IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 57, NO. 3, MARCH 2022

Abstract— Computing-in-memory (CIM) architectures have
paved the way for energy-efficient artificial intelligence (AI)
systems while outperforming von Neumann architectures. In par-
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I. INTRODUCTION
HE advent of artificial intelligence (AI) systems
and deep neural networks (DNNs) increases the

ticular, resistive RAM (RRAM)-based CIM has drawn attention
due to high cell density, non-volatility, and compatibility with
a CMOS process. RRAM also exhibits the feasibility of high-
capacity CIM with multi-bit encoding per cell exploiting an
appropriate ON/OFF resistance ratio. However, the prior work
regarding multi-level RRAM cells mainly focused on achieving
higher bit resolution in write without consideration of CIM
performance. Thus, the circuit solution to achieve multi-bit
encoding per cell dedicated to RRAM-based CIM (RCIM) is
of importance to support high-capacity AI systems with reli-
able CIM performance. This article presents a 256 x 256 CIM
multi-level RRAM macro featuring iterative write with ver-
ification to achieve reliable multi-bit encoding per cell and
the voltage-sensing readout circuit to surmount the underlying
logic ambiguity in RCIM architectures. In addition, we also
demonstrate the key design space of a fabricated RRAM array
in the write operation with extensive experiments. The test chip
fabricated in a Taiwan Semiconductor Manufacturing Com-
pany (TSMC) 40-nm CMOS and RRAM process achieves a
peak energy efficiency of 118.44 TOPS/W in the ternary-weight
multiply-and-accumulate (MAC) operation and demonstrates the
feasibility of multi-level RCIM with voltage-sensing RCIM.

Index Terms— Computing-in-memory (CIM), convolutional
neural network, multi-level cell, multiply-and-accumulate
(MAC), processing-in-memory, resistive RAM (RRAM), write
verification.
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demands of energy-efficient computing systems outperform-
ing von Neumann architecture. In response to the demands,
computing-in-memory (CIM) architectures have emerged.
CIM architectures exploit the features of on-die memory
such as the bitline (BL) structure that inherently supports
the multiply-and-accumulate (MAC) operation. Compared to
von Neumann architecture, the matrix—vector multiplication
is conducted in memory such that massive data transfer
between the processing elements and memory is avoidable.
However, even in CIM architectures, data transfer between
the CIM memory and the weight- and activation-storing
memory occurs due to the limited capacity of CIM memory.
It undermines the advantage of CIM architectures, thereby
hindering the transition from von Neumann architecture to
CIM architectures in practical Al systems [1]-[3]. Thus, bit
density and memory capacity are of importance in CIM
architectures.

The prior works regarding CIM architectures have employed
emerging memory in addition to mature memory technology,
such as SRAM and embedded DRAM (eDRAM). SRAM-
based CIM architectures [4]-[14] have successfully demon-
strated the energy-efficient CIM operation. However, the cell
density of the standard 6T-SRAM is apparently low such that
the complexity of Al systems is limited in the CIM archi-
tectures. Furthermore, an SRAM cell cannot contain multi-
bit weights, thereby precluding the multi-bit CIM operation.
As a solution to multi-bit CIM architectures, 8T-SRAM has
drawn attention by employing a 2T-read path that represents
the binary weight (i.e., 2%k ke Z(T) per cell [13]. However,
the 8T-SRAM exacerbates the low cell density and cannot
still achieve multi-bit encoding per cell. The eDRAM-based
CIM architecture has recently been proposed as a solution
to multi-level cells for the CIM operation [15]. With a 2T
gain cell and an additional transistor for the input pulse where
the pulsewidth (PW) represents the input value, the memory
cell successfully supports the multi-bit CIM operation with
multi-bit encoding per cell. However, notwithstanding the
multi-bit encoding, the cell size also increases such that it
neutralizes the advantage of multi-level cells in the view of
bit density to an extent.
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Fig. 1. (a) Current-sensing RCIM at the BL. (b) Simplified structure of

current- and voltage-sensing read in RCIM architectures.

Considering superior cell density as well as non-volatility,
emerging memory has been in the spotlight. Compared to
conventional memory, emerging memory sheds light on the
feasibility of high-capacity CIM architectures in practical Al
systems, especially for edge devices [16]-[25]. Among emerg-
ing memory, resistive RAM (RRAM) accommodates multi-bit
encoding per cell exploiting an appropriate ON/OFF resis-
tance ratio. However, there are some obstacles in exploiting
multi-level cells in RRAM-based CIM (RCIM) architectures.
Fig. 1 shows the current-sensing RCIM at the BL and the
simplified structure of current- and voltage-sensing read (RD)
in RCIM architectures. In a binary RRAM array, RRAM
cells are programmed in a low-resistance state (LRS) or a
high-resistance state (HRS) to represent the data such as the
weights of DNNs. Since a fixed BL voltage is used in the
current-sensing RCIM, the cell current is directly affected by
the cell resistance [Fig. 1(b)]. In the current-sensing RCIM, the
MAC output is estimated by the ratio of the total cell current
to the LRS current under the presumption that the current of
HRS cells is negligible. In the case of concurrent accesses to
multiple HRS cells, the total HRS current at the BL eventually
exceeds the LRS current, thereby incurring logic ambiguity.
Even if the ON/OFF ratio is sufficiently high so that the HRS
current is virtually negligible, the ratio of the LSB current
to the HRS current drastically deteriorates over increasing
the bit resolution in multi-level cells. It eventually limits the
maximum bit resolution per cell in RCIM architectures due to
logic ambiguity.

In order to surmount the aforementioned problems, a
voltage-sensing RCIM architecture has piqued our interest.
A fixed-current voltage-sensing RCIM architecture suffers
from the severely nonlinear readout BL voltage (V.RBL) that
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is inversely proportional to the parallel resistance of accessed
RRAM cells [Fig. 1(b)]. Thus, the prior works tried to mitigate
the nonlinearity by using the variable current source despite
the remaining nonlinearity [23], [24]. Recently, the voltage-
sensing RCIM architecture demonstrated the linear V.RBL
with a binary RRAM array [25]. To obtain the high-capacity
RCIM architectures without logic ambiguity, a voltage-sensing
RCIM architecture with multi-level cells is necessary. In addi-
tion, the multi-level cell resistance considering the voltage-
sensing RCIM architecture should also be addressed. Due
to the appropriate ON/OFF ratio of an RRAM array, the
multi-level RRAM cell has been addressed [26]-[32]. The
prior works mitigated the variation of RRAM cells such as a
different sensitivity to a write (WR) pulse, thereby achieving
a tight distribution of cell resistance. However, the prior
works have more focused on the device characteristics and
the resistance distribution of RRAM cells. It leads to a lack of
consideration for the placement of the multi-level resistance
optimized for the voltage-sensing RCIM architecture. Thus,
the joint optimization considering the device characteristics
and the voltage-sensing RCIM should be addressed in a high-
capacity RCIM architecture with multi-level cells.

In this article, a voltage-sensing multi-level RCIM architec-
ture [33] is proposed to support multi-bit CIM operation while
achieving the joint optimization for the cell characteristics and
the RCIM architecture with multi-level cells. The proposed
RRAM macro features: 1) the iterative WR with verifica-
tion (IWR) to achieve reliable multi-level cells and 2) multi-
bit voltage-sensing RCIM architectures surmounting the logic
ambiguity in the current-sensing RCIM architecture that is
much severe with multi-level cells. In sifu IWR achieves a tight
resistance distribution of multi-level cells with two thresholds
for target resistance while adjusting the WR pulse amplitude.
An intermediate-resistance state (IRS) is determined to achieve
the linear V.RBL in the voltage-sensing RCIM architecture
with multi-level cells. The voltage-sensing RCIM incorporates
the input-aware (IA) BL current control with an active feed-
back amplifier [25] to linearize the V .RBL, thereby attaining
reliable CIM operation with multi-level cells. Compared to
the prior work regarding binary RCIM [25], the test chip
is reconfigured and features a multi-level RCIM architecture
performing reliable MAC operation with multi-level cells for
Al systems with an energy efficiency of 118.44 TOPS/W.
To the best of the authors’ knowledge, this work is the first
RCIM architecture with multi-level cells fabricated in the
standard monolithic RRAM and CMOS process. In addition,
we provide the measured data of the resistance distribution
over the WR operation and the key design space of various
inter-dependent WR parameters, such as pulse configuration,
target resistance, and WL/BL voltages (V.WL/V .BL), thereby
helping develop statistical models of RRAM and the corre-
sponding design techniques.

The rest of this article is organized as follows. Section II
describes the architecture of the proposed multi-level RRAM
macro. Section III discusses the detailed implementation of
the voltage-sensing RD for multi-level RCIM. Section IV
delineates the IWR in the proposed RRAM macro. Section V
describes the measured device characteristics of the fabricated
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Fig. 2. Top block diagram of the proposed CIM multi-level RRAM macro.

RRAM array. Section VI presents the measurement results of
the proposed RCIM architectures. Section VII presents the
conclusions drawn from this study.

II. PROPOSED MULTI-LEVEL RRAM MACRO

As the solution to high-capacity RCIM architectures, the
proposed multi-level RRAM macro supports RCIM with
multi-level cells. The voltage-sensing RCIM has been pro-
posed while demonstrating the linearized V.RBL over the
combinations of accessed binary RRAM resistance [25]. This
work expands the application of the voltage-sensing RCIM to
that with multi-level cells, thereby enabling the high-capacity
RCIM architecture. Regarding multi-bit encoding per cell,
RRAM has technical challenges, such as the tradeoff between
the programmability and the encoding margin [34]. A high
ON/OFF ratio is preferred to obtain multi-level cells since it
provides a sufficient encoding margin. However, a back-to-
back WR with a high ON/OFF ratio leads to the drastic for-
mation and rupture of conductive filaments in an RRAM cell.
It gradually degrades the programmability of RRAM cells.
Thus, a circuit solution tightening the resistance distribution
of RRAM cells under an appropriate ON/OFF ratio is necessary
for reliable RCIM architectures with multi-level cells.

Fig. 2 shows the top block diagram of the proposed
RRAM macro utilizing multi-level RRAM cells. The pro-
posed RRAM macro consists of a 256 x 256 multi-level
1T-1R RRAM array (101.4 kb in ternary encoding), the TA
BL current control with a feedback amplifier, a 4-b flash
analog-to-digital converter (ADC) with an IA ADC decoder,
and the IWR. The proposed RRAM macro supports eight-
BL RD accessing up to nine WLs simultaneously to render
3 x 3 convolutions. The 3 x 3 filter size in the proposed
RRAM macro is determined to support the scalability of the
Al systems. A 3 x 3 filter is a primary filter in convolutional
layers where the odd-sized filter is preferred considering
symmetry at the output. Multiple convolutional layers of 3 x 3
filters are equivalent to a single layer of larger odd-sized
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Fig. 3.  Ternary-weight CIM operation and the ternary encoding of the
proposed RRAM macro.

filters so that versatile CNNs, such as MobileNet, have utilized
3 x 3 filters. The multi-level CIM operation and the ternary
and unsigned four-level encoding per cell of the proposed
RRAM macro are shown in Fig. 3.

In the CIM operation, the binary input is fed to the WL
decoder to access nine WLs. Then, the designated RRAM
cells are selected via the eight-BL/four-sourceline (SL) MUX
for simultaneous CIM operation. Due to the two-BL/one-SL
RRAM array, the SL MUX has half the size of the BL MUX,
thereby attaining area efficiency in the RRAM access. The
accessed RRAM cells are connected with the BL such that the
V.RBL represents the CIM output. The IA BL current control
is used to provide the current proportional to the number
of accessed RRAM cells (N.RRAM), thereby mitigating the
drastic decrease of the V.RBL over the parallel resistances of
accessed RRAM cells. However, the remaining nonlinearity
over the combinations of resistance states, including the IRS,
exacerbates a narrow sampling margin at the ADC in the
readout circuits. Thus, active feedback control at BLs is
employed to control the current source, thereby linearizing the
sampling levels in the proposed macro. The linearized V.RBL
is applied to the 4-b ADC. The ADC threshold is uniformly
distributed over the range of the V.RBL. The IA ADC decoder
readouts the CIM output with the logic thresholds considering
the N.RRAM.

To program multi-levels in an RRAM array, the IWR is
employed in the proposed RRAM macro. The challenges in
RRAM technology, such as reliability, necessitate an iterative
WR process called write-verify. The prior works regarding
write-verify successfully achieved a tightened distribution of
multi-level cell resistance. However, the prior works focused
on the feasibility of multi-level cells itself, not the optimization
for the RCIM performance. On the contrary, the IWR in
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the proposed RRAM macro conducts multi-level encoding
per cell while achieving the joint optimization for the resis-
tance distribution and the voltage-sensing RCIM architecture.
In particular, since multi-level RRAM cells are accessed,
the number of cases in the combination of cell resistances
is much higher than binary RRAM cells. Thus, the IRS
resistance (R.IRS) is set to maintain the linear V.RBL over
the various combinations of accessed cell resistances. Due
to the relation between the linearized V.RBL and the cell
resistance, the cell resistance can be indirectly measured by
the V.RBL in single-cell access. Thus, the IWR estimates
whether the cell resistance is placed within the target range
by using the 4-b ADC. In case the resistance is out of the
target range, another WR iteration is initiated while adjusting
the WR pulse amplitude and width. It eventually achieves a
tightened distribution of cell resistances in multi-bit encoding
per cell.

It is noteworthy that the voltage-sensing RCIM architecture
outperforms the current-sensing RCIM suffering from the logic
ambiguity problem that is exacerbated over multi-bit encoding
per cell. Besides, the proposed voltage-sensing RRAM macro
provides the linearized V.RBL that is essential to achieve
reliable multi-bit CIM. The prior work achieves the CIM
operation with the nonlinear ADC to read out nonlinear
V.RBLs [23], [24]. The nonlinear voltage-sensing RCIM can
support CIM with a low N.RRAM. However, the density
of the ADC thresholds exponentially increases over higher
N.RRAMs such that the ADC cannot read out the CIM results
appropriately due to the sensitivity of the ADC comparators.
It even deteriorates in employing multi-level cells. On the
contrary, in the case of the linearized V.RBL, the sampling
margin of the V.RBL gradually decreases over increasing
the N.RRAM and the encoding bits. Thus, the maximum
N.RRAM where the spacing of ADC thresholds exceeds
the sensitivity of the ADC comparators is higher than the
nonlinear voltage-sensing RCIM architecture.

The test chip of the proposed multi-level RRAM macro
supports only positive inputs. However, considering a ReLU
activation function where the output is always positive, this is
not a hindrance to implement Al systems with the proposed
RRAM macro [35]. Furthermore, negative inputs can be easily
supported by using two RRAM arrays as the prior works
supporting both positive and negative inputs.

III. VOLTAGE-SENSING READ IN MULTI-LEVEL RCIM

A high-resolution readout is of importance in RCIM with
multi-level cells due to the increasing number of combinations
of input—weight pairs. As a solution to the logic ambiguity
problem incurred in current-sensing RCIM, the linearized
voltage-sensing RCIM has been demonstrated with a binary
RRAM array [25]. The proposed multi-level RRAM macro
exploits the advantage of the voltage-sensing RD featuring
the TA BL current control with a feedback amplifier and the
following ADC-based readout circuits while expanding the
application to multi-bit RRAM arrays.
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A. IA BL Current Control With a Feedback Amplifier for
Multi-Level RCIM

To read out the CIM outputs from the V.RBL with multi-
level cells appropriately, the factors to introduce the non-
linearity to the V.RBL should be addressed. The V.RBL
is directly affected by the total BL current and the parallel
resistance of accessed RRAM cells. Since the parallel resis-
tance drastically decreases over increasing the N.RRAM, the
IA BL current control provides the BL current proportional
to the N.RRAM to neutralize the nonlinearity due to the
N.RRAM. Fig. 4 shows the remaining nonlinearity over the
combinations of the accessed cell resistances with the TA
BL current control. Since the parallel resistance is based on
the harmonic mean of accessed multi-level cells, the current
proportional to the N.RRAM cannot fully compensate for the
nonlinearity introduced by the parallel resistance. Thus, the
remaining nonlinearity due to the combination of accessed
multi-level cell resistances is suppressed by employing an
active feedback amplifier.

Fig. 5 shows the voltage-sensing BL structure of the pro-
posed multi-level RRAM macro and the simplified model for
the BL readout. Since the IA BL current control eliminates
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the nonlinearity due to the N.RRAM and the feedback
amplifier linearizes the V.RBL over the combinations of
the accessed multi-level cell resistances, the proposed BL
structure can be modeled as a voltage-averaging circuit with
the V.RBL in the case of a single HRS/IRS/LRS cell
access (V.HRS/V.IRS/V.LRS). Thus, the V.RBL represents
the normalized CIM output over the N.RRAM and is fed to
the ADC-based readout circuits. The comprehensive analysis
regarding the effectiveness of the IA BL current control and
feedback amplifier has been conducted in the prior work [25].

It is worth noting that the proposed voltage-sensing RD
can readily support larger filters in CNNs. In the case of
the current-sensing RD, the logic ambiguity due to the HRS
current limits the maximum N.RRAM, thereby limiting the
scalability of RCIM. On the contrary, the voltage-sensing RD
can increase the N.RRAM. In the case of a larger filter size,
the overhead is only the number of the unit current source in
the IA BL current control that is set to the filter size.

B. ADC-Based Readout Circuits

The ADC-based readout circuits read out the CIM output
from the linearized V.RBL. Fig. 6 shows the block diagram
of the ADC-based readout circuits, the distribution of the
ADC references (V.REFs), and the cases of logic saturation
with non-sparse inputs and weights in the proposed RRAM
macro. The V.RBL represents the normalized CIM output
that has a constant range from V.HRS to V.LRS where the
CIM output is from —N.RRAM to +N.RRAM. Thus, the
readout circuits should consider the N.RRAM in addition to
the V.RBL to read out the CIM output. The linearized V.RBL
is scanned by a 4-bit flash ADC. The reference voltages are
linearly distributed and the IA ADC decoder determines the
CIM output with the multi-level RRAM macro considering the
ADC output and the N.RRAM. In case that the N.RRAM >

to achieve energy efficiency without loss of accuracy. The
detailed schematics of the ADC-based readout circuits are
shown in the prior work [25].

IV. ITERATIVE WRITE WITH VERIFICATION

RRAM has technical challenges such as the reliability of
cell resistance. RRAM does not have a complete set or reset
state since the conductive filaments in an RRAM cell cannot
be fully formed and ruptured. In addition, RRAM cells have
different sensitivities to a WR pulse. Thus, RRAM suffers
from a wide distribution of cell resistance over the WR
operation. It eventually leads to erroneous CIM operation in
the readout.

To tighten the distribution of the cell resistance, prior works
successfully conducted write-verify that is a WR process with
iterations. While exploiting write-verify, the prior works also
demonstrated multi-level RRAM cells with arbitrary resis-
tances [26]-[32]. It could shed light on the feasibility of high-
capacity RRAM. However, RCIM architectures require not
only the tightened resistance distribution but also the cell resis-
tance optimized for the reliable CIM. Thus, we address these
challenges by employing the IWR with multi-bit encoding per
cell optimized for the voltage-sensing RCIM.

Fig. 7 shows the WR circuit of the proposed RRAM macro.
The WR circuit supports the cell-by-cell WR operation. The
WR MUX selects an RRAM cell to be programmed. By using
the set/reset selector, the direction of the WR current is
controlled to set/reset the selected RRAM cell. Then, the
WR pulse is applied to the WR circuit, thereby conducting
the WR operation. Fig. 8 shows the placement of the cell
resistances in ternary encoding, the flowchart of the IWR,
the schematics of the resistance verification, and the pulse
configuration used in the IWR. To tighten the resistance
distribution and enable multi-bit encoding per cell under
an appropriate ON/OFF ratio, the IWR is employed in the
proposed RRAM macro. The IWR consists of a WR-pulse
injection and resistance verification. The WR PW is 100 ns
with the pulse configuration (V.BL/V.SL/V.WL) designated
for the LRS/IRS/HRS encoding. After every WR pulse, the
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with the output of the 4-b ADC in the resistance verification.

In the IRS encoding, the WR operation is started from
the LRS cell for the narrow distribution of initial resistances.
A reset pulse is applied until the RRAM resistance exceeds
the lower threshold of the target R.IRS. If the resistance
is over the upper threshold, a set pulse is applied to the
RRAM cell. In case the RRAM resistance fluctuates over
the thresholds, another iteration is initiated with a lower
BL voltage until the target resistance is achieved. For the
LRS/HRS encoding, a single threshold with a fixed pulse
configuration can be employed. Since an LRS/HRS cell has
the inherent lower/upper limit of resistance due to the device
characteristics, an upper/lower threshold for the LRS/HRS in
the IWR is sufficient to achieve a desirable distribution of the
cell resistance. Besides, the optimized WR pulse amplitude for
the LRS/HRS is exploited without adjusting the WR voltages,
thereby reducing the complexity of WR process. Compared
to the narrow distribution of the LRS resistance (R.LRS), the
HRS resistance (R.HRS) can have a wide upper distribution
after the WR process with a single threshold. However, due to
the tolerance to the distribution of the R.HRS in the proposed
voltage-sensing RD, the reliable RCIM operation is achieved
with a single threshold in the WR process.

In the multi-level encoding, the R.IRS is placed adjacent
to the R.LRS since the resistance distribution of RRAM cells
is narrow near the LRS regime. In addition, the linearized
V.RBL is also considered in determining the R.IRS. Without
consideration of the voltage-sensing RD, arbitrary encoding
only considering the space of encoding resistances introduces
a severe nonlinearity to the V.RBL, thereby hindering the
reliable RCIM operation. Thus, the proposed IWR achieves
the multi-level cells with the consideration of the RCIM
performance.

failure probability in the forming process, and (c) measured resistance and
the number of forming pulses over various pulse configurations.

V. CHARACTERISTICS OF THE
FABRICATED RRAM ARRAY

While utilizing the proposed voltage-sensing RRAM macro
with the ITWR, we extensively characterize the resistance
distribution on the fabricated RRAM macro and demonstrate
key post-silicon inter-dependent WR parameters, such as PW,
target resistance, voltages, and the number of pulses. In addi-
tion to obtaining the optimized WR configuration for the
proposed RRAM macro, these results will act as foundations
to further develop statistical models of filamentary memory
devices as well as enable design techniques and characteriza-
tion methodologies of RRAM array macros.

The forming process and the measured results are shown
in Fig. 9. The forming pulse is applied until the V.RBL
is below the threshold voltage (V.th). Since the forming
resistance lies in the LRS regime, V.th is set to 250 mV where
the corresponding resistance is 10 kQ. In the measurement
condition (MC) 1 using 3 V of the V.BL and 2.2 V of
the V.WL, the average formed resistance is 2.59 kQ. The
average number of pulses required for the MC1 is 47.38.
In the MC2 and MC3 using 4 V of the V.BL and 1.3 V
of the V.WL where the PW is 10 and 100 u s, respectively,
the forming resistance increases to 4.5-5 kQ. However, the
number of required unit pulses is reduced to 24%—-40%. In the
forming process, we observe empirically that the V.BL affects
the number of pulses required in forming the RRAM cells
and the V.WL determines the formed resistance. The failure
probability (P.fail) of the MC1-3 is shown in Fig. 9. Here,
P fail does not represent cells where forming is not possible,
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Fig. 10. (a) Write operations and the measurement setups, (b) measured resis-
tance in the set/reset operation over various pulse configurations, (c) measured
statistics of measured resistances, and (d) measured failure probability in the
write operation.

but rather the cells that require additional pulses to complete
the forming process. We note that the P.fail of the MC2 and
MC3 exhibits near-identical profiles and we conclude that the
forming process is affected by the total forming time, not a
unit PW.

In Fig. 10, the WR operation and the measured results are
shown. In the set operation, 1.1-1.9 V of the V.BL s are used
with 2.2 V of the V.WL. In the reset operation, 2.6-3.0 V
of the V.WLs and V.SLs are used. A different V.th is used
during the set/reset operation to secure a target readout margin
between the R.LRS and R.HRS. During WR, the pulse is
applied until the RRAM cell has changed to the target state.
During set, the average R.LRS decreases to 2.45 kQ and
achieves a lower standard deviation of the resistance (o. R)
of 1.05 kQ. The R.LRS does not have the tail distribution
close to the threshold when V.BL = 1.9 V. During reset,
the average R.HRS increases to 34.74 kQ for higher V.WLs
and V.SLs. However, the tail distribution of R.HRS occurs
even for higher voltages. The reset of RRAM cells with the
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Fig. 11.  (a) Iterative write with verification and the measurement setup;

(b) measured resistance over various reset thresholds, statistics of measured
resistance, and the comparison of the distribution of resistance and readout
voltage with and without iterative write with verification; (c) measured failure
probability over various reset thresholds; and (d) simulated resistance-readout
voltage characteristics in the proposed RRAM macro.

V.WL < 2.4V cannot be completed even with higher V.SLs
considering the body effect at the NMOS switch in the 1T-1R
structure. We observe that during WR, the V.WL is a critical
condition for reset.

To shorten the tail of R.HRS, various reset thresholds
are employed with the optimized reset pulse configuration
(V.SL = V.WL = 3.0 V). The measurement flowchart and
measured results of the IWR are shown in Fig. 11. The reset
thresholds are set to remove the tail of the R.HRS distribution.
With the IWR, the average R.HRS increases to 76.31 k€ and
o.R is ~25 kQ, which is higher than ¢.R without the IWR.
However, the standard deviation of the V .RBL is reduced to
26.5% due to the insensitivity to resistance changes in the
HRS regime [Fig. 11(d)] such that the IWR achieves a higher
margin in a voltage-based readout or MAC logic. Furthermore,
the insensitivity helps attain the tolerance to random telegraph
noise in HRS cells [36]. As expected, P.fail increases for
higher thresholds.

VI. MEASUREMENT RESULTS

The proposed multi-level RRAM macro is fabricated in
a standard monolithic 40-nm CMOS and RRAM process
exploiting multi-level cells in RCIM architectures. The
test chip demonstrates voltage-sensing multi-level RCIM.
Fig. 12 shows the measured V.RBL of the proposed RRAM
macro in ternary encoding. The measured V.RBL represents
the CIM outputs determined by the inputs and weights. In this
measurement, all the input is set to high (i.e., N.RRAM = 9)
to show the wide V.RBL distribution over various combi-
nations of the cell resistance. The curvature of the V.RBL
over the CIM outputs is affected by the bias voltage of the
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Fig. 12. (a) Measured readout voltages over various intermediate resistances.

(b) Measured readout voltages over various weight sweeps.

feedback amplifier and the R.IRS in the multi-level RCIM.
The bias voltage is set to secure the linearity of the V.RBL
while considering the cell resistance (R.LRS and R.HRS), the
dynamic range, and the worst case sampling margin of the
V.RBL [25]. The R.IRS is, in turn, set to attain consistency of
the V.RBL regardless of binary and multi-level weights. The
measured results show that the V.RBL in ternary sweep when
the R.IRS = 4.8 kQ is exactly consistent with the V.RBL in
binary encoding. Thus, the proposed RRAM macro employs
the R.IRS optimized for the voltage-sensing RD with ternary
RRAM cells.

With the optimized R.IRS, the V.RBL over various weight
sweeps is also measured. The CIM output can have vari-
ous combinations of resistance states. In particular, the IRS
(W = 0) in ternary encoding per cell provides more degrees of
freedom in composing the CIM output. Thus, the measurement
of the CIM output should consider various weight sweeps with
ternary resistance states. The first weight sweep is conducted
by cell-by-cell transitions from the HRS—IRS—LRS. Nine
HRS cells are accessed as an initial state (CIM output = —9),
and then, the number of the accessed IRS cells increases while
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Fig. 13. Measured resistance distribution over write iterations in the IRS
encoding.

decreasing the number of the accessed HRS cells in turn. Once
all the accessed RRAM cells are in the IRS (CIM output = 0),
the number of the accessed LRS cells starts to increase until
the CIM output is set to 9. The first weight sweep shows
that the V.RBL is sufficiently linearized over the CIM output.
To demonstrate the consistency of the V.RBL over various
combinations of the cell resistances, the second and the third
weight sweep are also conducted. The second weight sweep
is conducted with nine cells from the HRS to the LRS while
bypassing the IRS compared to the first weight sweep. The
third weight sweep consists of three cells fixed to the HRS
and six cells with transitions from the IRS to LRS in turn.
The maximum difference of V.RBL over the weight sweeps
is 4.75 mV. These results show that a stable and repeatable
CIM readout is obtained as the cells are written from any
of ternary states to another. Even if the zero point is placed
slightly lower, multi-level RCIM can be conducted due to the
linearized V .RBL.

Fig. 13 shows the distribution of the R.IRS over WR iter-
ations. For each resistance state in RRAM cells, the forming
processes and WRs are accordingly conducted with the IWR.
The IRS cell has a wide distribution of cell resistances in a
single WR operation. Over WR iterations, the peak-to-peak
R.IRS decreases from 2.6 to 0.87 kQ. The ternary encoding
in the proposed RRAM macro is shown in Fig. 14. The IWR
enables a tight IRS distribution to prevent the overlap of
LRS or HRS distributions. The measured mean and standard
deviation of the R.IRS is 4.85 kQ and 204.90 Q, respectively,
over 100 RRAM cells.

Considering the aforementioned relationship between the
bias voltage and the R.IRS and the fact that the standard devi-
ation of the cell resistance exhibits the tendency proportional
to the mean of the cell resistance, the target resistance of IRS
cells in ternary encoding is set to 2.4x R.LRS but sufficiently
outside the 3o-window between the R.LRS and R.IRS. It is
worth noting that the 3o-window between the IRS and HRS
appears not to be secured. However, the R.HRS has a strict
lower limit since a single lower threshold is employed in the
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Fig. 15. Measured resistance distribution of four-level RRAM cells.

HRS encoding. Thus, the standard deviation of the R.HRS is
dominantly determined by the upper side, which is not invasive
to the IRS regime. Furthermore, due to the characteristics of
the voltage-sensing RD (Figs. 11 and 12), it does not have an
impact on the CIM performance while lessening the number
of WR iterations.

Fig. 15 shows the measured resistance distribution in
four-level encoding with the IWR. A new resistance state
(01 in Fig. 15) is added to the ternary encoding shown in
Fig. 14. The cell resistance of the Ol state is set adjacent to
the IRS in ternary encoding (10 in Fig. 15) to demonstrate the
dense placement of the cell resistance, thereby exhibiting the
feasibility of the high resolution of multi-bit encoding per cell
while securing the 3o -window. It is worth noting that the cell
resistance of the 01 and 10 states can be adjusted with the opti-
mization for the voltage-sensing RD with four-level RRAM
cells. Fig. 16 shows the estimated V.RBL with four-level
RRAM cells. Since the proposed RRAM macro successfully
demonstrates that the V.RBL with multi-level cells is exactly
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Fig. 16. Estimated readout voltages in voltage-sensing RCIM with four-level
RRAM cells.

consistent with that in binary encoding (Fig. 12), the V.RBL
with four-level RRAM cells can be estimated as shown in
Fig. 16, thereby showing the possibility of the four-level RCIM
for further scalability to advanced RCIM with multi-level
cells with the estimation. In four-level encoding per cell, the
CIM output exhibits positive values with unsigned inputs and
weights. The 4-b ADC in the proposed RRAM macro also
exploits logic saturation in four-level RCIM. The CIM output
higher than 4-b ADC resolution will be saturated to 15 in
four-level RCIM. In case the N.RRAM is less than 6, logic
saturation does not occur even in the worst weight combination
where all the accessed RRAM cells are in the LRS.

Fig. 17 shows the distribution of the R.IRS over RDs. Since
the IRS cell is susceptible to read disturb due to the absence
of an upper or lower bound of resistances, the tolerance of
the IRS cells for read disturb is measured with 100 RRAM
cells under 20k RDs and five RRAM cells under 2-million
RDs. The IRS cells successfully retain the resistance with
variations of 1 k€ toward the HRS regime under 20k RDs.
The measured R.IRS under 2-million RDs demonstrates that
the R.IRS does not invade the LRS or HRS regime under an
extreme repetitive RD scenario. In addition, we have observed
that the drift toward the HRS regime appears to be bounded.
It can be explained by the conflict of the drift toward the HRS
regime and read disturb and it eventually prevents the unbound
drift of the R.IRS.

Fig. 18 shows the estimated inference accuracy over tasks
and network architectures. The estimation is conducted by
applying the measured worst case error rate of the ternary CIM
output, which is 13%, to the MAC operation of Al systems.
In addition, the logic saturation in the ADC-based readout
circuit is also considered. The inference accuracy in CIFAR-10
and CIFAR-100 is estimated with VGG-11, VGG-16, and
ResNet-18 architectures. The estimated inference accuracy in
four-level CIM is also shown considering the logic saturation.
The simulated error rate for four-level CIM is similar to
ternary CIM since the error rate of the test chip is dominantly
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Fig. 17. (a) Measured resistance distribution of 100 IRS cells over 20k reads.
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Fig. 18. Estimated inference accuracy over tasks and network architectures
and the power breakdown of the test chip.

determined by non-Gaussian random telegraph noise and the
readout circuit attains error-free CIM outputs when external
voltages are applied instead of the V.RBL. It is worth noting
that logic saturation even in four-level encoding has less
impact on the accuracy under the sparsity of inputs and
weights. In the case of non-sparse inputs and weights, linear
or nonlinear quantization can be employed in the proposed
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TABLE I
SYSTEM SUMMARY AND COMPARISON

1SSCC JSSC ISSCC isscc | i1sscc | sscL [ 1sscC | i work
2018 [16] [2020 [17]| 2020 [18] [2020[19]| 2019 [11] [2020 [33] 2021 [25] is wo
Technology | 65nm | 55nm | 22nm (130 nm| 28 nm (40 nm |40 nm | 40 nm
Memory RRAM | RRAM | RRAM [ RRAM| SRAM |RRAM RRAM| RRAM
Supply 1.0V 1.0V (0.7-09V| 1.8V [0.6-1.1V| 09V | 0.9V 09V
Array size 128Kb | 128Kb | 256Kb | 64Kb | 128Kb | 8Kb | 64Kb 64Kb
Sensing mode| Current [Current| Current | 1&F N/A  |Voltage|Voltage| Voltage
Toleranceforl No | No | No | No | NA | No | Yes | Yes
. Yes Yes
Multi-level cell No No No No N/A (2-bit) No (ternary)
Cell access
per BL 9 9 9 256 9 64 9 9
Resolution | Ncqft' g|1-2 bit/{1-4 bits / 1 bt/ |integer & 1 bit/ (1-8 bits| 1 bit /
(Input / weight| (gjt Tuts | 3 bits /| 2-4 bits /| analog | floating |2 bits / [/1-8 bits| 1.58 bits
[ output) 1-3 Bits)- 3 bits | 6-11bits [ /1 bit | point 1 bit |/ 20 bits| /4 bits
Peak energy 118.44
efficiency 19.2 53.17 | 121.38 148 0.55 51.4 | 56.67 |wl/ternary
(TOPS/W) weights

Fig. 19. Microphotograph of the test chip.

RRAM macro due to the flexibility of ADC references. The
proposed techniques help a multi-level RRAM macro achieve
high algorithm-level accuracy across Al benchmarks with less
than 5% loss of accuracy.

For CIM, a peak energy efficiency of 118.44 TOPS/W is
measured with a ternary RRAM array, which is limited by
the ON/OFF ratio of the current process. The peak energy
efficiency is measured when the 9-bit input has the sparsest
vector (N = 1) and the weight is randomly distributed. The
energy efficiency using the randomized and densest input
vector (N = 9) is 6.89 and 4.24 TOPS/W, respectively. In the
estimation of the energy efficiencies, the power consumption
of the V .REF generators [25] is excluded since it is negligible
in high-parallelized RCIM architectures in further applica-
tions. The average power consumption per BL is 0.183 mW,
including that of all peripheral circuits, where the dominant
power consumption is incurred by the V.REF generators. The
power breakdown of the test chip is shown in Fig. 18. The
improvement of the energy efficiency compared to the binary
RCIM [25] is achieved due to the power management in the
digital blocks and the higher cell resistance. The presence of
the R.IRS incurs the increase of the power consumption at the
BL compared to the binary RCIM under the same condition.
However, considering the application for RCIM with multi-
level cells, a 2x higher cell resistance compared to [25] and
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an appropriate ON/OFF ratio is employed in this work such that
the resultant energy efficiency increases significantly. Table I
shows competitive metrics while addressing key challenges
essential to multi-bit CIM RRAM macro with the state-of-
the-art CIM architectures. The die photograph is shown in
Fig. 19.

VII. CONCLUSION

This article presents a voltage-sensing CIM multi-level
RRAM macro for reliable, high-capacity CIM architectures.
RCIM architectures are of importance to achieve energy-
efficient computing systems for Al systems considering the
inherent MAC-friendly BL structure, high cell density, and
non-volatility. However, the limited capacity of on-chip mem-
ory hinders RCIM architectures from supporting advanced Al
systems. To increase the bit density by employing multi-bit
encoding per cell, some challenges should be addressed in
the RCIM applications. Widespread current-sensing RCIM
architectures suffer from logic ambiguity incurred by the
non-negligible HRS current under a low ON/OFF ratio, and it
even worsens over increasing the bit resolution. Besides, the
encoding level optimized for the readout circuits is imperative
to achieve reliable multi-bit RCIM. Thus, the voltage-sensing
multi-level RCIM is proposed to achieve reliable RCIM with
multi-level cells. The proposed RRAM macro features the
IWR and the voltage-sensing RD utilizing the IA BL current
control with a feedback amplifier. The IWR conducts the WR
operation considering the optimized encoding level to attain
reliable RCIM. The extensive experiment regarding the device
characteristics is also conducted to obtain the optimized WR
configuration while providing comprehensive understanding
of device characteristics of a fabricated RRAM array. The
proposed voltage-sensing BL structure successfully achieves
multi-level RCIM without logic ambiguity while exploiting
the linearized V.RBL. To the best of the authors’ knowledge,
the test chip is the first IC supporting RCIM with multi-level
cells fabricated in a standard monolithic RRAM and CMOS
process. The test chip with a 101.4-kb ternary-weight RRAM
array exhibits a peak energy efficiency of 118.44 TOPS/W.
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