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Abstract—Non-invasive EEG devices have shown novel ap-
plications from neuro-biological exploration to robotic control.
Controlling robotic movements using brain activity requires ac-
curate processing of real time multi-channel data for classification
into multiple classes for actuating the robot. Multiple networks
ranging from convolutional and recurrent neural networks have
been used to classify the time-encoded analog data stream. In
this work, we study the classification of a 14-channel EEG
device using convolutional neural networks (CNN) and long-short
term memory (LSTM) for wrist motor response classification.
Varying network structures suggested that CNNs consistently
outperformed LSTMs in accuracy by approximately 10%. In the
second step, we evaluated the relative importance of the channels
where a subset of the EEG channels were provided as inputs to
the classifier and the results showed that the CNN performance
dropped quicker with a reduced number of channels. We also
identified a set of channels with the least effect on classification
performance while comparing the individual contributions of the
channels in the classification output. The results of this work
may help in choosing network architectures and sensitive brain
regions for future low power EEG applications.

I. INTRODUCTION

Processing of electroencephalogram (EEG) signals from the
brain finds wide variety of applications in rehabilitation [1],
robotic control for walking robots [2], robotic arm [3], etc. The
sampling of signals happens through multiple channels in the
brain computer interfaces, which captures the local potential
at points on the scalp to generate continuous waveforms. This
multi-channel input then undergoes preprocessing to remove
noisy fluctuations that then pass through a neural network for
classification.

Neural signal generation corresponding to motor or cogni-
tive tasks provides a simple classification paradigm to classify
EEG output based on the motor action it corresponds to. Mul-
tiple motor actions such as the motion of limbs [4], blinking
of eyes [5] etc. have been approached for classification using
multiple processing backends ranging from CNNs, LSTMs
[3], and even SNNs [6]. Dedicated networks have also been
proposed for high-performance operations [7]. The relative
advantages of these methods for such motor classification tasks
are not fully clear [8].

In this work, we use CNNs and LSTMs for comparing a 4
output classification task. 3 layered networks with one hidden
layer are constructed for both CNNs and LSTMs with varying
numbers of filters for CNNs and varying numbers of hidden
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layers for LSTMs. The accuracy of classification and number
of operations are compared for hardware implementation. Our
results reveal that CNN provides betters accuracy but is more
susceptible to the number of channels being used.
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Fig. 1. (a) Original recorded data (b) data after normalization (c) Network
structure for the classification task

II. METHODOLOGY

A. Data Acquisition

A fully charged device is connected to a laptop via Blue-
tooth USB dongle for the experiment. Electrode felts were
soaked in a mild saline solution before application to the
subject’s head. The experiments took place in a quiet room, to
limit noise in our recordings, e.g. auditory stimuli. Felts were
placed into electrode sockets and the headset was positioned
on the subject’s head. The headset was adjusted until electrode
contact quality (CQ) hit 100%. The subject was given around
5 minutes to relax. This was done to let EEG signal quality
reach 100%. The subject was instructed to close their eyes
to limit the influence of visual stimuli. Trials were timed for
5 minutes, of which the first and last 30 seconds would be
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removed. This was to avoid corruption in the waveforms while
they were settling to stable values. The subject was asked to
place their left wrist in the down position and hold the position
for 5 minutes. The EEG headset was set to record data at a
frequency of 128Hz. The recorded data was broken into 128
samples each as inputs to the classification network. At the
end of the 5 minute window, the recording was stopped and
the subject was asked to repeat the above steps for the left
wrist up, right wrist down and right wrist up positions. Fig. 1
describes the procedure for data acquisition. Fig. 1(a) shows
the acquired data through the channels for a single input to
the classification network.

With the resulting data files, for each action, the mean of
each channel was found and hence the standard deviation. This
was used to screen files before adding them to our input data
set. The output file for each action was split into multiple files
each with a length of 128 samples. These files were named in
ascending order by the order in which actions were performed.
For each batch of 128 samples, the mean was found for each
channel and the standard deviation from the mean of all the
samples for that action was found. Any batch that exceeded
4 standard deviations was discarded. Only batches under 4
standard deviations were allowed to be added to the input
data set. Furthermore, of the data samples that were allowed
through our screening process, they were normalized about
the mean to operate more efficiently with TensorFlow. The
normalized inputs are shown in Fig. 1(b). The time-encoded
input is passed through the network to generate an estimate
for the hand position of the subject. The inputs are randomly
selected corresponding to each one of the outputs to avoid
biased classification. The data was then split where 80% was
used as training data and 20% was used to test the model.
The networks had varying numbers of parameters (for both
the CNN and the LSTM) to compare the performance across
the number of parameters.

B. LSTM

Long short-term memory forms a popular network choice
for temporally continuous data where the dependence of the
current sample on the previous samples is of importance.
LSTM has been used previously in [9] for EEG classification.
We use a network consisting of one input layer, an LSTM
layer each followed by a “dropout” layer, a dense layer and a
Soft-max/Activation layer. The network started with an input
layer of 14 channels and 128 samples. The number of hidden
units was varied to find an optimal point. The output is read
out using a softmax activation layer for output classification.
We also used categorical-cross-entropy and adam optimizer
for training.

C. CNN

The majority of the deep learning applications used in
EEG data classification use CNNs [9]. CNNs are applied
on the fully recorded data with multiple filters capturing the
temporal patterns within a channel and its interaction with
the other channels. Our CNN consisted of a one-dimensional

convolutional layer with a varying number of filters, followed
by a pooling layer, dropout, and a fully connected output layer
with a softmax activation function. The number of filters were
varied in multiples of 12. The CNN used 80% of the data for
training and 20% of the data for validation. The CNN was also
trained using categorical-cross-entropy and an adam optimizer.

III. RESULTS

A. Optimal Number of Hidden Layers

Fig. 2. The accuracy of the CNN on classifying the correct wrist position of
the subject across different numbers of filters.

Fig. 3. The accuracy of the LSTM on classifying the correct wrist position
of the subject across different numbers of filters.

We undertake 2 studies consisting of finding the optimal
number of hidden layers and assessing the relative importance
of the channels and thereby the active regions within the
cortex. First, we varied the number of filters for the CNN
and found validation accuracy for each number of filters. The
results are shown in Fig. 2 where the network performance
rises initially but then falls, possibly because of overfitting. A
similar experiment was repeated with LSTMs, and the optimal
number of hidden layers was found to be 84 as shown in Fig. 3.
The network accuracy was observed to be consistently rising
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Fig. 4. Diagram comparing the performance of a CNN and LSTM when only using data from the indicated channels. The color of the channels on the head
diagram to the left are correlated with the color of datapoints on the right. Channels around the motor cortex (T7/T8 and FC5/FC6) were expected to have a
greater amount of useful information, but empirical results showed that channels at the back of the head were more consistently useful across the LSTM and
CNN.

with additional numbers of hidden layers. It is important to
note that the variation in LSTM performance is higher with
the network structure whereas CNNs are mainly agnostic with
additional filters. The accuracy is seen to be higher for the
typical CNN, explaining their popularity.

B. Relative Importance of Channels

In the next step, both networks were reconfigured using their
respective optimal hidden layers and were now run with only
two channels from the EEG at a time as color-coded in Fig. 4.
This is to check if motor tasks have a significant dependence
upon a specific region on the head causing channels in a
particular region to be of relatively higher importance. The
CNN was implemented with 36 filters, and the LSTM was
implemented with 84 hidden layers due to the results of the
previous experiment. The two channels were also chosen to be
on opposite hemispheres of the brain, and therefore should be
important to run together as the brain hemispheres are thought
to be roughly equivalent and will have similar behavior.

The results are shown in Fig. 4 (see Figure 4.). It was
expected that areas near the motor cortex (approximately the
electrodes FC5/FC6 and T7/T8 in Figure 4.) would be the
most important, as the networks were classifying for motor
data from the wrist. While the CNN did have relatively high
performance on the FC5/FC6 and T7/T8 channels, these results
were not supported in the LSTM. In fact, it was the O1/O2 and
P7/P6 channels that were most consistently higher performing
across both the LSTM and CNN, which are located at the back
of the head. F7/F8 was consistently the worst performer across
both the LSTM and CNN. The accuracy for CNNs drops
significantly from moving to 2 channels from 14 whereas the

drop is relatively smaller for LSTMs. This shows that the
CNNs capture the overall relative activity within the channels
more accurately and rely on the inter-channel interactions
more than LSTMs.

IV. DISCUSSION

This project had issues with noise during data gathering.
The EEG was very sensitive to very small disturbances in
noise, and the disturbances could not be completely removed
within a quiet lab setting. The data also differed depending on
the mental state of the subject and required the subject to be
almost completely still, as the EEG was much more sensitive
to muscular disturbances than to brain signals. However, the
noise and lack of precision and accuracy from the headset
is not a complete negative, as our results show that even in
noisy environments with a noisy EEG the algorithms can still
produce results.

We observe that CNNs consistently demonstrated higher
accuracy compared to the LSTMs while using the data from
all channels. However, the accuracy was lower for CNNs when
inter-channel interactions could not be considered while using
only two channel inputs. The consistent low importance of the
F7 and F8 channels may be of interest to the neuro-engineering
community.

V. CONCLUSION

We studied the classification of EEG data using CNN and
LSTMs for a commercial 14-channel EEG device. CNNs
generally show higher accuracy for classification with different
numbers of hidden units. However, its performance is more
susceptible when limited to a number of input channels.
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Comparing the other common networks for benchmarking the
performance of different network topologies may be of interest
for edge-processing community when the network is to be
implemented near the BCI device.
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