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Abstract—Compute in-memory (CIM) is an exciting circuit
innovation that promises to increase effective memory bandwidth
and perform computation on the bitlines of memory sub-arrays.
Utilizing embedded non-volatile memories (eNVM) such as re-
sistive random access memory (RRAM), various forms of neural
networks can be implemented. Unfortunately, CIM faces new
challenges traditional CMOS architectures have avoided. In this
work, we characterize the impact of IR-drop and device variation
(calibrated with measured data on foundry RRAM) and evaluate
different approaches to write verify. Using various voltages and
pulse widths we program cells to offset IR-drop and demonstrate
a 136.4× reduction in BER during CIM.

I. INTRODUCTION

From the edge to the cloud, nearly all modern computing
systems are heavily dependent on the capacity, bandwidth,
and access time of memory systems [1]. At the same time,
emerging applications such as machine learning and artificial
intelligence require more bandwidth and on-chip capacity to
achieve target performance [2]. These demands have given rise
to tremendous research effort in both hardware accelerators [3]
and software frameworks, yielding significant improvement
in performance and energy efficiency. Despite the strong
improvements, we face limitations using memory systems
comprised of just SRAM and DRAM. These limitations, along
with the slow decline of Moore’s law, have inspired demand
for new memory technologies and techniques to enable future
workloads on future computing systems.

Fortunately, new circuit techniques and memory technolo-
gies are being actively researched to help push the limits of
current CMOS technology. Compute in-memory is one such
research thread that reads and accumulates multiple memory
cells onto the same bitline (BL). This increases memory
bandwidth and performs (binary) multiplication and addition
without the use of CMOS logic. At the same time, eNVM
such as RRAM and phase change RAM (PCRAM) are making
strides towards commercial viability [1]. These memories
offer high density non-volatile storage while being both logic
and process compatible. Furthermore, these technologies store
information through change of resistance which can enable
multi-level storage and a more natural primitive for compute
in-memory.

Despite these benefits, both CIM and eNVM face several
challenges not before faced by traditional CMOS designs.
First, because CIM accumulates several cells on the same
bitline it increases total noise and reduces sensing margin for
each state. Therefore, CIM will inherently have a higher bit

error rate (BER) than traditional memory arrays which read a
single wordline (WL) at a time. Second, CIM faces challenges
with IR-drop. IR-drop is always present in memory, because
some cells are farther from the read circuit than others and thus
observe more wire resistance. This variable wire resistance
has more impact in CIM, where multiple cells are read at the
same time yielding a lower effective resistance. This means
the parasitic wire resistance accounts for a larger fraction of
the voltage drop on the bitline and yields higher variation and
BER. Lastly, eNVM suffer from limited endurance and high
write energy compared to SRAM or DRAM. These proper-
ties necessitate careful programming to guarantee endurance
specifications and limit power consumption.

Recent work has attempted to mitigate the impact of these
errors in several different ways. Various new forms of ECC
have been applied to CIM [4]–[6]. Statistical methods have
been used to maximize CIM performance (active wordlines)
under error constraints [7]–[9]. Training a network to be robust
to device variation induced error can be done both off-chip and
on-chip. Off-chip training attempts to train a neural network
to tolerate device variation induced errors [10]–[12], however
this technique still results in accuracy degradation. On-chip
training [13] can be done to minimize error for a specific
chip, however this is expensive since each chip must be trained
based on its own specific devices. Lastly, write-verify methods
have been proposed to reduce the cell-to-cell variation [14].
However, current write-verify methods do not account for IR-
drop, which has significant impact on CIM.

In this work, we characterize and evaluate various ap-
proaches to programming RRAM for CIM. We perform our
experiments on a 40nm foundry RRAM test-chip array, whose
circuit details appear in [15]. Next, we evaluate various iter-
ative write-verify protocols based on BER and classification
accuracy on ImageNet. We then propose a macro-level write
protocol to account for IR-drop in our array. We find that by
using various programming voltages or pulse widths we can
program cells to offset the unique IR-drop that occurs at each
cell (or WL). We demonstrate a 136.4× reduction in BER over
a baseline method that does not consider IR-drop.

II. BACKGROUND AND MOTIVATION

A. Compute In-Memory (CIM)

To implement VMM (y⃗ = Wx⃗), CIM systems encode the
input vector x⃗ as wordline voltages and the weight matrix W
as conductance states in a memory cell. The current through
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Fig. 1. CDF of measured resistance values for various write voltages for (A)
set operation and (B) reset operation [15].

each cell is proportional to the product of the programmed
conductance (Wij) and applied voltage (x⃗i). The resulting
currents that are summed along the columns of the crossbar
are proportional to the product of the matrix and vector, (y⃗).

B. Characterizing Device Variation in RRAM

CIM seeks to read and accumulate several states on a bitline
at once, and therefore a key obstacle to enabling CIM is
cell-to-cell variation. These variations are typically normally
distributed [14], [15] and measured as the standard deviation
(σ) from the mean (µ) resistance value. Cell-to-cell variation is
commonly expressed as a percentage of the mean (σ/µ), and
we use this notation for the rest of the paper. For binary (2-
level) cells, a digital ‘0’ is encoded as the high resistance state
(HRS) and a digital ‘1’ is encoded as the low resistance state
(LRS). Ideally, current from reading a cell in the HRS could be
ignored if the difference between between the HRS and LRS
(on/off ratio) were several orders of magnitude. Unfortunately,
this is not the case as recent RRAM [15] and PCM [14]
demonstrate an on/off ratio between 10× to 100×.

Recent demonstrations of RRAM [15] and PCM [14] show
low LRS variation (3.5%) and high HRS (50%) variation with
an on/off ratio of 10× to 100× depending on how the cells are
written [14], [15]. Using higher write voltages and an iterative
write verify protocol, lower variation and higher on/off ratio
can be achieved. To quantify the variation, we measure the
resistance values of RRAM cells from a recent RRAM test-
chip prototype on a 40nm foundry RRAM array [15]. The
array contains 256× 256 RRAM cells (64Kb). The details of

Fig. 2. CIM (8 WL) samples for various weight encodings. IR-drop slope
(µV/WL) is computed using linear regression.

the read and write circuit of the array are beyond the scope of
this paper and interested readers are pointed to [15] for further
discussions.

To understand the various control parameters available to
iterative write verify algorithms, we study the impact of
various write configurations. First, we use three different
voltages for both the set (LRS) and reset (HRS) operations. For
each voltage, we use a 100ns write pulse. The CDF of these
measurements as well as the corresponding µ and σ are shown
in Figure 1. From this experiment, we find that a higher write
voltage can reduce device variation and increase on-off ratio.
Despite these observations, we must acknowledge several
drawbacks. First, these techniques increase write energy and
latency. Second, they greatly reduce the endurance of RRAM
and most other eNVM [16].

C. Impact of Device Variation & IR-Drop on CIM

To better understand the impact of device variation (Fig. 1)
and IR-drop, we program the test array with a bit pattern to
generate various encodings (0-8 LRS). For this experiment, we
use a write voltage of 1.7V and pulse width of 100ns. Next, we
enable 8 wordlines at a time, sample the results, and plot them
in Figure 2. Each encoding is marked by a different color given
by the legend above the plot. For each encoding, we compute
IR-drop using linear regression on the set of all samples. The
resulting regression slope (or coefficient) is presented in the
table as µV per WL. As a proxy for distance from the read
circuit, we use the WL number of the cell that is read.

From this experiment, we observe two key properties. First,
IR-drop decreases linearly with the WL number. As discussed
in Section I, the linear decrease occurs because the parasitic
wire resistance decreasing linearly along the WL due to
distance from the read circuit. In this design, the read circuit
is placed below the array itself, and thus WL 255 is closest
to the read circuit. An illustration of the array level design is
given in Figure 3. We target 2 different cells and approximate
the wire resistance on the read path. Second, we find that the
effect of IR-drop increases with the encoding (# of LRS states).
This is because more LRS states yields a lower resistance on
the bitline. When the resistance is lower, the parasitic wire
resistance accounts for a larger fraction of the voltage drop on
the bitline.

To quantify the impact of device variation and IR-drop,
we evaluate the error rate of the measured data. We classify
the data in Figure 2 by setting reference voltages for each
encoding. We present this result as a confusion matrix in
Figure 4A. Each bin shows the percent of actual ADC output
codes were obtained for the expected ADC output code. From
this result we observe that errors only occur (for this sample
size) when the encoding is large (≥7). Unfortunately, this
occurs because the effects of both device variation and IR-
drop are exacerbated at higher encodings. To isolate the impact
of IR-drop, we can subtract the expected voltage drop due to
wire resistance. To do this, we use the coefficients computed
using linear regression in Figure 2. Next, we re-compute the
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Fig. 3. 256×256 RRAM array architecture. 8 adjacent cells form an 8-
bit weight and share a 3-bit ADC through a 8-to-1 multiplexer. Total read
resistance is function of distance from bitline and the RRAM cell itself.

confusion matrix after removing IR-drop in Figure 4B. We
find that error is greatly reduced after removing IR-drop.

III. MITIGATING IR-DROP

In the previous section, we identified IR-drop as an issue
with significant impact on CIM BER. To reduce the impact of
IR-drop at the circuit level, we have a few options. First, we
can modify our read logic to account for the expected IR-drop.
An example of this is changing the reference voltages used by
our ADC to account for IR-drop computed as a function of the
WL. While this method works, it requires significant overhead
because many on-chip references are required and for each
read operation the references must be computed. Instead, we
program the RRAM cells such that their resistance offsets the
impact of IR-drop. For example, we expect that the cumulative
resistance when reading wordline x to be lower than reading
wordline 0 given by the following equation:

Rx = R0 − (x ·R∆)

where R∆ is the average wire resistance between 2 adjacent
wordlines. For this example, we can attempt to set cells on
WL x with a lower voltage or shorter pulse width to offset
the parasitic wire resistance.

A. Experimental Calibration

To offset the impact of IR-drop during write, we must
have various write configurations that result in different target
resistances. For this, we collect CIM (8 WL) measurements

Fig. 4. Confusion matrix between actual and expected ADC outputs during
CIM for (A) measured data using 1.7V and (B) without IR-drop.

Fig. 5. IR-drop characterization over several programming pulse times. Bitline
voltage versus wordline number reveals linear IR-drop relationship.

on our test chip after writing cells with various write voltages,
pulse widths, and weight encodings. For each weight encoding,
we generate a bit pattern such that all CIM results read that
number of LRS cells. For example, if the the target encoding
is ’4’ we could write the repeating pattern: ’11001100’ to the
BL under test. The measurement conditions are as follows:

1) Set Voltage: 1.7V, 1.8V, 1.9V, 2.0V
2) Set Pulse: 50ns, 100ns, 200ns, 400ns
3) Encoding: 0, 1, 2, 3, 4, 5, 6, 7, 8

We perform all combinations of the measurement conditions
for a total of 128 experiments. We choose small increments in
voltage and large increments in pulse width because prior work
[17] has established that voltage typically has larger impact on
the final resistance.

In Figures 5 and 6, we plot a subset of this data. In Figure
5, we plot the bitline voltage versus wordline number for the
various pulse widths at a fixed write voltage of 1.8V. We
choose to show data for both 5 and 7 LRS cells to illustrate
how IR-drop varies based on encoding. We observe that by
increasing the encoding or the pulse width, IR-drop increases
due to decreased RRAM resistance and thus increased voltage
drop due to parasitic wire resistance. We show the same
experiment in Figure 6 for the various voltages at a fixed
pulse width of 200ns. For both these experiments we observe
roughly 30µV change per WL in the worst case. While this
may seem negligible, over 256 WLs it becomes a 7.7mV
increase and accounts for the majority of error we observe
at higher encodings.

Fig. 6. IR-drop characterization over several programming voltages. Bitline
voltage versus wordline number reveals linear IR-drop relationship.
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Fig. 7. Optimal write configuration using the 4 configurations in Figure 5.

B. IR-Drop Model and Optimization

Ideally, we could program each WL with a unique write
configuration to eliminate IR-drop to implement our exper-
iment from section II. However, this is impractical because
it would require far too many voltage or pulse width com-
binations to implement. Furthermore, it is unlikely that 256
such protocols could be implemented such that the average
programmed resistance could offset 10µV to 30µV at each
WL. Instead, we consider subsets of our 16 calibrated write
configurations and assign each WL a write configuration that
minimizes error due to IR-drop.

To identify the optimal write configuration for each WL, we
first build models for each write configuration and establish
an optimization objective. For each write configuration (1.7V
/ 50ns, 1.8V / 100ns, etc.) at each encoding (0 LRS, 1 LRS,
etc.), we use the regression slope to model error due to IR-
drop (as in Figures 2, 5, and 6. Our optimization objective
is minimizing the mean squared error (MSE) between each
sample and the average BL voltage for the encoding it belongs
to. We choose to use MSE because it penalizes large deviations
from the mean which are likely to result in CIM errors.

After establishing the models and optimization objective,
we iterate through the subset of configurations for each WL
and compute the MSE. For each write configuration and WL
pair, we must also consider the 9 (0-8) possible encodings
that can occur. Thus, at each pair we compute the MSE due
to IR-drop as:

MSE =

8∑
N=0

(αN + βN · x− µN )2

where α is the regression intercept (R0), β is the regression
slope (R∆), x is the WL, and µ is the mean bitline voltage.
After computing the MSE for each write configuration, we
simply select the smallest error for the WL and repeat for all
256 WL. In Figure 7, we demonstrate our algorithm on the 4
measurements provided in Figure 5. Each WL is assigned the
write configuration that minimizes MSE.

IV. RESULTS

To evaluate the effectiveness of our algorithm for IR-drop
mitigation, we compare against a baseline. We evaluate both
BER and classification accuracy of ResNet18 on ImageNet. To
compute BER we use measured data from the different write
configurations we collected. And to compute classification

Configuration Performance
Voltage Time BER Accuracy Loss (%)

1.7V ALL 3.7 · 10−4 0.4%
1.8V ALL 1.2 · 10−4 0.2%
1.9V ALL 8.8 · 10−6 0.0%
2.0V ALL 2.3 · 10−5 0.0%

ALL 50ns 1.5 · 10−3 5.3%
ALL 100ns 2.3 · 10−4 0.4%
ALL 200ns 9.3 · 10−5 0.2%
ALL 400ns 7.9 · 10−5 0.1%

Baseline (1.8V, 200ns) 1.2 · 10−3 4.8%

Table 1. BER and accuracy results from various write configurations.

accuracy, we simulate ResNet18 with the given BER. This
is done by creating a custom VMM kernel in TensorFlow that
randomly inserts errors at the given BER. For this evaluation
we use a 8-bit quantized ResNet18 model that achieves 68.3%
Top-1 accuracy on ImageNet.

Because our algorithm creates a combined write config-
uration by assigning one of several write configurations to
each WL, we must choose subsets of our 16 measured write
configurations as in Figure 7. To evaluate our algorithm, we
choose 8 sets of 4 write configurations that are shown in Table
1. For 4 of these configurations we consider all pulse times
for a given write voltage. And for the other 4 we consider
all write voltages for the various pulse times. We consider
write time and write voltage separately because they feature
different trade-offs.

After establishing our configurations, we apply our algo-
rithm detailed in Section III, and then compute the BER using
the total samples and the total number of errors that occur.
Because a large number of samples is required to accurately
compute BER and we only have 1024 per configuration (128K
total), we construct a distribution for each configuration based
on our measured samples. Next, we re-sample the distribution
using Monte Carlo simulation to account for outliers (>3σ)
that did not occur in measured data.

In Table 1 we show BER and accuracy results after the
process is complete. For the measured data, we find that using
various pulse widths yields better results than using various
voltages (on average). However, this is likely due to the write
voltages that were used and could be improved with a different
set of configurations (not 100mV increments). We find that
the lowest BER (8.8·10−6) is achieved for the 1.9V write
voltage (using all pulse widths). For reference, the best BER
achieved without our technique occurred for the 1.8V/200ns
configuration which yielded a BER of 1.2·10−3. Thus in the
best case our technique achieves a 136.4× improvement in
BER over the baseline method.
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