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ABSTRACT

In this work, we present a comprehensive analysis of explainabil-

ity of Neural Network (NN) models in the context of power Side-

Channel Analysis (SCA), to gain insight into which features or

Points of Interest (PoI) contribute the most to the classification deci-

sion. Although many existing works claim state-of-the-art accuracy

in recovering secret key from cryptographic implementations, it re-

mains to be seen whether the models actually learn representations

from the leakage points. In this work, we evaluated the reason-

ing behind the success of a NN model, by validating the relevance

scores of features derived from the network to the ones identified

by traditional statistical PoI selection methods. Thus, utilizing the

explainability techniques as a standard validation technique for NN

models is justified.
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• Security and privacy → Side-channel analysis and counter-

measures.
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1 BACKGROUND AND INTRODUCTION

Cryptographic algorithms usually undergo massive scrutiny by the

cryptography community prior to standardization. Their security is

analyzed from a mathematical point of view, and they are adopted

only if they are assumed secure against known cryptanalysis at-

tacks. Their implementations can, however, still leak information

about their undergoing operations or data, in the form of, timing
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Figure 1: (a) Traditional Black-box NN Approach (b) White-

box NN Approach to offer explainability (premise for this

work)

[17], power [16] or Electromagnetic (EM) [10] side channels. An ad-

versary would typically use some known information (e.g. plaintext,

or ciphertext), in conjunction with the side channel leakage, and

utilize a leakage model to perform a non-profiled or profiled attack.

Due to the requirement of large number of traces for non-profiled

attack, or its non-applicability due to implementation of certain

countermeasures, profiled attacks [6] have gained attraction in the

community as a highly efficient form of attack, even if there are

countermeasures in place [4, 18]. Optimized Multi-Layer Percep-

tron (MLP) [22] and Convolutional Neural Network (CNN) models

[5, 15, 18] have been proposed to increase attack efficiency over

traditional template based profiled attack methods (which are opti-

mal from an information theoretic point of view). This approach

(Black-box NN, Fig. 1 (a)) provides highly efficient attack methods,

but little insight into why it works better. Explainablity incorpo-

rated into NN models, or in other words, White-box NN approach

(1 (b)) would provide better understanding of how the networks

learn, and help identify leakage points or Points of Interest (PoI) in

newly proposed implementations. This is of value to designers de-

vising and implementing countermeasures. In this work, we focus

on this perspective. Instead of proposing efficient attack methods,

we demonstrate how explainability helps understand the model’s

classification decision or inference.

Explainability techniques have been largely utilized in image

classification problems [3, 25, 26, 28] to provide insight into the

success or failure of a NN model. These are usually validated by

visual inspection as the features that should be given importance

by the explanation method are interpretable to a human as well. In

contrast, the power or EM traces obtained from any cryptographic

implementation look almost the same to a human eye if they are
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performing the same operation. Only with the application of statis-

tical methods, any discriminative set of features can be identified.

Thus, validating the explainability of widely successful NN models

using traditional PoI selection methods can be a useful way to build

confidence in the inference of the models. This can be extended to

the cases where traditional PoI selection methods are not directly

applicable, but NN models are still successful.

Our contributions can be summarized as follows:

• We provide validation of explainability of NN Models us-

ing PoI selection methods well known to the side-channel

analysis community. This demonstrates that MLP and CNN

models, when trained appropriately, give attributes to the

same leakage points.

• We demonstrate that when the same model is retrained to at-

tack different keybytes, the attributionwindow changes from

one keybyte to the next, as expected for a sequential soft-

ware implementation, which processes different keybytes at

different points in time.

• We show how increasing the number of training traces im-

proves the relevance scores obtained from NN analysis.

2 RELATEDWORKS

MLP and CNN are among the most widely used NN models in

the context of side-channel analysis. CNN has been the method of

choice for its success against trace misalignment, jitter, and mask-

ing countermeasures. Recently, there is a growing interest in the

explainablity of NN models used in SCA. The first reported work

on attributions of NN models for SCA was presented in [12], where

the authors used Saliency Maps [25], Layerwise Relevance Propa-

gation (LRP), and Occlusion [34], to provide explanations for the

predictions of NN Models by visualizing the features contribut-

ing the most to the inference. The work in [23] concentrated on

a perturbation-based analysis to mimic uncertainties associated

with measurements, sub-optimal classifiers, and countermeasures,

where authors used Pearson correlation coefficient [13] to select the

most important features, and proposed a framework for resilient

NN model training. The works in [32, 33] used Gradient Visualiza-

tion, and Weight Visualization, and utilized Signal-to-Noise Ratio

(SNR) as a way to evaluate the precision of leakage detection of

trained CNN models. Weight visualization, and Occlusion were

used in [11] as a way to infer leakage attributions for two differ-

ent keybytes. Guessing Entropy Bias-Variance Decomposition was

used in [30] as a way to understand how a change in experimental

setting influences the attack performance. The work in [20] used

Gradient Visualization to identify leakage points, and compared

them with the ones identified by SNR. Singular Vector Canoni-

cal Correlation Analysis (SVCCA) tool was used in [29] to find

similarity in representations learned by trained NN models. The

work in [24] did not look into explainability, rather provided an

interesting way of combining Correlation Power Analysis (CPA)

with NNs, to maximize correlation coefficient instead of minimizing

cross-entropy loss. Ablation-based methodology was used in [31] to

identify which layers of a trained NNmodels processes countermea-

sures. The work in [14] proposed Class Gradient Visualization and

Weight visualization and compared the identified leakage points

with those obtained by CPA. In all of these, what is lacking, though,

is a comparative validation using traditional PoI selection methods

for the relevance scores of the features obtained by explainable NN

analysis techniques.

3 EXPERIMENTAL SETTING

Power traces were captured from CW308T-XMega, an 8-bit Atmel

AVR XMega128 microcontroller based SCA platform from Chip-

Whisperer [21], while running an unprotected software implemen-

tation of Advanced Encryption Standard (AES)-128 at 7.37 MHz.

The traces were sampled at 29.48 MHz, by inserting a small resistor

(500𝑚Ω) in series with the power supply to measure instantaneous

power consumption. In this attack setting, the plaintext was fixed,

and we collected 50𝑘 traces with 2𝑘 samples each by varying the

keybytes (from 0𝑥00 to 0𝑥𝐹𝐹 ) . The NN model is trained to recover

a target keybyte and this process is repeated to recover all the

keybytes. The ChipWhisperer Capture platform provides traces

that are already synchronized, enabling us to utilize PoI selection

methods and employ MLP, without any pre-processing.

The NN models were trained and evaluated on the same dataset

containing 50𝑘 traces, where, 40𝑘 traces were used for training and

validation (90%-10% split), and the remaining 10𝑘 traces were used

for testing. Prior to training/testing, the features were normalized

using:

𝑡𝑟𝑎𝑐𝑒 ′𝑖 =
𝑡𝑟𝑎𝑐𝑒𝑖 − 𝐸 [𝑡𝑟𝑎𝑐𝑒𝑖 ]√

𝜎2𝑖 + 𝜖
(1)

where, E[.] denotes expected value, 𝜎𝑖 represents the standard de-

viation for the feature or sample index, 𝑖 , and a small 𝜖 is chosen to

avoid division by zero. We do not apply any PoI selection method

before feeding the data into the NN models. Rather, we expect that

if the NN models are trained properly, they should give high rele-

vance scores to the same leakage points we would otherwise select.

We assume an identity leakage model, labeling each trace based on

the keybyte value it is operating on. The models were trained for

100 epochs, for a batch size of 128, using Adam optimizer with a

learning rate of 0.001, to minimize categorical cross-entropy loss.

The layers of the NN models used in this work are listed in Table

1. The Dense layers except the last one have Rectified Linear Unit

(ReLU) activation, while the last one has softmax activation. All the

kernels have L2 regularization penalty of 0.0001. NN models were

implemented in Python, using the keras [7] library with tensorflow

[1] as backend. The test accuracy reported in Table 1 is obtained

by averaging test accuracy across all the keybytes for single-trace

attack. In this work, we solely focus on test accuracy as a metric for

how efficiently the NN models were trained, though, to measure

the efficiency of an attack, Guessing Entropy [27] is sometimes

preferred as a metric.

4 TRADITIONAL POI SELECTION METHODS

To address curse of dimensionality, different PoI selection methods

have been proposed and evaluated empirically in literature, such

as, Difference of Means (DoM), Pearson Correlation Coefficient,

SNR, etc., all of which work reasonably well in identifying the

leakage points. We also used Minimum Redundancy Maximum

Relevance (MRMR) feature selection algorithm in this context to

find minimal-optimal set of points.
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Table 1: Neural Network Model

MLP CNN

Layers

Dense(100)

BatchNorm

Dropout(0.2)

Dense(100)

BatchNorm

Dense(100)

BatchNorm

Dense(256)

Conv1D(50,60)

Conv1D(100.60)

Maxpooling1D(3)

Flatten

Dropout(0.5)

Dense(100)

BatchNorm

Dropout(0.5)

Dense(256)

Test Accuracy 99.6% 99.7%

Figure 2: PoI Selection for the first keybyte using: (a) DoM,

(b) Pearson Correlation Coefficient, (c) MRMR, (d) SNR

4.1 Brief Overview of PoI Selection Methods

4.1.1 Difference of Means (DoM). DoM is typically used in tem-

plate attacks [6],[8] as a PoI selection method to reduce complexity

of computation. DoM for each sample index 𝑖 of trace, 𝑡𝑟𝑎𝑐𝑒𝑖 can be

computed by evaluating the sum of the absolute value of pairwise

differences for different class labels, using:

𝐷𝑜𝑀𝑖 =
255∑

𝑘=0

255∑
𝑗=0

|𝑡𝑟𝑎𝑐𝑒𝑎𝑣𝑔 (𝑙𝑎𝑏𝑒𝑙𝑘 )𝑖 − 𝑡𝑟𝑎𝑐𝑒𝑎𝑣𝑔 (𝑙𝑎𝑏𝑒𝑙 𝑗 )𝑖 | (2)

where 𝑡𝑟𝑎𝑐𝑒𝑎𝑣𝑔 is obtained by averaging all the traces for the same

class labels or keybyte values.

4.1.2 Pearson Correlation Coefficient. Pearson correlation coeffi-

cient indicates the linear dependency between two variables, where

+1 denotes perfect positive correlation, -1 denotes perfect negative

correlation, and 0 denotes no correlation. Correlation coefficient, 𝑟𝑖
between 𝑖-th sample of traces, 𝑡𝑟𝑎𝑐𝑒𝑖 and the corresponding label,

𝑙𝑎𝑏𝑒𝑙 can be computed using the following equation [13]:

𝑟𝑖 =

∑
𝑗 ((𝑡𝑟𝑎𝑐𝑒 ( 𝑗)𝑖 − 𝐸 [𝑡𝑟𝑎𝑐𝑒 ( 𝑗)𝑖 ]) (𝑙𝑎𝑏𝑒𝑙 ( 𝑗) − 𝐸 [𝑙𝑎𝑏𝑒𝑙])√∑

𝑗 ((𝑡𝑟𝑎𝑐𝑒 ( 𝑗)𝑖 − 𝐸 [𝑡𝑟𝑎𝑐𝑒 ( 𝑗)𝑖 ])2
√∑

𝑗 (𝑙𝑎𝑏𝑒𝑙 ( 𝑗) − 𝐸 [𝑙𝑎𝑏𝑒𝑙])2

(3)

4.1.3 Signal to Noise Ratio (SNR). SNR [19] for each sample 𝑡𝑟𝑎𝑐𝑒𝑖
for different keybyte candidates can be computed using the equa-

tion :

𝑆𝑁𝑅𝑖 =
𝑉𝑎𝑟 [𝐸 [𝑡𝑟𝑎𝑐𝑒𝑖 |𝑙𝑎𝑏𝑒𝑙]]

𝐸 [𝑉𝑎𝑟 [𝑡𝑟𝑎𝑐𝑒𝑖 |𝑙𝑎𝑏𝑒𝑙]]
(4)

where E[.] denotes expected value and Var[.] denotes the variance.

4.1.4 Minimum Redundancy Maximum Relevance (MRMR). Mutual

Information between two discrete random variables X and Y,

𝐼 (𝑋,𝑌 ) =
∑
𝑥,𝑦

𝑃 (𝑋 = 𝑥,𝑌 = 𝑦) .𝑙𝑜𝑔
𝑃 (𝑋 = 𝑥,𝑌 = 𝑦)

𝑃 (𝑋 = 𝑥)𝑃 (𝑌 = 𝑦)
(5)

quantifies the reduction in uncertainty of one variable after seeing

the other variable. This is used by MRMR algorithm [9], which

ranks the set of input features required to represent the output

variable, by computing Mutual Information Quotient (MIQ) value

of each feature 𝑡𝑟𝑎𝑐𝑒𝑖 ,

𝑀𝐼𝑄𝑖 =
𝐼 (𝑡𝑟𝑎𝑐𝑒𝑖 , 𝑙𝑎𝑏𝑒𝑙)

1
|𝐹 |

∑
𝑗 𝐼 (𝑡𝑟𝑎𝑐𝑒𝑖 , 𝑡𝑟𝑎𝑐𝑒 𝑗 )

(6)

where the numerator denotes the relevance, the denominator rep-

resents the redundancy, and |𝐹 | is the total number of features.

A large value of MIQ suggests that the corresponding feature is

important, as well as, a large drop in MIQ for the next important

feature indicates the confidence in feature selection.

4.2 Application of PoI Selection Methods to the
dataset

Fig. 2 illustrates the PoI window and feature scores obtained by

applying different PoI selection methods to the dataset. This forms

the ground truth in our effort to explain the attributions obtained

from NN models. From Fig. 2 (a)-(d), we observe that, the PoI win-

dow roughly spans from sample index 96 through sample index

155. Pearson correlation coefficient Fig. (2 (b)) indicates that many

of the samples are correlated to the output class label, which is

why, MRMR (2 (c)) can reduce the feature set to a much smaller

size. DoM (Fig. 2 (a)) and SNR (Fig. 2 (d)) are very similar in their

PoI selection, because they focus on similar metrics.

5 EXPLAINABLE NEURAL NETWORK

Despite Deep Neural Network (DNN) models showing good per-

formance in a diverse set of domains, in most cases, they are still

treated as black-boxes with no real insight into why they perform

so well. Feature attribution methods have recently been developed

with the purpose of shedding light onto the classification decisions

taken by these models. They assign relevance scores to each input

feature to quantify and explain its contribution to the overall deci-

sion. In image-classificaiton tasks, these scores are visualized as a

heatmap to identify regions of interest in the input domain. Some
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Figure 3: Analysis of MLP for the first keybyte: (a) Input trace

(b) Gradient (c) SmoothGrad (d) Integrated Gradients (e) LRP

of the attribution methods that we employed are described in this

section.

5.1 Brief Overview of Attribution-based
Methods

5.1.1 Gradients or Saliency Map. In classification tasks, the output

layer has as many neurons as there are classes in the dataset. The

class corresponding to the output neuron with the highest activa-

tion is chosen as the decision of the overall model. The simplest way

to evaluate feature importance (𝑅𝑖 (𝑥)) is to evaluate the gradient of
the classification probability (𝑆𝑐 (𝑥)) of the chosen output neuron

with respect to the input features (𝑥𝑖 ). This is done by adding a

gradient backpropagation step to the inference. A large value of the

gradient implies that small changes in the value of the input feature

would produce large changes in the model’s classification score;

thereby indicating the higher relevance of that particular input

feature [25]. Saliency maps do not differentiate between positive

and negative contributions of the input features by considering the

absolute value of the gradient, computed by:

𝑅𝑖 (𝑥) =
𝜕𝑆𝑐 (𝑥)

𝜕𝑥𝑖
(7)

5.1.2 SmoothGrad. DNN models with several stacked layers are

highly non-linear. This non-linearity leads to large variation in the

gradients in the neighborhood of the input. However, the attribu-

tion methods should be stable - small changes in the input (noise)

should not perturb the relevance scores. In order to overcome this

limitation of gradients, SmoothGrad [26] proposes to run inference

in the presence of noise. Multiple copies of the input are created by

Figure 4: Analysis of CNN for the first keybyte: (a) Input trace

(b) Gradient (c) SmoothGrad (c) Integrated Gradients (d) LRP

adding a bounded zero-mean Gaussian noise (N(0, 𝜎2)). The gradi-
ent heatmaps of these noisy copies, 𝑅(𝑥 +N), are then averaged to

generate the final heatmap 𝑅(𝑥), defined by:

𝑅(𝑥) =
1

𝑁

𝑁∑
𝑛=1

𝑅(𝑥 + N(0, 𝜎2)) (8)

The input features that are actually relevant would have a large

gradient value in all copies while spuriously large gradient values

would be suppressed owing to the averaging process.

5.1.3 Integrated Gradients (IG). Gradient based attribution is a

local explanation method. It only looks at how small changes in

the input features affect the classification probability. At times,

the contributions of certain features can saturate beyond a certain

threshold value. This leads to small gradient values even when

that particular feature is relevant. Integrated gradients (IG) [28]

aims to solve this vanishing gradient attribution problem. It first

defines a baseline input (𝑥 ′) for the task at hand. For instance, in

image classification, a good baseline is all the pixel values set to

white or black. The product of the gradients and the deviation from

baseline is integrated along this straight-line interpolation path.

By doing so, IG accumulates the effect of each feature as it moves

from its baseline (zero contribution) to its actual value (relevance).

In practice, the integration is replaced by a discrete sum over 𝑁
interpolated inputs as shown in the equation below:

𝐼𝐺 (𝑥) = (𝑥 − 𝑥 ′) ×
1

𝑁
×

𝑁∑
𝑛=1

𝑅(𝑥 ′ +
𝑛

𝑁
(𝑥 − 𝑥 ′)) (9)

5.1.4 Layerwise Relevance Propagation (LRP). LRP [3] defines rules

to progressively redistribute the output prediction score in a layer by

layer manner till we reach the input features. This process adheres
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to relevance conservation, i.e., the total relevance that flows into a

neuron at a particular layer, flows out to the neurons at the layer

below it. The parameters in the LRP rule allow us to control the

relative importance given to features that contribute positively

against those that contribute negatively to the overall classification.

The advantage of LRP over SmoothGrad is that it performs gradient

smoothing in a single backward pass through the network. The

equation below (LRP-𝜀) defines the rule to redistribute the relevance
from layer 𝑘 to the previous layer 𝑗 . Here, 𝑎 𝑗 is the activation value

in layer 𝑗 and 𝑤 𝑗𝑘 is the weight. The parameter 𝜀 is included for

numerical stability.

𝑅 𝑗 =
∑

𝑘

𝑎 𝑗𝑤 𝑗𝑘

𝜀 +
∑
0, 𝑗 𝑎 𝑗𝑤 𝑗𝑘

𝑅𝑘 (10)

5.2 Analysis of NN models using Attribution-
based methods

We used the iNNvestigate toolbox [2] to analyze the NN models.

This provides an API-like interface to analyze NN models using

different analysis methods, such as, IG, Smoothgrad, Gradients, LRP

etc.

Fig. 3 (b)-(e) shows the relevance scores obtained from the attri-

bution based methods for the trained MLP, where Fig. 3 (a) shows

the input trace. All the analysis methods highlight nearly the same

region of the input trace, although the relevance scores are different.

Similar trend can be seen for CNN in Fig. 4. The noisier scores can

be attributed to the overparameterization of the CNN model. It

is illuminating to observe that both MLP and CNN attribute rele-

vance to the same PoI window, which the traditional PoI selection

methods identify in Fig. 2. This matches the intuition that, if the

NN models are trained properly, they should learn from the same

leakage points that traditional PoI selection methods would identify,

if applicable. Fig. 5 illustrates how number of training traces affects

the relevance scores provided by the IG method. We notice that

the relevance scores are noisier with limited training traces, and

improves as the number of training traces is increased. Fig. 6 illus-

trates that the attribution scores obtained from trained MLP and

CNN accordingly moves as the attacked keybyte is changed. In this

case, 4 different keybytes (𝐾𝐵0-𝐾𝐵3) were attacked by retraining

the same networks with corresponding labels. This also matches the

intuition that for a sequential software implementation, the leakage

for different keybytes will be at different sample indices, which an

adequately trained NN model should be able to demonstrate. Fig. 7

illustrates how the number of training epochs influences relevance

scores. We note that it remains relatively unaffected by the number

of epochs, if the number of training traces is sufficient (in this case,

the whole training set was used).

6 CONCLUSION

In this work, we presented validation for our trained NN models

using domain knowledge obtained by applying PoI selection meth-

ods. This gives the confidence that the predictions obtained from

the NN models are learned and based on valid leakage points. We

verified the intuition that PoI window should move along with the

index of the attacked keybyte for an adequately trained NN model.

In the SCA context, we expect that incorporating attribution-based
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Figure 5: Effect of Number of Training Traces on Relevance

Scores for MLP using Integrated Gradients

validation methods will help designers understand both the perfor-

mance of the NN models and identify the leakage points missed

by traditional PoI selection methods. Future works may focus on

explainable NN models for implementations with countermeasures

to assess vulnerabilities.
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