A 90.4\% Peak Efficiency 48V/1V Three-Level Hybrid Dickson Converter with Gradient Descent Run-Time Optimizer and GaN/Si Hybrid Conversion

Minxiang Gong ${ }^{1}$, Xin Zhang ${ }^{2}$, Arijit Raychowdhury ${ }^{1}$
${ }^{1}$ Georgia Institute of Technology, ${ }^{2}$ IBM T. J. Watson Research Center

Abstract

This work presents a 48V/1V DC-DC Point-of-Load (POL) converter for efficient high voltage conversion in data centers. The converter includes (1) a three-level hybrid Dickson topology with $\mathrm{GaN} / \mathrm{Si}$ hybrid conversion achieving efficient flying capacitor $\left(\mathrm{C}_{\mathrm{F}}\right)$ utilization. (2) A gradient descent run-time optimizer finding optimal switching frequency ($\mathrm{f}_{\text {sw }}$) and number of fingers turned on $\left(\mathrm{N}_{\mathrm{F}}\right)$ during converter's operation. (3) A 10bit hybrid ADC for current sensing. The test chip is fabricated in $0.18 \mu \mathrm{~m}$ BCD process and shows a 90.4% peak efficiency at $48 \mathrm{~V}-1 \mathrm{~V}$ conversion with a $240 \mathrm{~A} /$ inch 3 current density.

Introduction and Motivation

Data centers are moving to the 48 V power bus from conventional 12 V . Therefore, direct 48 V -to- 1 V point of load (POL) converters become popular. Recently, hybrid topologies [1]-[5] gain interest, which overcome high voltage stress and small duty ratio in the half bridge topology. However, first, prior works adopt $\mathrm{N}-1 \mathrm{C}_{\mathrm{F}}$ to reduce max voltage on the switching node $\left(\mathrm{V}_{\mathrm{SW}}\right) \mathrm{N}$ times, which increases component count and hursts the power density. Second, recent works only focus on the peak efficiency and ignore the operation range of load current (I_{O}). This work proposes a threelevel hybrid Dickson converter achieving efficient utilization of both power switches and C_{F} with a run-time gradient descent optimizer for efficiency enhancement across a wide range of Io.

Three-Level Hybrid Dickson Topology
Recent work [2] proposes a tri-state double step-down topology achieving efficient C_{F} utilization shown in Fig. 1. However, the max switching node voltage ($1 / 4 \mathrm{~V}_{\text {IN }}$) is not well-suited for 48 V input, and a flying capacitor voltage $\left(\mathrm{V}_{\mathrm{CF}}\right)$ rebalancing technique is required. Inspired by [2], this work proposes a three-level hybrid Dickson topology (Fig. 1). By replacing the DSD topology with a five-level hybrid Dickson topology, the proposed topology has following features: (1) it reduces max $\mathrm{V}_{\mathrm{SW}} 10 \mathrm{x}$ and extends the duty ratio 10 x with only five C_{F} and 11 switches - a 54% and 21% reduction compared to [5]. (2) it has inherent V_{CF} balancing which eliminates additional controls. $\mathrm{C}_{\mathrm{F} 2}-\mathrm{C}_{\mathrm{F} 5}$ are balanced by inductors as described in [1], [2] and [4]. $\mathrm{C}_{\mathrm{F} 1}$ is balanced by $\mathrm{C}_{\mathrm{F} 2}-\mathrm{C}_{\mathrm{F} 4}$ as shown by equations in Fig. 1. (3) To avoid C_{F} hard charging in Dickson structure, an additional inductor L_{3} is used to split $\mathrm{C}_{\mathrm{F} 5}$ out from L_{1} [6] for soft charging. The L_{3} enables three phase operation which reduces output voltage (V_{o}) ripple and support higher Io. Fig. 2 shows our analysis on efficiency versus frequency and gate drive loss, necessitating the run-time optimizer. First, the max efficiency occurs at different f_{Sw}. Second, when I_{O} is low, the conduction loss $\left(\mathrm{P}_{\mathrm{C}}\right)$ is less than 12% of the total loss. Turning on all fingers of Si switches wastes large amount of drive power (10 s of mW) and has limited P_{C} reduction. Therefore, a run-time optimizer of $f_{S W}$ and N_{F} is proposed.

System Architecture and Circuit Implementation

Fig. 3 shows the proposed converter system architecture, and the colored area indicates the die. The converter uses two off-chip GaN switches ($\mathrm{S}_{1}, \mathrm{~S}_{2}$), nine on-chip Si LDMOS $\left(\mathrm{S}_{3}-\mathrm{S}_{11}\right)$, forming a hybrid conversion [5]. Drive signals are generated from a 12bit digital PWM with a resolution of 156 ps . $\mathrm{S}_{1}-\mathrm{S}_{3}$, and $\mathrm{S}_{5}-\mathrm{S}_{8}$ require high voltage level shifters to accomplish high voltage gate driving. To have a precise power loss estimation, a 10 bit hybrid ADC with a differential amplifier is proposed for sensing L_{1} 's average current ($\mathrm{I}_{\mathrm{L} 1}$) when S_{1} is turned on. The 10 bit current information along with the 12 bit on-time (t_{on}) are sent to a gradient descent run-time optimizer. The optimizer calculates the power loss at each step and compares them to find the optimal $f_{S W}$ and N_{F}. The f_{SW} is controlled by a frequency divider capable for 4bit frequency tuning $(0.52-4.4 \mathrm{MHz})$. The 9×3 bit N_{F} of $\mathrm{S}_{3}-\mathrm{S}_{11}$ are sent to finger scalable gate drivers for driving Si switches. The output voltage is quantized by a 6bit SAR ADC and a digital PID controller is
responsible for V_{O} regulation. The circuit schematic of 10bit hybrid ADC and block diagram of the gradient descent run-time optimizer are shown in Fig. 4. The V_{L} and V_{O} indicating $\mathrm{I}_{\mathrm{L} 1}$ are first converted by a 5bit SAR ADC. Then, the residual voltages on capacitors of the SAR ADC are directly sent to tail transistors of two voltage-to-time converters (VTC). Since the difference of residual voltages are small $(<62.5 \mathrm{mV})$, the VTC shows good linearity within such small input range. The difference between residual voltages is converted by a 5 bit time-to-digital converter (TDC). Compared to conventional pipeline ADC, the proposed design eliminates intermediate amplifiers by reusing voltages on capacitors, which reduces area/power overhead. The 10bit $\mathrm{I}_{\mathrm{L} 1}$ is sent to a power loss calculator to estimate the power loss ($\mathrm{P}_{\text {LOSS }}$). The equation of $\mathrm{P}_{\text {LOSS }}$ is shown in Fig. 4. Besides $\mathrm{I}_{\mathrm{L} 1}$, ton also provides information of input power ($\mathrm{P}_{\text {IN }}$), which overcomes noise in the current sensing circuit. To optimize both f_{SW} and N_{F}, an iterative gradient descent method is used. The f_{SW} optimizer performs gradient descent starting from the lowest $\mathrm{f}_{\text {Sw }}$ and stops at each step waiting for N_{F} optimizer to find the optimal N_{F}. Starting from the highest N_{F} that all fingers are turned on, the N_{F} is subtracted each time until its gradient becomes positive. Then, N_{F}, and $\mathrm{P}_{\text {Loss }}$ are sent to f_{SW} optimizer for remaining process. At each step of f_{SW} or N_{F}, the hybrid ADC starts conversion after PID controller is stabilized to ensure accurate $\mathrm{I}_{\mathrm{L} 1}$ sensing. Thus, the run-time optimizer finds the global minimum for both f_{Sw} and N_{F} without interoperating converter's operation. Conventional level shifters face challenges of speed and reliability in high conditions. The proposed high-speed digital-assisted level shifter is shown in Fig. 5. It uses diode clamping for fast transition and current mirrors for symmetric pull-up/pull-down time. However, first, during the transition, $\mathrm{I}_{\mathrm{X}-\mathrm{C}}$ and $\mathrm{I}_{\mathrm{Y}-\mathrm{C}}$ copied from I_{X} and I_{Y} by current mirrors charge V_{P} and V_{N} to high. Second, in steady state, small currents $\mathrm{I}_{\mathrm{X}-\mathrm{s}}$ and $\mathrm{I}_{\mathrm{Y} \text {-s }}$ discharge V_{P} and V_{N} gradually. To avoid output flipping, a digital logic is used to lock the output. Compared to conventional cascoded level shifter, it shows high speed ($\sim 1 \mathrm{~ns}$) with a smaller area ($195 \mathrm{x} 65 \mu \mathrm{~m}^{2}$).

Measurement Results

The test chip is fabricated in $0.18 \mu \mathrm{~m}$ BCD process with an area of $4 \times 3 \mathrm{~mm}^{2}$ (Fig.6). Fig. 7 shows measured switching node waveform. The switching node voltages trip between $0 \mathrm{~V}-4.8 \mathrm{~V}$, validating the proposed topology. In the large timescale, switching node voltages are stable indicating voltages on all flying capacitors are balanced. Measured efficiency is shown in Fig. 8. This work achieves 90.4\% and 87.2% peak efficiency at $48 \mathrm{~V}-1 \mathrm{~V}$ and $48 \mathrm{~V}-0.7 \mathrm{~V}$, respectively. The small figure in Fig. 8 shows efficiency improvement with proposed run-time optimizer. Fig. 9 shows N_{F} and f_{SW} at different I_{o}. At low I_{O}, switches are soft switched (with fixed dead-time) so f_{SW} is increased to reduce excessive ripple current ($\mathrm{I}_{\text {ripple }}$) on inductors. As I_{O} increases, N_{F} becomes larger for reduced P_{C} while f_{SW} is reduced for lower switching losses (P_{sw}). Measured transient response is shown in Fig. 10. A 120 mV voltage droop and $20 \mu \mathrm{~s}$ response time is measured at a load step of $1 \mathrm{~A} / \mu \mathrm{s}$. Fig. 11 shows measured current sensor accuracy with proposed hybrid ADC . The ideal resolution is 2 mA , and the average error is within 9. Table I shows the comparison with state-of-the-art.

Acknowledgement

This project was supported by the Semiconductor Research Corporation (SRC) under grant JUMP ASCENT task ID 2776.033 and Intel Custom Funding.

References

[1] R. Das, et. al., APEC, pp. 1997-2001, 2019.
[2] K. Wei, et. al., ISSCC, pp. 190-191, 2020.
[3] M. Choi, et. al., ISSCC, pp. 296-297, 2020.
[4] D. Yan, et. al., JSSC, vol. 55, no. 4, pp. 988-998, 2020.
[5] X. Yang, et. al., ISSCC, pp. 466-467, 2021.
[6] R. Das, et.al., APEC, pp. 25-29, 2019.

Fig. 3. Converter system architecture with on-chip Si device, off-chip Fig. 4. Diagram of 10bit hybrid ADC and run-time optimization of fsw and GaN, digital regulation loop and run-time gradient descent optimizer.

Fig. 5. High-speed digital-assisted level shifter.

Fig. 7. Measured switching waveform.

Fig. 11. Current sensing results.

Fig. 8. Measured efficiency.

Fig. 6. Die shot and board.

Fig. 9. Optimization results.

	APEC 2019 [1]	ISSCC 2020 [2]	ISSCC 2020 [3]	JSSC 2020 [4]	ISSCC 2021 [5]	This work
Technology	Discrete	180nm BCD	180 nm BCD	180nm BCD	180 nm BCD	180 nm BCD
Topology	Dual-phase Multi-inductor hybrid	Tri-state Double Step Down	3-level+ current doubler	Double Step Down	12-level series-capacitor	3-level hybrid Dickson
Input Voltage	48 V	$12 \mathrm{~V} / 24 \mathrm{~V}$	48-60V	48 V	$36-60 \mathrm{~V}$	48 V
Output Voltage	1-5V	1 V	0.5-1V	1 V	0.5-1V	0.7-1V
Max Load Current	100A	3A	60A	1.5A	8A	12A
Power Switches	GaN	On-chip Si	Ext. Si	GaN	On-chip Si \& GAN	On-chip Si \& GAN
Inductor	4×1 HH	$2 \times 0.56 \mathrm{uH}$	2x0.33uH+transformer	$2 \times 0.9 \mathrm{HH}$	I	$3 \times 0.62 \mathrm{uH}$
\#. of Flying Capacitor	3	2	1	1	11	5
Voltage Reduction	4 x	4x	16x	2 x	12x	10x
\#. of External Switch	8	0	6	4	1	2
Peak Efficiency	$\begin{gathered} 90.9 \% @ 48-1 \mathrm{~V}, \\ 333 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 88.3 \% @ 24-1 \mathrm{~V}, \\ 100 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 92.8 \% @ 48-1 \mathrm{~V}, \\ 333 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 85.4 \% @ 48-1 \mathrm{~V}, \\ 100 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 90.2 \% @ 48-1 \mathrm{~V}, \\ 2.5 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 90.4 \% @ 48-1 \mathrm{~V}, \\ 1 \mathrm{MHz} \end{gathered}$
On-chip Optimization	No	No	No	No	No	Yes
Current Density	440 A/inch ${ }^{3}$	1	1	1	196/ *998 A/inch ${ }^{3}$	3*240/ *\#992A/inch3

${ }^{*}$ current density for component area only. "without C_{0} and $\mathrm{C}_{\text {BST }}$.

