEE CAS and EDS society. He is an
ISQED and World Technology Network Fellow and Distinguished Alumnus
of IIT Bombay. He is on the Board of Governors for the IEEE CAS. He
serves as an Associate Editor of the IEEE TVLSI. He served on committees
of International Symposium Low Power Electronic Design, the IEEE VLSI
Design, the IEEE CICC, the IEEE International SOI Conference, ISQED, and
Advanced Metallization Program committees.

Titash Rakshit received the Ph.D. degree in electrical and computer engineer-
ing from Purdue University in 2004. His thesis involved predicting negative
differential resistance at the semiconductor-molecule interfaces. He was with
Intel Corporation, where he was a part of the research team that developed
the industry first demonstration scaled finFET technology. Since 2014, he has
been with Samsung Advanced Logic Lab focusing on future technology and
systems roadmap. He is currently a Principal Engineer with the Advanced
Logic Lab, Samsung Semiconductor.

Arijit Raychowdhury (SM’13) received the B.E. degree in electrical and
telecommunication engineering from Jadavpur University, Kolkata, India, in
2001, and the Ph.D. degree in electrical and computer engineering from
Purdue University, West Lafayette, IN, USA, in 2007. From 2013 to July 2019,
he was an Associate Professor and held the ON Semiconductor Junior Pro-
fessorship with the School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA, USA. His industry experience includes
5 years as a Staff Scientist with the Circuits Research Lab, Intel Corporation,
Hillsboro, OR, USA, and 1 year as an Analog Circuit Researcher with Texas
Instruments, Inc. In January 2013, he joined the School of Electrical and
Computer Engineering, Georgia Institute of Technology, where he is currently
a Professor. He is currently the Co-Director of the Georgia Tech Quantum
Alliance, Atlanta, GA, USA. He has authored or coauthored more than
170 articles in journals and refereed conferences. He holds more than 25 U.S.
and international patents. His significant contributions to the semiconductor
industry include the design of the world’s first adaptive echo-cancellation
network for integrated DSLs (TI) and embedded world-line boosting for
SRAM arrays (Intel). His current research interests include low-power digital
and mixed-signal circuit design, and the design of power converters, sensors,
and exploring interactions of circuits with device technologies.

Dr. Raychowdhury has served on the Technical Program Committees
for VLSI Symposium, CICC, DAC, ICCAD, ISLPED, and DATE. He has
also taught many short courses and invited tutorials at multiple conferences,
workshops, industries, and universities. He was a recipient of the IEEE/ACM
Innovator under 40 Award, the Meissner Fellowship 2002, the NASA INAC
Fellowship in 2004, the Intel Foundation Fellowship in 2006, the SRC
Technical Excellence Award in 2005, the Dimitris N. Chorafas Award for
outstanding doctoral research in 2007, the Best Thesis Award, College of
Engineering, Purdue University, in 2007, the Intel Labs Technical Contribution
Award in 2011, and the NSF CISE Research Initiation Initiative Award (CRII)
in 2015. He and his students have received 11 best paper awards over the years.
He was the Associate Editor of the IEEE TRANSACTIONS ON COMPUTER
AIDED DESIGN from 2013 to 2018 and the Editor of the Microelectronics
Journal (Elsevier Press) from 2013 to 2017. He has also been a Guest Editor
for multiple IEEE and ACM journals.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 07,2022 at 21:24:52 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

