
Towards Energy Efficient DNN accelerator via
Sparsified Gradual Knowledge Distillation

Foroozan Karimzadeh∗ and Arijit Raychowdhury∗
∗School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Email: fkarimzadeh6@gatech.edu, arijit.raychowdhury@ece.gatech.edu

Abstract—Artificial intelligence (AI) is becoming increasingly
popular in many applications. However, the computation cost
of deep neural network (DNN) , which is a powerful form
of AI, calls for efficient DNN compression technique to make
energy efficient networks. In this paper, we proposed SKG,
a method to jointly sparsify and quantize DNN models to
ultra-low bit-precision using Knowledge Distillation and gradual
quantization (SKG). We demonstrated that our method can
preserve the accuracy more than 20% for uniform quantization
with 2 bit-width compared to the baseline methods on ImageNet
and ResNet-18. In addition, our method can achieve up to
2.7x lower energy consumption using compute-in-memory (CIM)
architecture compared to a traditional 65nm CMOS architecture
for both pruned and unpruned network during inference and
eventually enabling using DNN models on resource constrained
edge devices.

Index Terms—DNN model, Knowledge distillation, DNN com-
pression, quantization, low bit precision.

I. INTRODUCTION AND BACKGROUND

EDGE intelligence is the new trend toward computing
on the edge devices such as drones and self driving

cars. Edge computing provides low latency data transfer and
increase the privacy as there is no need to transfer the data to
the cloud for computations [1]. DNN methods are a powerful
form of artificial intelligence (AI) which can perform accurate
computation in many complex tasks such as healthcare [2] and
computer vision [3]. However, since edge devices are resource
constrained in terms of memory and battery, these powerful
computing methods cannot be easily deployed on edge devices
due to their large network size and intensive computations.

DNN compression techniques such as pruning [4] and
quantization [5] offer solutions to enable DNNs to be run on
the edge devices. Several works in the literature focus on quan-
tization methods for DNN compression [5]. Low-precision
operation reduce the required memory size and computation
while achieving analogous accuracy to the floating point com-
putation [6]. The multiply-and-accumulate (MAC) operations
in quantized network can be then replaced by simple bit-
wise operations cause huge reductions in computations and
required energy. Eventually, quantization enhances the energy
efficiency and speed up the computation during inference.
On the other hand, information loss and significant accuracy
drop incur as a result of quantization to lower precision
numbers [6], especially in complex data like ImageNet. The
goal is to quantize the network while achieving comparable
accuracy as the original network with floating point operation.

978-1-6654-9005-4/22/$31.00 ©2022 IEEE

Recently, several papers have investigated techniques to quan-
tize weights and activation during training to achieve higher
accuracy [5]–[7]. Incremental Network Quantization (INQ)
[8] introduces a method to efficiently quantize the weights
of any pre-trained full-precision convolutional neural network
(CNN) models into a low-precision version through three
interdependent steps, including weight partition, group-wise
quantization and re-training. However, the activation remains
in full-precision which makes it hard to deploy it on an on-chip
system. DOREFA-NET [9] is another method to quantize both
weight and activation of a CNN model using low bit-width
parameter gradients by stochastically quantize the parameter
gradients to low-precision values during back propagation.
Additive Powers-of-Two (APoT) [5] quantize the bell-shaped
distribution of weights and activation non-uniformly. In this
method, all quantization levels are constrained to be the sum of
Powers-of-Two. SYQ [6] is a symmetric quantization method
which decreases the loss by learning a symmetric codebook for
particular weight subgroups. Quantization to lower precision
such as 4-bit or ternary quantization is also harder since the
range of the numbers are very limited and a huge information
loss might occur [5].

Knowledge distillation (KD) is a method to transfer knowl-
edge from another pre-trained network as a teacher to a target
student network, letting the student network to mimic the
teacher network performance [10]. KD can be used as the
DNN compression technique, for instance, to better prune
the network [10]. [11] transformed knowledge from multiple
teacher. [12] leveraged KD method and Kullback-Leibler (KL)
divergence as the loss function for quantization. To tackle the
problem of training DNNs with low-precision, [13] transfer
the knowledge from the feature map and the logits output to
better train the network. PQK method pruned and quantizad
the network at the same time in an interactive manner [14]
while in our paper, we prune and quantize the network in the
separate steps.

From the hardware perspective, several specialized CMOS
based hardware for DNN accelerators has been proposed to
enable compressed DNNs running on edge devices. However,
new architectures based on traditional CMOS still face the
fundamental technological limitations of CMOS. On the other
hand, Von Neumann architecture suffers from prohibitive
power dissipation incurred by massive data transfer between
the PEs and memory. Accessing DRAM memory requires
three order of magnitude higher power than a simple multi-
plication [15]. On the other hand, compute-in-memory (CIM)
architecture has emerged to solve the aforementioned issues

20
22

 IF
IP

/IE
EE

 3
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 V
er

y
La

rg
e

Sc
al

e
In

te
gr

at
io

n
(V

LS
I-

So
C

) |
 9

78
-1

-6
65

4-
90

05
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
LS

I-
So

C
54

40
0.

20
22

.9
93

96
19

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 28,2022 at 18:49:24 UTC from IEEE Xplore. Restrictions apply.

2

by performing the computation in the memory [16], [17].
In this paper, we propose a method to jointly prune and

quantize the model to ultra low bit-width, allowing DNNs to
run on the power and battery constrained edge devices. The
method has three steps including: (1) pruning (2) quantization
using KD and (3) gradual quantization to lower bit precision.
During inference, we also use both traditional CMOS based
accelerator and CIM architecture for comparison. We train
the pruned network while gradually reduces the bit-precision
using KD, and demonstrated that we can preserve the accuracy
better in very low bit precision. We also calculated the energy
required during inference using a 2 bit/cell CIM architecture
and 65nm CMOS technology. The advantage of using a
CIM architecture is to achieve low-latency and low-power
computation scheme since the computation is conducted in the
memory as opposed to a traditional Von Neumann architecture
which suffers from the latency and power dissipation caused
by intra-chip data communication.

II. METHOD

The proposed method illustrated in figure 1 consisting
of three steps: pruning, gradual quantization and knowledge
distillation scheme to achieve an ultra-low bit-precision DNN
model. The goal is to achieve an energy-efficient computation
while preserving the accuracy during inference. The training
starts with the initialization using a full precision (i.e. float-
32) pre-trained model. In this work, we used both pruned and
unpruned network for the full precision network. For pruning,
we have utilized a threshold based method as explained in
[15] to sparsify the full precision network. In the next step,
the network is quantized to n-bit fixed-point precision (e.g.
8-bit) during training using knowledge distillation to achieve
similar accuracy. Next, the model with quantized weight and
activation is saved as the pre-trained model for the lower
bit precision training. This process is continued to decrease
the bit-width gradually one by one until the result for the
desired lowest bit-precision (e.g. 2-bit) is achieved. The goal
is to quantize the network gradually to gain higher accuracy
and compensate for the loss of information as a result of
ultra-low bit quantization. We used uniform and power-of-two
(PoT) quantization methods in this paper but other methods
of quantization can be applied. During inference, we also
utilized traditional CMOS and CIM architectures to evaluate
and compare the energy efficiency of the system.

A. Preliminaries

Matrix-vector multiplication between weight (W) and its
input values (X) defines as a basic building block in DNN
models. The result is then pass through an element-wise
nonlinear activation function which is usually a Rectified
Linear Unit (ReLU). The formula is shown in Eq. 1 where
T is a transpose function, b is the bias.

a = ReLU(WTX + b) (1)

To quantize the model, suppose W ∈ RCout×Cin×k×k is a
4D tensor representing a convolutional layer’s kernels, where

Cout and Cin and k are the number of output channel, input
channels and the kernel size, respectively. We can define the
weight quantization formula [5] as follow:

Wq = αΠQ(1,b)⌊
W

α
, 1⌉, (2)

where b is the bit-precision, α is the scaling factor and the
scaling function ⌊., 1⌉ scales the weights to the range of
[−1, 1]. Then, the scaled W is projected by Π(.) in an element-
wise manner to the defined quantization levels, Q(1, b).

For uniform quantization, QU (1, b) defines as Eq. 3. More-
over, PoT quantization (Eq. 4) quantized the networks by
constraining quantization levels to be powers-of-two values
or zero.

QU (1, b) = {0, ±1

2b−1 − 1
,

±2

2b−1 − 1
, ...,±1}, (3)

QPOT (1, b) = {0,±2−2b−1+1,±2−2b−1+2, ...,±1}, (4)

Quantization maps each element of the full precision weight
matrix to a b bit-width fixed-point representation. The result
of convolution against quantization level is then re-scaled by
multiplying to the scaling factor (α). α is generally a floating-
point number [5]. However, in this paper, we round it to the
nearest int8 power of two number to have fully fixed-point
computation during inference.

During backward path, the modified version of Straight-
Through Estimator (STE) [18] is adopted for the projection
operation [5]. The gradients of α are calculated as bellow:

∂Wq

∂α
=

sign(W) if |W | > α

ΠQ(1,b)
W

α
− W

α
if |W | ≤ α

(5)

After quantization, the arithmetical calculation of DNN
models can be performed in an on-chip system with low-
precision fixed-point operations, which is much more efficient
in terms of the required memory and energy than their floating-
point equivalent [19].

B. Knowledge Distillation and Gradual Quantization

In this paper, we explore the idea of KD and gradual
quantization for a pruned full-precision network. Knowledge
distillation are mainly divided into three types [20]: relation-
based knowledge, feature-based knowledge and response-
based knowledge. In this work, we apply the response-base
knowledge where the network is learned to use quantized
weights and activation using KD during training while using
the logits layer values of a higher-precision network as the
ground-truth (Figure 1). First, we use both pruned and un-
pruned full-precision (float-32) model as a pre-trained model.
The pruning is performed using a threshold based method
as explained in [15] where the weights less than a defined
threshold are removed during the training. Since the value of
pruned weights are zero, they remain zero during quantization
in the forward path. We also applied a mask to make sure

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 28,2022 at 18:49:24 UTC from IEEE Xplore. Restrictions apply.

3

Inference

Float-32

Pre-trained Network
As N bit precision

TrainingInitialization
Pruned or Unpruned

Network

N-1 bit precision

𝑋𝑞

𝑊𝑞

𝑋

𝑊

Quantization using
KD, N-1 bit precision

Hardware Architecture

𝑌

෠𝑌

𝑀𝑆𝐸 𝐿𝑜𝑠𝑠

T
ea

ch
er

St
u

d
en

t

Logits layer

Fig. 1: An overview of the proposed method consisting of pruning, knowledge distillation (KD) and gradual quantization steps
for DNN compression during training. The quantized weight and activation will then be used during inference to increase the
energy efficiency of the system while preserving the accuracy.

the percentage of pruning remain the same until the end
of gradual quantization. We then use the last activation of
the full-precision network as the ground-truth and teacher to
quantize the lower precision like 4-bit as the student network.
For KD method, minimum square error (MSE) is used as a
loss function, L, as shown in Eq. 6, where Y and Ŷ are the
last logits layers of the original full-precision network and the
quantized network, respectively.

L(Y, Ŷ) = (Y − Ŷ)2 (6)

Afterward, the final model with 4-bit precision is saved
and used as the pre-trained model for training the network
with 3-bit precision. We continue this gradual reduction in bit-
precision until we reach the target bit-precision, for example
2-bit precision. It should be mentioned that we quantize all
the layers of the network except the last layer and both the
weight and activation to the desired bit-width. Last layer is
quantized to 8-bit precision as it is used for classification. The
reason of using gradual quantization is that if we quantize the
network from full-precision to the target low bit-precision, the
accuracy drops drastically because of losing huge information.
However, using gradual quantization, we can better preserve
the accuracy for lower bit-precision like 4 or 2 bit-precision.

C. Hardware

In this paper, we used two different hardware architectures,
CIM and 65nm conventional CMOS technology, during in-
ference to evaluate the energy efficiency. CIM architecture
utilizing resistance of memory cells is illustrated in figure
2a where a memory cell itself serves as a PE and memory
simultaneously. The memory cell holding the weights as the
resistance generates the current which is the result of bit-
wise multiplication between the inputs and weights. Then,
currents are summing up as a result of a current-summing
BL structure in a memory array. Therefore, the intermediate

(a) CIM architectures exploiting resistance of memory cells.

Input
Vector

Input Buffer ∑
𝒙𝒊 𝑾𝑹

Output Buffer

Neuron
Output

Sparse Weight
Value (S)

𝑺𝒊𝒋

Sparse Index (I)Pointer (P)

(M·N/2·(1+ 𝛽) Bytes)

(M·N·(1+𝛽).(1-sp) Bytes)
∑Logic

(M Bytes)

Technology
Node TSMC

65nm

Frequency 1GHZ

Voltage 1 V

Temperature 25◦C

Memory
Bank

256B, 512B
1KB, 4KB

Hardware Parameters

(b) The hardware architecture for sparse DNN computation using a
conventional 65nm CMOS and the its characteristics.

Fig. 2: The high-level hardware architectures of CIM and
conventional CMOS for inference.

data are accumulated immediately. As a result, an energy-
efficient architecture is achieved especially for deep learning
computations. In particular, the CIM architectures utilizing
emerging memory such as RRAM have achieved importance
in performing energy-efficient computing thanks to its inherent
multiply-and-accumulate (MAC) functionality in BL struc-
tures, non-volatility and compatibility to CMOS process. In
this paper, we utilized the voltage-sensing multi-bit RCIM
architecture proposed in [17], [21]. The detailed description
of the architecture is explained in [21]. In this architecture,
a 2-bit encoding is employed where with the 2-bit-encoded
RRAM cells (11, 10, 01, and 00) and the ADC-based readout
circuits, the measured energy per bit during CIM is 0.83, 0.47,
0.28, and 0.15 pJ/bit, respectively. We have used these actual
measurements to estimate the required energy of the networks.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 28,2022 at 18:49:24 UTC from IEEE Xplore. Restrictions apply.

4

The proposed method also synthesized with 65nm CMOS
technology to measure hardware metrics. Implementation pa-
rameters are shown in 2b. In this architecture, the sparse
weight matrix is compressed in three vectors and saved in
the memory: (1) the non-zero values of the weights (S), (2)
location of the non-zero weights (I) and (3) a pointer vector
to point to the start of each column in the weight matrix (P).
In addition to the mentioned three vectors, each entry bit-
width of S and I is designed to be equal to the bit-precision,
and additional memory usage ratio resulted from limited index
representation is denoted by β [22], [23].

III. RESULT

In this section, we validate our proposed method, SKG, on
ResNet-18 network and ImageNet-ILSVRC2012 dataset with
1000 classes [24]. ImageNet dataset consists of 1.2M training
and 50K validation images. Before starting the training step,
the images are randomly cropped and resized to 224×224.
Apart from a single crop and normalization, we have not
done any other pre-processing on images. The original full-
precision ResNet model is implemented using PyTorch official
implementation and initialized from the released pre-trained
model. The results have compared with various baseline meth-
ods including uniform quantization, PoT quantization, additive
powers-of-two (APoT) [5] and XNOR-Net [25]. Training is
carried out on Nvidia GTX 1080 Ti GPUs. In this paper, we
quantize both weight and activation with the same method
to the target bit-precision for all the layers except the last
layer of the network to gain fully quantized DNNs. Like other
baseline methods, the last layer is quantized to 8 bit-width
since it is used for classification. Moreover, stochastic gradient
descent (SGD) with the momentum of 0.9 is employed for
parameter optimization. MSE (Eq. 6) is also applied as the
loss function for KD method between Y, the last logits layer
of the original full-precision network, and Ŷ the last logits
layer of the quantized network.

In the proposed method, we start with training a ResNet
model on Imagenet using float-32 format as a pre-trained and
teacher network. Instead of using the Imgenet labels, we uti-
lized the last logits layer of the original full-precision network
as the teacher and ground-truth. In this work, both pruned and
unpruned networks are utilized as the teacher network. Since
the edge devices are resource constrained in terms of battery
and energy, the pruned network as the teacher can help to
further compress the DNN models. As illustrated in figure
2, multiplying to the sparse wight matrix (i.e. zero values)
decrease the energy consumption [22]. Specifically, in CIM
architecture, the weight values with more zeros in their binary
representations are desirable since multiplying to the bit with
zero value requires 6x less energy. Therefore, sparsifying the
network will help to decrease the energy consumption during
inference. Eventually, the goal is to quantize the network
to ultra-low bit-precision as a student network using a KD
technique and gradually decrease the bit-precision.

First, we compare the accuracy of the proposed method
with different baseline methods including APoT, XNOR-Net.
First we evaluated our method using an original ResNet model

Fig. 3: Accuracy vs bit-width (4-2 bits) for uniform and
PoT method with KD and gradual quantization and baseline
methods including APoT and XNOR-Net with FL32 as the
pre-trained model on ResNet-18 and ImageNet dataset.

with no pruning. We implement KD and gradual quantization
method on two commonly used quantization method, (1) uni-
form quantiozation and (2) PoT, and quantize them gradually
to the lower bit precision by using the model from the previous
bit-width as the pre-trained model and its last logits layer as
the ground truth. The two state-of-the-art baseline methods
(APoT and XNOR-Net) are quantize using FL32 model as
the pre-trained network. XNOR-Net is the method for 2-bit
quantization. Therefore, XNOR-Net result is just presented
for 2 bit-width. The results for 4, 3, 2 bit-width, illustrated
in figure 3 show that our proposed method helps the network
to preserve the accuracy for ultra low bit-widths.

To show the effectiveness of gradual quantization, for 8-bit
to 2-bit precision is implemented using ResNet-18 on Ima-
genet dataset. We then compare the accuracy for different bit
precision with the accuracy of a network trained and quantized
to different bit precision using fl-32 network with no pruning
as the pre-trained model. Figure 4 illustrates the accuracy vs
bit-width from 8-bit to 2-bit for the proposed method and the
baseline using uniform quantization. No gradual quantization
is applied for the baseline method. As demonstrated, gradual
quantization can preserve the accuracy better for lower bit
precision. The accuracy for 5, 4, 3, 2 bit-widths are 69.14%,
68.41%, 64.52%, 60.34%, respectively. While the accuracy for
the mentioned bit-widths for the baseline method are 67.81%,
60.11%, 58.31%, 40.51%, respectively, which are lower than
the accuracy of our proposed method.

In addition, we explored the idea of pruning and quantiza-
tion to increase the energy efficiency by removing unimportant
connections and quantize the rest to the ultra-low bit precision.
To do so, we start with a prunned original float-32 ResNet-18
model and used that as the ground-truth for the KD method to
train a network with 4-bit precision. Next, the last logits layer
of the trained 4-bit network is utilized as the label to train the

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 28,2022 at 18:49:24 UTC from IEEE Xplore. Restrictions apply.

5

TABLE I: The accuracy for our method and a baseline method
for different sparsity percentage.

Method Our method baseline

Sparsity
Bit-width 4-bit 3-bit 2-bit 4-bit 3-bit 2-bit

40% 68.2 64.7 59.1 64.5 56.2 51.2
70% 68.5 63.1 57.9 63.4 53.2 50.6
90% 67.2 61.2 60.9 54.9 51.2 48.7

network with 3-bit precision and so on. Table I shows that our
method gains higher accuracies in different sparsity rates and
bit-precision. For example, in 70% sparsity rate, SKG achieves
68.5%, 63.1% and 57.9% accuracy in 4-bit, 3-bit and 2-bit
precision, respectively.

Moreover, we compared the required energy to run our
method for different sparsity rates and bit-precision based
on CIM and 65nm CMOS architecture illustrated in figure
2. We have used the actual measurement to estimate the
total energy required in CMOS and CIM architectures. The
results are demonstrated in table II. The estimated energy
for CIM includes the RRAM array, the ADC, the controller,
and other peripheral circuits except for the voltage reference
(VREF) generator, and for CMOS architecture includes mem-
ory, multiplier, accumulator and input/output buffer. In the
CIM architecture, a 2-bit encoding is employed where with the
2-bit-encoded RRAM cells (11, 10, 01, and 00) and the ADC-
based readout circuits, the measured energy per bit during CIM
is 0.83, 0.47, 0.28, and 0.15 pJ/bit, respectively. We have used
these actual measurements to estimate the required energy of
the networks with different sparsity rates. The result shows that
the energy consumption estimated using CIM architecture are
lower than traditional CMOS architecture.

Since CIM architecture achieved lower required energy,
we compare the energy consumption of our method and
baseline method using only the 2bit/cell RRAM based CIM

Fig. 4: Accuracy vs bit-width (8-2 bits) for uniform quantiza-
tion with and without gradual quantization on ResNet-18 and
ImageNet dataset.

TABLE II: The energy (J) of our proposed method for different
sparsity percentage using CIM and CMOS architectures.

Method CIM 65nm CMOS

Sparsity
Bit-width 4-bit 3-bit 2-bit 4-bit 3-bit 2-bit

40% 204.5 150.2 55.6 551.3 412.8 338.4
70% 156.2 98.5 42.8 477.9 364.1 251.7
90% 102.6 65.1 29.4 328.2 218.9 158.1

architecture during inference (figure 5). The results show that
SKG with PoT method and gradual quantization can achieve
the best accuracy while consuming the least energy among
other methods for ultra-low bit precision. The energy saving
of gradual PoT quantization compare to the APoT for 4, 3 and
2 bit-width are 75.98%, 86.96% and 21.97%, respectively.

IV. CONCLUSION

Using powerful DNN algorithm on the resource constrained
edge devices requires us to develop compression techniques to
make efficient DNNs in terms of energy consumption and size.
In this paper, we proposed SKG to jointly prune and quantize
ResNet models for highly compressed networks that can be
deployed on edge devices. we demonstrated that using KD
technique along with the gradual quantization help the net-
work to better preserve the accuracy in ultra-low bit-precision
and the accuracy can be increased up to 20% compared to
the baseline methods. In addition, SKG can achieve higher
compression rates by using the sparse float-32 network as
the ground-truth. We also compared the energy consumption
during inference using CIM and traditional 65nm CMOS
technologies. The results show that CIM architecture can
achieve 2x less energy. Moreover, using KD and gradual PoT
quantization and CIM architecture, we can reduce the energy
consumption more than other methods during inference. Using

Fig. 5: The total estimated energy achieved by the proposed
method for Uniform and PoT compared with the baseline
method, APoT, with FL32 pre-trained model for ResNet-18
on ImageNet. From left to right: 4-bit, 3-bit, 2-bit precision.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 28,2022 at 18:49:24 UTC from IEEE Xplore. Restrictions apply.

6

CIM architecture for 4 to 2-bit-width quantization, gradual
PoT quantization saves 75.98%, 86.96% and 21.97% energy
compare to the APoT baseline method and achieve 68.3%,
64.1% and 60.7% accuracy, respectively which is higher than
the baseline methods with full-precision model as the pre-
trained network.

ACKNOWLEDGMENT

This project was supported by the Semiconductor Research
Corporation under grant JUMP CBRIC task ID 2777.004,
2777.005 and 2777.006.

REFERENCES

[1] F. Karimzadeh and A. Raychowdhury, “Memory and energy efficient
method toward sparse neural network using lfsr indexing,” in 2020
IFIP/IEEE 28th International Conference on Very Large Scale Integra-
tion (VLSI-SOC). IEEE, 2020, pp. 206–207.

[2] R. Boostani, F. Karimzadeh, and M. Nami, “A comparative review on
sleep stage classification methods in patients and healthy individuals,”
Computer methods and programs in biomedicine, vol. 140, pp. 77–91,
2017.

[3] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis,
“Deep learning for computer vision: A brief review,” Computational
intelligence and neuroscience, vol. 2018, 2018.

[4] F. Karimzadeh, N. Cao, B. Crafton, J. Romberg, and A. Raychowdhury,
“Hardware-aware pruning of dnns using lfsr-generated pseudo-random
indices,” in 2020 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2020, pp. 1–5.

[5] Y. Li, X. Dong, and W. Wang, “Additive powers-of-two quantization: An
efficient non-uniform discretization for neural networks,” arXiv preprint
arXiv:1909.13144, 2019.

[6] J. Faraone, N. Fraser, M. Blott, and P. H. Leong, “Syq: Learning sym-
metric quantization for efficient deep neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4300–4309.

[7] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[8] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” arXiv
preprint arXiv:1702.03044, 2017.

[9] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[10] L. Chen, Y. Chen, J. Xi, and X. Le, “Knowledge from the original
network: restore a better pruned network with knowledge distillation,”
Complex & Intelligent Systems, pp. 1–10, 2021.

[11] S. You, C. Xu, C. Xu, and D. Tao, “Learning from multiple teacher
networks,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2017, pp. 1285–
1294.

[12] S. Shin, Y. Boo, and W. Sung, “Knowledge distillation for optimization
of quantized deep neural networks,” in 2020 IEEE Workshop on Signal
Processing Systems (SiPS). IEEE, 2020, pp. 1–6.

[13] B. Zhuang, M. Tan, J. Liu, L. Liu, I. Reid, and C. Shen, “Effective
training of convolutional neural networks with low-bitwidth weights
and activations,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

[14] J. Kim, S. Chang, and N. Kwak, “Pqk: Model compression via
pruning, quantization, and knowledge distillation,” arXiv preprint
arXiv:2106.14681, 2021.

[15] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[16] J. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and
A. Raychowdhury, “29.1 a 40nm 64kb 56.67 tops/w read-disturb-tolerant
compute-in-memory/digital rram macro with active-feedback-based read
and in-situ write verification,” in 2021 IEEE International Solid-State
Circuits Conference (ISSCC), vol. 64. IEEE, 2021, pp. 404–406.

[17] F. Karimzadeh, J.-H. Yoon, and A. Raychowdhury, “Bits-net: Bit-
sparse deep neural network for energy-efficient rram-based compute-in-
memory,” IEEE Transactions on Circuits and Systems I: Regular Papers,
2022.

[18] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,” arXiv
preprint arXiv:1308.3432, 2013.

[19] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM computing surveys (CSUR), vol. 23,
no. 1, pp. 5–48, 1991.

[20] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, vol. 129, no. 6, pp.
1789–1819, 2021.

[21] J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and
A. Raychowdhury, “A 40nm 100kb 118.44 tops/w ternary-weight
computein-memory rram macro with voltage-sensing read and write
verification for reliable multi-bit rram operation,” in 2021 IEEE Custom
Integrated Circuits Conference (CICC). IEEE, 2021, pp. 1–2.

[22] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2016, pp. 243–254.

[23] F. Karimzadeh, N. Cao, B. Crafton, J. Romberg, and A. Raychowdhury,
“A hardware-friendly approach towards sparse neural networks based
on lfsr-generated pseudo-random sequences,” IEEE Transactions on
Circuits and Systems I: Regular Papers, 2020.

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[25] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision. Springer, 2016, pp. 525–542.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 28,2022 at 18:49:24 UTC from IEEE Xplore. Restrictions apply.

