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Abstract—The rising popularity of deep neural network (DNN)
algorithms calls for energy-efficient accelerators to enable DNNs
run on edge devices. In this paper, we presented BitS-Net, a
bit-level sparsity method that quantize the network to desirable
numbers with more zeros in their bit representation. We demon-
strated that BitS-Net can preserve the accuracy (67.73 %) with
accuracy drop ¡1% compared to the original network. Moreover,
it achieved up to 5x energy efficiency for ResNet-18 models on
the ImageNet dataset compared to the baseline methods.

Index Terms—DNN model, bit-level sparsity, DNN compres-
sion, quantization, low bit precision.

I. INTRODUCTION

Over the past decade, a rapid progress toward machine

learning and specifically DNN acceleration has been made to

enable these powerful methods run on the resource constrained

edge devices [1]. However, due to the inherent large size of

DNN methods and the expensive cost of transferring data

between external DRAM memory and SRAM in traditional

CMOS, technologies such as compute-in-memory (CIM) has

emerged to overcome these problems by performing the com-

putation in the memory. As mentioned in [2], the cost of

fetching data from DRAM to the chip’s internal memory

is three orders of magnitude higher than an add operation;

which emphasize that a huge amount of energy is spend to

transfer data in traditional CMOS based accelerators with

limited internal memory. Therefore, CIM architecture can play

an important role as the next generation of DNN accelerators.

CIM using the crossbar architecture can reduce the amount

of data transfer in DNN computation by computing in the

memory itself. However, due to limitation in bit-line and word-

line in CIM architecture, it is hard to compute DNN models

with large weight matrices. On the other hand, DNN computa-

tions are usually performed in float-32 format which leads to

another issue to utilize CIM architecture. The proposed CIM

for DNN accelerators can perform 1 bit per word-line which

limited the bit-precision that can be used for weigh values

which leads to a huge information loss as a result of ultra-low

bit computation (e.g. 4 bit-width).

In this work, we have proposed a CIM-friendly DNN

quantization framework by introducing a bit-level sparsity

to quantize and sparsify the network in the bit-level during

training in order to preserve the accuracy while reducing the

energy requirement during the inference. In addition, we have

utilized a 2-bit per cell CIM architecture proposed in [3]

enabling 8-bit per cell computation to gain highe accuracy

due to using higher precision values.

II. METHOD

In this section, the proposed bit-level sparsity method and

the 2-bit/cell CIM architecture are explained.

In CIM architecture exploiting resistance of memory cells

(figure 1), a memory cell itself serves as a PE and memory

simultaneously [4]. In addition, CIM architectures employing

emerging memory such as RRAM have achieved high energy-

efficiency due to the inherent multiply-and-accumulate (MAC)

functionality in BL structures. Moreover, as shown in figure

1, multiplying to a weight with zero value will result in zero

current and therefore no required energy for this operation.

This is the motivation of our proposed bit-sparsity method,

where we quantize the network during training to increase the

numbers with more zeros in their binary representation. In

addition, recently a 2bit/cell CIM architecture has been devel-

oped in [3] to enable multiplication of higher bit-precision like

8 bit. Each cell can be 00, 01, 10 and 11. The energy level for

multiplication to 00 is very low as opposed the energy level

to 11. Based on the actual measurement, the measured energy

per 2-bits for multiplying with 11, 10, 01, and 00 in the 2-

bit-encoded RRAM cells in CIM architecture is 1.46 pJ/2bits,

0.73 pJ/2bits, 0.36 pJ/2bits, 79 fJ/2bits, respectively.

The goal in the proposed bit-level sparsity method is to

quantize the network to the numbers with 8 bit-width precision

that have more 00 and no 11 in their binary representation. We

manually picked different sets of numbers as shown in Table I

having this property. In another word, we want to increase the

bit-level sparsity of the weigh matrices to decrease the energy

required during inference. We apply the quantization during

training to preserve the accuracy. The quantization scheme of

the weights [5] is defined as follow where b is the bit precision,

α is the scaling factor and scales the weights into [−1, 1]. Then

the scaled W is projected by Π(.) in an element-wise manner

to the defined quantization levels in Table I.
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Fig. 1: CIM architecture using resistance of memory cells [4]
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TABLE I: The coefficient set for quantization [4] to increase

the bit-level sparsity.

Set # Desired values

1 ±{0, 0.3438, 0.3750, 0.4063, 0.5, 0.6250, 0.6563, 1.0}
2 ±{0, 0.3750, 0.5, 0.6250, 1.0}

Wq = αΠQ(1,b)⌊
W

α
, 1⌉ (1)

Then each element in the original weight matrix in float32

format is quantized to a b-bit fixed-point representation. In

addition, the Straight-Through Estimator (STE) is adopted in

the backward path as proposed in [5] and defines as:

∂Wq

∂α
=







sign(W ) if |W | > α

ΠQ(1,b)
W

α
−

W

α
if |W | ≤ α

(2)

III. RESULT

In this section, the result of the proposed method is pre-

sented. We used ResNet-18 on Imagenet dataset to evaluate the

accuracy and energy efficiency of our method. We compare the

accuracy of our method (BitS-Net) with Power-of-Two (PoT)

and Additive Power-of-Two (APoT) [5] and the original float-

32 ResNet Model as shown in figure 2. The results show that

our method can preserve the accuracy (67.73%) better which

is closer to the accuracy of the original network.

In addition, we compare the energy efficiency of BitS-Net

with the baseline methods. Based on the actual measurement,

the measured energy per 2-bits for multiplying with 11, 10, 01,

and 00 in the 2-bit-encoded RRAM cells in CIM architecture

is 1.46 pJ/2bits, 0.73 pJ/2bits, 0.36 pJ/2bits, 79 fJ/2bits,
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Fig. 2: Accuracy of our proposed method (BitS-Net), baseline

methods (APOT and POT) and original float-32 ResNet-18

network. [4]
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Fig. 3: The estimated energy of our proposed method (BitS-

Net) and baseline methods (APOT and POT). [4]

respectively. We also consider the energy required for ADC in

the energy computations which is 0.208 pJ/2bits. The results

demonstrated the energy efficiency of BitS-Net as illustrated

in figure 3.

IV. CONCLUSION

Using high performance DNN methods on the resource

(energy and battery) constrained edge devices requires us to

develop compression techniques to make efficient DNNs. In

this paper, we proposed BitS-Net, a novel bit-level sparsity

and CIM-friendly method by quantizing the network during

training to a set of desired coefficients. We then used a

2bits/cell CIM architecture to increase the energy efficiency,

as in CIM, the computation is performed in the memory.

We demonstrated that BitS-net can achieve up to 5x energy

efficiency while preserving the accuracy (less tha 1% accuracy

reduction compared to the original float-32 network).

REFERENCES

[1] F. Karimzadeh, N. Cao, B. Crafton, J. Romberg, and A. Raychowdhury,
“Hardware-aware pruning of dnns using lfsr-generated pseudo-random
indices,” in 2020 IEEE International Symposium on Circuits and Systems

(ISCAS). IEEE, 2020, pp. 1–5.
[2] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149, 2015.

[3] J. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and
A. Raychowdhury, “29.1 a 40nm 64kb 56.67 tops/w read-disturb-tolerant
compute-in-memory/digital rram macro with active-feedback-based read
and in-situ write verification,” in 2021 IEEE International Solid-State

Circuits Conference (ISSCC), vol. 64. IEEE, 2021, pp. 404–406.
[4] F. Karimzadeh, J.-H. Yoon, and A. Raychowdhury, “Bits-net: Bit-

sparse deep neural network for energy-efficient rram-based compute-in-
memory,” IEEE Transactions on Circuits and Systems I: Regular Papers,
2022.

[5] Y. Li, X. Dong, and W. Wang, “Additive powers-of-two quantization: An
efficient non-uniform discretization for neural networks,” arXiv preprint

arXiv:1909.13144, 2019.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 28,2022 at 18:49:39 UTC from IEEE Xplore.  Restrictions apply. 


